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Plant Methods

Automatic 3D cell segmentation of fruit 
parenchyma tissue from X-ray micro CT images 
using deep learning
Leen Van Doorselaer1, Pieter Verboven1* and Bart Nicolai1,2 

Abstract 

Background High quality 3D information of the microscopic plant tissue morphology—the spatial organization 
of cells and intercellular spaces in tissues—helps in understanding physiological processes in a wide variety of plants 
and tissues. X-ray micro-CT is a valuable tool that is becoming increasingