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Abstract 

Background The study of plant photosynthesis is essential for productivity and yield. Thanks to the development 
of high‑throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits 
can be measured in a reliable, reproducible and efficient manner. In most state‑of‑the‑art HTP platforms, these traits 
are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual 
annotation. Automated leaf tracking over time is therefore highly desired. Methods for tracking individual leaves are 
still uncommon, convoluted, or require large datasets. Hence, applications and libraries with different techniques 
are required. New phenotyping platforms are initiated now more frequently than ever; however, the application 
of advanced computer vision techniques, such as convolutional neural networks, is still growing at a slow pace. Here, 
we provide a method for leaf segmentation and tracking through the fine‑tuning of Mask R‑CNN and intersection 
over union as a solution for leaf tracking on top‑down images of plants. We also provide datasets and code for train‑
ing and testing on both detection and tracking of individual leaves, aiming to stimulate the community to expand 
the current methodologies on this topic.

Results We tested the results for detection and segmentation on 523 Arabidopsis thaliana leaves at three different 
stages of development from which we obtained a mean F‑score of 0.956 on detection and 0.844 on segmentation 
overlap through the intersection over union (IoU). On the tracking side, we tested nine different plants with 191 
leaves. A total of 161 leaves were tracked without issues, accounting to a total of 84.29% correct tracking, and a Higher 
Order Tracking Accuracy (HOTA) of 0.846. In our case study, leaf age and leaf order influenced photosynthetic capac‑
ity and photosynthetic response to light treatments. Leaf‑dependent photosynthesis varies according to the genetic 
background.

Conclusion The method provided is robust for leaf tracking on top‑down images. Although one of the strong com‑
ponents of the method is the low requirement in training data to achieve a good base result (based on fine‑tuning), 
most of the tracking issues found could be solved by expanding the training dataset for the Mask R‑CNN model.
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Background
There are increasingly more high throughput (HTP) 
phenotyping technologies becoming available, which 
provides increasingly more methods to support plant 
breeding efforts for crop improvement. HTP phenotyp-
ing platforms are largely based on a wide range of imag-
ing technologies, including visible light (blue 450  nm, 
green 550 nm and red 600 nm), chlorophyll fluorescence 
(CF), thermal, hyperspectral imaging and more, reviewed 
in [1]. As a result, a large number of plants at various 
developmental stages can be measured automatically in 
a nondestructive manner for target phenotypes. Such 
large-scale screening enables the selection of the best 
performing genotypes as well as best phenotypes as pre-
dictors of complex traits such as stress tolerance, disease 
resistance and yield. At the same time the genetic basis of 
complex traits can be revealed in genetic studies where 
high-density genetic makers and accurate phenotypes are 
associated with large-scale population (genetic mapping 
for quantitative trait locus). Photosynthesis is considered 
a difficult trait for breeding or for genetic studies because 
of its polygenic nature and high sensitivity to environ-
mental changes. This makes photosynthesis parameters 
a good indicator of biotic and abiotic stresses as well as 
plant productivity that potentially associates with yield 
[2–4]. CF imaging is becoming a powerful and popular 
technique for measuring efficiency of photosystem II 
(φPSII). The HTP phenotyping platform using CF imag-
ing, the so-called Phenovator [5], was developed at Wage-
ningen University, which led to successful studies on 
natural variation for photosynthesis in the model species 
Arabidopsis thaliana [6, 7]. An advanced photosynthesis 
phenotyping platform, built by Photon Systems Instru-
ments (PSI), is now embedded in the Netherlands Plant 
Eco-phenotyping Center (NPEC; www. npec. nl), which 
setup is now available for A. thaliana and other species 
with various plant sizes and architectures. The current 
image analysis does not include automated individual 
leaf tracking over time, but as phenotypic variation in leaf 
morphology and other, e.g. photosynthesis, parameters 
are observed between developmental stages and between 
leaves [8–10], the development of leaf detection and seg-
mentation methods on images is required. Many meth-
ods have been developed for leaf segmentation [11–13], 
but recent advances in artificial intelligence (AI) allow for 
new approaches. The implementation of the most recent 
tools for segmentation, such as Mask-RCNN [14] remains 
to be explored. These models have the advantage of per-
forming both detection and segmentation in one step and 
being fast in inference times, simplifying the pipeline. All 
these methods (AI based or not) still have a problem on 
time series association. The instance detection order var-
ies, depending on the position of the leaves, requiring an 

association step to produce a time series for each indi-
vidual leaf which might be challenging to implement [15]. 
As an alternative, we find the use of complex AI methods 
capable of both tasks [16, 17], but these methods require 
abundant training data, which might be expensive to pro-
duce timewise. Therefore, in this manuscript we suggest 
a hybrid approach combining convolutional neural net-
works (CNN) to solve detection and segmentation, with 
a numerical method to perform association between time 
points. We also present an analysis of photosynthesis 
data of two Arabidopsis accessions (Columbia-0 and Ely) 
as a case study. Results showed that the photosynthetic 
capacity and photosynthetic response to light treatments 
are influenced by leaf age and order. There is variation in 
leaf-dependent photosynthesis, which is of great interest 
for quantitative genetic studies. The main contributions 
of this research are summarized as follows: (1) A study 
on the efficiency of Mask R-CNN to individualize leaves 
in Arabidopsis. (2) A method based on intersection over 
union (IoU) to track individual leaf growth on temporal 
series. (3) A novel comparative study of the photosynthe-
sis efficiency between Columbia-0 and Ely at individual 
leaf level. (4) A repository with code and a dataset to rec-
reate the work and train other detection models.

Results
General approach
The proposed method first employs Mask R-CNN to 
detect leaves and generate their corresponding binary 
masks (Fig.  1A). Then, the IoU is used to measure the 
similarity between the masks in consecutive frames and 
find the correspondence between them (Fig.  1B). This 
correspondence information is further utilized to track 
the leaves over time. The experimental results demon-
strated the effectiveness of the proposed method in accu-
rately detecting and tracking leaves in a top-down setting.

Leaf detection and segmentation
A total of 523 different leaves were evaluated, catego-
rized by origin. A total of 304 came from plants in the 
last stages of development, 151 at the mid stages and 68 
at the very early stages. In the first contrast we evalu-
ated how many of them were effectively detected (True 
positives, TP) against how many of them were not (False 
negatives, FN) and against how many false detections 
(False positives, FP) were found. From these leaves we 
found 294/10/26 (TP/FN/FP) for the late stage, 146/5/7 
(TP/FN/FP) for the mid stage and 65/3/1 (TP/FN/FP) 
for the early stages. Based on these values we estimated 
the precision (P), recall (R) and F-score (Fs) for each 
stage, having 0.9187/0.9671/0.9423 (P/R/Fs) for the late 
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stage, 0.954/0.969/0.96 (P/R/Fs) for the mid stage and 
0.985/0.9558/0.9701 (P/R/Fs) for the early stage (Table 1).

We also assessed the adequacy of the segmenta-
tion for each true positive detection. For this task, 
we evaluated the IoU between the predicted masks 

and the ground truth mask. We obtained a mean IoU 
of 0.79 ± 0.0731 standard deviation (STD) for the 
early stages, 0.8795 ± 0.0968 for the mid stages, and 
0.8631 ± 0.1466 for the late stages (Table 2).

Trained model

Unordered masks time series Ordered masks time series

Time series tracking

Intersection over Union (IoU)

IoU 

IoU

IoU

IoU

Mask R-CNN

Train,test and
validation datasets Predicted Masks

Detection and
Segmentation

A)

CNN
model

Images
and

masks

Data
Flow

Method

Legend

B)

Fig. 1 Graphical abstract of the proposed approach, consisting of two main stages. In the first stage (A), a detection and segmentation model 
is trained using images of A. thaliana rosettes. In the second stage (B), the trained model is employed to detect and segment individual images 
at each time step. The resulting masks are ranked according to their IoU as denoted by green and red arrows representing high and low IoU values, 
respectively. This ranking enables the association and reconstruction of object tracking

Table 1 Results for the detection of the Mask R‑CNN model on the validation dataset without considering the segmentation

Stage True positive False negative False positive Precision Recall F-score

Early 65 3 1 0.98 0.96 0.97

Mid 146 5 7 0.95 0.97 0.96

Late 294 10 26 0.92 0.97 0.94
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Leaf tracking
The HOTA metric was evaluated per individual, which 
achieved a mean score of 0.84603 ± 0.0623 for nine plants 
evaluated through 57 timepoints each. The lowest HOTA 
achieved was 0.7452 and the highest 0.9879. A total of 
162 out of 191 leaves were tracked from beginning to end 
without major issues detected. This accounts for 84.8% of 
the tracking evaluation dataset (Fig. 2).

Leaf count as indicator of development progression
The total number of rosette leaves over time was 
retrieved for Col-0 and Ely to evaluate the developmen-
tal rate during vegetative growth over the course of the 

experiment until 26 DAS (Fig.  3). In the first recorded 
images on 8 DAS, plants generally had two or three 
true leaves and two cotyledons. There was no difference 
between Col-0 and Ely in the leaf count in early days, but 
a difference became apparent when plants grew older. At 
the last timepoints, Col-0 had four leaves more than Ely 
(p-value close to 0.05, Fig.  3), which indicates a slightly 
higher growth rate than Ely. At the time the experiment 
was finished, Col-0 and Ely were not yet flowering or 
bolting, which means that the reported leaf numbers 
are not the final total leaf numbers that these genotypes 
could make during their vegetative phase.

Photosynthetic capacity at plant level
The photosynthetic capacity at individual plant and leaf 
level was evaluated as maximum quantum yield (Fv/Fm) 
and as operating efficiency of photosystem II (φPSII). At 
plant level, Col-0 had a significant better photosynthe-
sis capacity than Ely, with Fv/Fm often 0.04–0.05 higher 
(roughly 5%, Fig.  4A) and φPSII between 0.18–0.22 
higher (roughly 50%, Fig.  4B). Both Fv/Fm and φPSII of 
Col-0 and Ely increased over time, while plants grew. 
The fluctuating light treatments affected both photosyn-
thetic capacity parameters of Ely but not of Col-0. Fv/Fm 
of Ely increased gradually in days with constant light, but 
remained more or less constant during fluctuating light 
treatments (Fig. 4A).

The diurnal response of φPSII in Ely was empha-
sized during days with fluctuating light treatments, 

Table 2 Statistical descriptors for the segmentation 

The value represents the IoU between the model predicted masks and the 
ground truth masks on correct detections for the validation dataset separated 
by early, mid, and late stages of development

Early Mid Late

Total 65 146 294

Mean 0.79 0.88 0.86

STD 0.07 0.10 0.15

Min 0.59 0.41 0.20

25% 0.74 0.87 0.87

50% 0.80 0.92 0.91

75% 0.84 0.93 0.93

Max 0.91 0.96 0.97

Fig. 2 Distribution of the Association metric A(c) score counts of the HOTA metric. The red line indicates the mean A(c) score. The blue line 
indicates the density, and the grey box outlines the STD range of the A(c) score
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compared to constant light days, which was not or 
much less obvious for Col-0 (Fig. 4B).

Photosynthetic capacity at leaf level
A. thaliana plant photosynthesis is expected to change 
over time depending on plant development. During 
the vegetative stage, with plants still in the rosette 
stage, this will be mainly affected by leaf age and leaf 
development [8]. Upon identification of individual 
leaves, the dynamics of leaf photosynthetic param-
eters Fv/Fm and φPSII over time can be determined, as 
shown for both Col-0 and Ely in Figs. 5, 6, 7, 8 and 9. 
Leaf photosynthesis generally follows the same trend 
as observed for whole plant photosynthesis, with a 
degree of amplitude difference. Leaves 1, 2 and 3 are 
exceptions (Figs.  5, 6A, 7A, 8A, 9A), likely because 
they are not properly identified, and represent a mix-
ture of cotyledons and true leaves between replicates. 
The reason is that in the first input picture, there were 
four to five leaves detected and randomly assigned. 
Unexpectedly, Fv/Fm of true leaves had a different pat-
tern than individual plant mean in the Ely accession 
(Fig.  8). While Fv/Fm of Col-0 true leaves had a rela-
tively similar pattern compared to that of individual 
plant mean (Fig. 6), Ely leaf Fv/Fm kinetic showed that 
Fv/Fm of a leaf increased sharply (roughly from 0.72 
to 0.79), reached its maximum potential when leaves 
were around a week old and then decreased. As a 
result, there is substantial variation for Fv/Fm between 
leaves in Ely at any given moment of time.

Photosynthetic response is influenced by leaf age 
and order
Leaf tracking also allows evaluation of the influence 
of leaf age/order on φPSII over time and in response 
to fluctuating light treatments. Figure  5 shows the leaf 
φPSII measured in the morning and afternoon at 22 
DAS for Col-0 and Ely. Between these measurements, 
plants were exposed to fluctuating irradiance between 
100 and 900 µmol  m−2  s−1 for 5 h, with duration of each 
irradiance level taking 60  min. The φPSII response is 
determined as the change in φPSII before and after the 
fluctuating irradiance treatment. At individual plant 
level, the φPSII response was small, 0.0025 for Col-0 and 
0.01 for Ely (Fig. 4B). However, at the leaf level, younger 
leaves showed a much larger φPSII response than did 
older leaves (Fig.  5). The φPSII response of each indi-
vidual plant was therefore mainly determined by the 
response of the younger leaves.

Discussion
The aim of this work is to provide both a pipeline and 
an implementation to perform leaf tracking on top-view 
images of plants in time series. In this case, the model 
has been trained in a model organism well known by the 
plant science community, Arabidopsis thaliana, however 
this pipeline can be applied to any other plant species 
as long as they can be properly described in a top-view 
image. Leaf detection and segmentation, by itself, is a task 
that has been performed through different approaches 
and in different contexts and challenges [13]. It is clear 
from the multitude of approaches that this problem can 

Fig. 3 Rosette leaf number of A. thaliana accessions Col‑0 (blue) and Ely (orange) determined over time, either plotted against timepoint or days 
after sowing, DAS. The minimum and maximum numbers of leaves are shown as shaded regions around the mean of seven replicates (solid line) 
for each accession. A t‑test was performed for every time point to determine the p‑values for statistical significance of the difference in leaf number 
between these two accessions over time (gray solid line)
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Fig. 4 Photosynthesis dynamics of A. thaliana accessions Col‑0 (blue) and Ely (orange) at individual plant level. Schematic representation 
of the fluctuating light treatment over time is shown in the top panel, with 300 µmol  m−2  s−1 of constant irradiance, 100 µmol  m−2  s−1 of low 
irradiance and 900 µmol  m−2  s−1 of high irradiance levels. Maximum quantum yield  (Fv/Fm, A) and photosystem II efficiency (φPSII, B) are plotted 
against time (as timepoint or as days after sowing, DAS). The variation for these traits is shown as shaded regions around the mean of 8 replicates 
(solid line) for each accession
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be tackled in different ways. E.g. edge classification has 
been used to improve leaf segmentation [18], but also a 
combined statistical graph-based method has been used 
[19] Recent advances in the computer vision field allowed 
us to implement a novel, more direct approach using con-
volutional neural networks. The use of mask R-CNN is 
extensive, and it achieves great results in multiple tasks, 
with different kinds of objects [20]. Numerous techni-
cal alternatives exist for detection and segmentation; 
however, these alternatives typically specialize in either 
instance detection or segmentation, but not both. Mask 
R-CNN stands out as it is well-documented and can be 
easily fine-tuned using PyTorch, enhancing its accessibil-
ity to the community. Thus, it was a suitable choice for 
our case. In this case, the model achieves the best results 
for the detection of early leaves but scores lower for seg-
mentation at that stage. In contrast, the lower results for 
detection are on the last stages but then it achieves good 
results on the segmentation. This might be due to the size 
of the image, with more difficulty to segment a low-res-
olution object with small size but less difficulty to detect 
it as the background contains fewer interfering objects, 
such as other leaves. On the other hand, it might be more 
challenging to detect individual objects in a crowded 
image but easier to segment when the detection is right. 
One issue we found regarding the detection of larger 
leaves is a relatively high rate of false positives (26 FP out 
of 330 detections, at a precision of 0.91). This could be 

addressed by adding an adaptative confidence threshold 
depending on the stage of the plant, to better balance the 
trade-off between precision and recall, or by increasing 
the training dataset size. Recent work has proposed the 
tracking of dynamic changes at leaf-specific resolution in 
A. thaliana [21] but the proper individualization of dif-
ferent leaves, without recurring to neural networks, has 
proven to remain a challenge. Through this method, the 
real challenge lies more on the tracking side than on the 
individualization of the different leaves. On the other 
hand, older work provided a method for tracking [15], 
but the implementation can be difficult for a standard 
user with medium coding experience. A concept such 
as the overlap between figures (IoU) can be easily imple-
mented in conjunction with the masks produced by a 
model given on the PyTorch framework and results in a 
very intuitive pipeline for most of the users.

The approach of using a mixture between AI and dis-
tance measurement, as shown here, has proven to be 
efficient in other cases as well, such as cell and particle 
tracking [22]. While there are several technical alterna-
tives to the IoU metric for tracking, such as optical flow 
or center proximity, our implementation has demon-
strated sufficient accuracy for leaf tracking, as evidenced 
by its high accuracy and HOTA scores. Regarding the 
limitations of the implementation, most of the issues 
in association arise from false negatives in the detec-
tion process. As mentioned in the methodology, a big 

Fig. 5 Photosystem II efficiencies (φPSII) of individual leaves of A. thaliana accessions Col‑0 (A) and Ely (B) before and after a fluctuating light 
treatment. Boxplots represent the φPSII measurements of individual leaves of 8 replicate plants at day 22 after sowing (22 DAS) in both morning 
before the fluctuating light treatment (AM in cyan) and in the afternoon (PM in orange). Leaf order (x‑axis) was obtained according to the order 
of emergence and detection over the time, meaning the higher leaf order the younger leaf and vice versa
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Fig. 6 Maximum quantum yield (Fv/Fm) of whole Col‑0 rosettes and 3 indicated individual leaves per panel (leaf number indicated: (A) for leaf 
1–3, (B) for leaf 4–6, (C) for leaf 7–9, (D) for leaf 10–12 and (E) for leaf 13–15) determined over time (as timepoint or as days after 18 sowing, DAS). 
Schematic representation of the fluctuating light treatment over time is shown in the top panel, with 300 µmol  m−2s−1 of constant irradiance, 100 
µmol  m−2s−1 of low irradiance and 900 µmol  m−2s−1 of high irradiance levels. The mean  Fv/Fm values are shown with solid lines, with shaded regions 
above and below indicating standard errors of the means. Data points represent 8 replicates



Page 9 of 16Jurado‑Ruiz et al. Plant Methods           (2024) 20:11  

Fig. 7 Photosystem II efficiency (φPSI) of whole Col‑0 rosettes and 3 indicated individual leaves per panel (leaf number indicated: (A) for leaf 
1–3, (B) for leaf 4–6, (C) for leaf 7–9, (D) for leaf 10–12 and (E) for leaf 13–15) determined over time (as timepoint or as days after sowing, DAS). 
Schematic representation of the fluctuating light treatment over time is shown in the top panel, with 300 μmol  m−2s−1 of constant irradiance, 100 
μmol  m−2  s−1 of low irradiance and 900 μmol  m−2s−1 of high irradiance levels. The mean Fv /Fm values are shown with solid lines, with shaded 
regions above and below indicating standard errors of the means. Data points represent 8 replicates
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Fig. 8 Maximum quantum yield (Fv /Fm) of whole Ely rosettes and 3 indicated individual leaves per panel (leaf number indicated: (A) for leaf 1 to 3, 
(B) for leaf 4 to 6, (C) for leaf 7 to 9, (D) for leaf 10 to 12 and (E) for leaf 13 to 15) determined over time (as timepoint or as days after sowing, DAS). 
Schematic representation of the fluctuating light treatment over time is shown in the top panel, with 300 μmol  m−2  s−1 of constant irradiance, 
100 μmol  m−2  s−1 of low irradiance and 900 μmol  m−2s−1 of high irradiance levels. The mean Fv /Fm values are shown with solid lines, with shaded 
regions above and below indicating standard errors of the means. Data points represent 8 replicates
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Fig. 9 Photosystem II efficiency (φPSII) of whole Ely rosettes and 3 indicated individual leaves per panel (leaf number indicated: (A) for leaf 
1–3, (B) for leaf 4–6, (C) for leaf 7–9, (D) for leaf 10–12 and (E) for leaf 13–15) determined over time (as timepoint or as days after sowing, DAS). 
Schematic representation of the fluctuating light treatment over time is shown in the top panel, with 300 μmol  m−2  s−1 of constant irradiance, 
100 μmol  m−2  s−1 of low irradiance and 900 μmol  m−2  s−1 of high irradiance levels. The mean Fv/Fm values are shown with solid lines, with shaded 
regions above and below indicating standard errors of the means. Data points represent 8 replicates
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enough gap between a mask at time frame n and n + 1 
may produce an association failure. Consequently, fail-
ing to keep track for more than 3–4 frames of time allows 
for enough leaf growth to detriment the method. On the 
other hand, improving the detection and segmentation 
accuracy may result in a better association, which can be 
easily achieved by expanding the number of examples on 
the training dataset. The biggest challenge to solve is the 
effect of leaf movement during day-night transition. In 
certain A. thaliana accessions, the leaf movement of the 
first true leaves can be so strong that there is no overlap 
between time  frames, which is likely to result in a total 
loss of association and a new mask assignation. This issue 
may be tackled by adding one or two images in the transi-
tion period from day to night and vice versa, helping to 
soften the abrupt changes in position. High precision in 
detection is crucial for accurate leaf tracking, as consecu-
tive detection failures of the same leaf may result in lost 
tracking due to plant growth. Acknowledging this, we 
chose the HOTA evaluation metric, which penalizes both 
failures in mask association and errors related to mask 
confusion and missed detections. This metric enables us 
to effectively evaluate the method’s quality and under-
stand its robustness.

On the possible usages and utility, this method allows 
for individualized leaf growth tracking, and also allows 
for projected leaf surface area measurement and, depend-
ing on the equipment of the phenotyping platform, in flu-
orescence and infrared measurements per leaf. This kind 
of analysis may provide insight on differences between 
individual plants’ leaves or patterns within rosettes, pro-
viding new traits for genetic association studies. This 
method is also relatively inexpensive in terms of data to 
implement, as it is based on fine-tuning instead of full 
training of the detection model. Removing the need for 
a full training translates into less labelling and less time 
spent in preparing a dataset, reducing the data prepara-
tion burden that normally comes with the use of convolu-
tional neural networks, and also the computational costs. 
As for usage recommendations, life sciences research-
ers who wish to utilize our implementation in their own 
workflows should note that the provided output includes 
raw data containing masks that may have lost tracking 
as well as false positives. Therefore, prior to conducting 
data analysis, it is recommended to filter out such data 
to minimize the introduction of background noise. The 
detection and segmentation model has been trained 
on FC images produced by the phenotyping hardware, 
which makes this software ideal for phenotyping plat-
forms using the same or comparable hardware. If work-
ing with images from a different origin (i.e., RGB images 
or infrared), the model should be fine-tuned to obtain 
the best results. This can be easily achieved by labeling 

a small dataset and running the scripts provided in the 
code repository. In case of applying the model to a dif-
ferent plant species, the mask R-CNN model should be 
retrained on examples of that species. It is important to 
consider that this methodology works on plants that can 
be described as top-down images, meaning that plants 
with high 3D growth will need a different methodology 
due to the high level of overlap between leaves.

Last, in this manuscript we aim to encourage further 
development of new methods for better individualization 
of leaves per plants, therefore the train, test and valida-
tion datasets used to train the model are provided, allow-
ing users to expand the library with different approaches 
for either the segmentation or the tracking. As a case 
study, we used the CF images to determine photosyn-
thetic capacity at individual plant and leaf level in the A. 
thaliana accessions Col-0 and Ely over time and under 
various light treatments. The photosynthetic capacity of 
Ely is lower than that of Col-0 at individual plant level 
(Fig.  4), which is consistent with previous studies [23, 
24], which explained this to be due to a mutation in the 
chloroplast PsbA gene, encoding the D1 protein of pho-
tosystem II, of Ely. The response to light treatment was 
also more pronounced in Ely than in Col-0. Our results 
show that younger leaves have a higher photosynthetic 
capacity than older leaves (Fig.  5), which is likely to be 
due to a higher ability to redesign leaf anatomy and the 
photosynthesis machinery for acclimation to a fluctuat-
ing light environment [8]. This is the first time that leaf 
photosynthesis dynamics is evaluated in a nondestruc-
tive and automated manner. Variation for photosynthe-
sis parameters between leaves was observed although 
the differences are subtle. Nevertheless, these poten-
tially enlarge the variation in photosynthesis parameters 
observed between genotypes, which is often smaller 
when determined at individual plant level [6, 7]. Vari-
ation in leaf level photosynthesis parameters is of great 
interest for quantitative genetic analysis and may resolve 
the effect of developmental differences on photosynthesis 
in genetically segregating populations with variation in 
plant growth among genotypes.

Conclusion
In this work a method for individual leaf segmenta-
tion and tracking on top-view images is provided, as 
well as an example of implementation of the method. 
Although there are many technical alternatives, we find 
this method to be efficient and easy to use for automated 
workflows on phenotyping platforms such as the one 
we used. The advantages provided by the use of convo-
lutional neural networks and recent models are clear on 
precision at detection and individualization, limiting the 
challenges to tracking. Using a simple concept such as 
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masks overlap, tracking can be solved to a certain degree 
of confidence, which can be further improved through 
expanding the training dataset for leaf detection. The 
basic requirements in data for fine-tuning the detec-
tion model are low, giving users the opportunity to take 
advantage of pretrained weights with little cost.

Methods
Plant material and growing conditions
A set of 177 A. thaliana accessions was used, which 
includes 175 accessions of the regional Dutch popula-
tion [25], and the Ely and Columbia-0 (Col-0) accessions. 
Seeds of accessions were first pregerminated on filter 
paper with demi water in petri dishes by stratification 
treatment for five days, after that they were germinated 
at 24 °C for 16 h. The germinated seeds were transferred 
to rockwool block (4 × 4  cm; GrodanTM) to germinate. 
From this point onwards, the days of the experiment 
were referred as days after sowing (DAS). This set was 
grown in a complete randomized block design, with 
eight blocks. There was a replicate in each block for every 
Dutch accession, and four replicates were available for 
Col-0 and Ely, in total 1440 individuals.

Plants were supplied with standard Hyponex nutrient 
solution [6]. The climate room was set to 20 °C and 18 °C, 
day and night temperature, respectively. Photoperiod was 
set to 12 h (light on from 8 am to 8 pm), in which light 
intensity increased and decreased gradually in the first 
and last hour of the photoperiod to resemble dawn and 
dusk of the day. Irradiance stayed at 300  µmol   m−2   s−1 
until application of light treatment for five hours (from 
11 am to 4  pm), then returned to 300  µmol   m−2   s−1. 
There were three light treatments: constant irradiance at 
300  µmol   m−2   s−1, fast fluctuation and slow fluctuation 
between 900 and 100 µmol  m−2  s−1. The duration of each 
irradiance level taking 15 and 60 min, respectively, in the 
fast and slow light fluctuation treatment. photosynthesis, 
CF measurements were taken once per day in the night.

Phenotyping and data collection
Photosynthetic parameters were measured based on 
chlorophyll fluorescence (CF) imaging every day from 
8 DAS for 19  days with the Phenovator (PlantScreen 
Robotics XY system, Photon System Instruments™). 
Re-emitted light from photosystem II (PSII) in form of 
fluorescence is measured and compared whilst exposing 
plant to a combination of actinic lights (lights that drives 
photochemistry and photosynthesis), darkness and series 
of saturating pulses. This method is known as pulse-
amplitude modulated fluorescence analysis, and provides 
non-invasive assessment of PSII efficiency to pass elec-
trons to photosynthetic apparatus [26, 27]

In dark-adapted state, a minimum value of CF (F0) is 
measured by very low measuring light, which can only 
result in minimal level of emitted CF but not electron 
transport induction. Application of saturating pulses in 
dark-adapted state, driving closure of all reaction cent-
ers, induces maximum level of CF (Fm). The difference 
between Fm and F0 is variable fluorescence, termed Fv, 
from which Fv/Fm parameter can be calculated, which is 
used as robust indicator of maximum quantum yield of 
PSII photochemistry.

Similarly CF is measured at light-adapted state using 
actinic light, which results in Fp. Saturating pulses can 
be applied during the actinic light exposure, thus Fmp is 
obtained. The difference between Fmp and Fp in propor-
tion to Fmp is used to determine the operating efficiency 
of PSII photochemistry (φPSII). There were three CF 
imaging a day, consisting of one for dark-adapted maxi-
mum quantum yield of PSII (Fv/Fm) and two for light-
adapted PSII efficiency at 9.45 am and 5.15  pm. The 
dark-adapted measurement was performed in the first 
hour of the day (12 am), thus in total 19 measurements 
are available. The light-adapted measurements, were 
made in the morning (9.15 am) and afternoon (5.15 pm) 
during the photoperiod before and after the light treat-
ment, which led to 38 measurements. Thus for the 
whole course of the experiment, there were a total of 57 
CF measurements. Data collected from the CF imaging 
was used to produce grayscale images by normalization 
in a range from 0 to 1 of the data matrices.

Training and validation datasets for detection 
and segmentation, and tracking evaluation dataset
For the training, we used an integrated dataset of A. 
thaliana plants at different stages of development 
ranging from the display of the first true leaves to the 
largest size on day 26 after sowing. This dataset was 
composed of 166 individual plant images with a total of 
1773 leaves, from which 149 images were used as sub-
set for training and 17 for testing. A different dataset, 
composed of 18 individuals in three different develop-
mental stages, was used for validation. The validation 
dataset was grouped in three categories, early stage (17 
images, one removed for not displaying any leaves yet), 
mid stage (18 images) and late stage (18 images), add-
ing to a total of 53 images (523 leaves) of the same 18 
individuals.

To estimate the efficiency of the tracking we used a 
separate dataset of 9 plants through 57 time points, 
with a total of 204 leaves. This dataset was never 
used, neither in the training–testing nor in the valida-
tion of the Mask R-CNN model for leaf detection and 
segmentation.
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Detection and segmentation
Detection and segmentation have been performed 
through a convolutional neural network-based approach 
by selecting a mask R-CNN model [14] which can tackle 
the objectives of detection and segmentation in an effi-
cient way. For the feature extraction, we employed a 
resnet50 backend [28] and fine-tuned the full model 
parting from pre-trained weights on the MSCOCO data-
set [29] with a number of classes for classification set to 
two (leaf and background). The training was performed 
using stochastic gradient descent (SGD), with a learning 
rate 0.005 over ten epochs. The original dataset and more 
details on the training can be found in the code reposi-
tory as well as notebooks to replicate it. To evaluate the 
model, we scored the validation dataset in two different 
contrasts. The initial comparison focused on precision 
and recall for leaf detection, assessing the model ability to 
accurately detect leaves while minimizing false positives. 
We discarded detections with a confidence below 0.9 and 
counted the number of correct detections against the 
total number of false positives and false negatives. A cor-
rect detection was only assigned if the IoU between the 
model prediction mask and the ground truth mask was 
at least of 0.15. If a predicted mask was found below this 
threshold and no ground truth mask could be assigned, 
then it was detected as false positive. Conversely, if a 
ground truth mask was missing a suitable predicted 
mask, it was labelled as a false negative.

The second contrast was the measurement of the IoU 
(Intersection over union) between the ground truth and 
the predicted masks. Based on the same criterion, we 
found the pairing mask by discarding detections below 
the 0.9 confidence and by getting the best overlapping 

mask for each leaf. In this test, false positives and nega-
tives are disregarded as the aim is to measure the seg-
mentation performance in case of a true positive. Both 
contrasts were applied and evaluated separately on each 
of the categories defined in the validation dataset and 
their respective metrics were collected for each of them.

Instance tracking
The approach used for leaf tracking was based on over-
lapping masks between timepoints (Fig.  10). As most 
of the leaf changes in A. thaliana development can be 
traced on two dimensions, masks between timepoint n 
and n + 1 will be largely overlapping if the timestep or the 
variance between instances are small enough. In this case 
the largest time frame is roughly 8 h, which represents a 
small enough gap between different developmental stages 
of the plant. At each time point, the IoU between a query 
mask and all the target masks in the next time point was 
estimated. The target mask with the highest IoU and 
above a certain threshold (0.15 in this study) was assigned 
as the respective pair. We then generated a dictionary 
containing the query-target relation and appended it to a 
list, which will keep the order. Thereafter, the target was 
removed from the target pool. If the query was not found 
within the targets, we created a pair dictionary with itself 
and appended it to the list. After looping over all the 
queries, the remaining targets were assumed to be new 
leaves, which were appended to the same list as diction-
aries containing empty queries and the mask as a target. 
Once all the pairs had been assigned, we collected all the 
targets from the list preserving the order and created a 
new query dataset for the next time step. This process 
was repeated until we reached the last time step (Fig. 10).

Query
mask

Target
mask1

Target
mask2

Target
maskn

Intersection
over Union

Query mask
fitting target

found
Pair assigned

Remove target mask
from target pool

Query mask
target not found

Store the same
mask

Target mask
without pair New detection

Pairing decisions

Append pair to
ordered list

Set targets as
queries

Preparing for next time step

Repeat

A) B) C)

Fig. 10 Flowchart illustrating the tracking process. Panel A depicts the initial step, where the mask for time step n (query) is retrieved and the IoU 
is computed for all masks at time step n + 1 (targets). In Panel B, the decision loop is made based on the resulting IoU. If the query and target match, 
the pair is assigned, and the target is removed from the target pool. If the query is not found, indicating that the leaf is either covered in the image 
or the detection failed, the position is stored by saving the same mask. Finally, the remaining target masks are considered as new detections. Panel 
C shows the list of masks, in order, which is stored and set as the new queries for the next time step
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To evaluate the quality of the tracking we used the 
HOTA metric [30] and estimated the total leaves that 
were tracked from the first to the last time point (Last 
frame it could be detected) without missing the associa-
tion of the masks and with a maximum of five missing 
detections for that leaf. This way we generated two cat-
egories, right and miss. Thirteen leaves from the track-
ing evaluation dataset were excluded from both metrics 
due to limited time points (1–3 time points) or small 
detection errors (very low area), resulting in a total of 191 
leaves considered for the evaluation of the metrics.

Leaf counting and photosynthesis capacity analysis of two 
different genotypes
The two accessions Col-0 and Ely were selected as geno-
types for a comparative experiment. For each genotype, 
seven replicates were considered. To retrieve the total 
number of rosette leaves per time point the φPSII file 
produced by the system was used. A summary of the 
number of instances tracked at each time point was suf-
ficient to perform the estimation. With the leaf number 
per replicate obtained, a t-test was performed at each 
time point to evaluate the significance of the differences 
between genotypes. The estimation of Fv/Fm and φPSII 
per individual plant and leaf was performed on the raw 
data based on pixel means. Instance segmentation masks 
were applied to the raw matrix (fimg produced by the 
phenotyping system) to extract the raw values for the 
region and mean values were estimated per instance.

Metrics definition
Precision is defined as the ratio between true positives 
detected against the total detections retrieved by the 
model.

Recall measures the sensitivity of a model taking in 
consideration True positives against the ground truth 
detections.

F-score is the harmonic mean of precision and recall.

Intersection over Union of two figures (A and B) is 
defined as the symmetric difference of figures A and B 
against the union of those figures.

(1)Precision =
True Positives

True Positives (TP)+ False Positives(FP)
.

(2)

Recall =
True Positives

True Positives (TP)+ False Negative (FN )
.

(3)F-score = 2 ∗
precision ∗ recall

precision+ recall
.

The Higher Order Tracking Accuracy (HOTA) metric 
is defined as in the published document [30]. This meas-
ure joins detection and association scores into a single 
value.
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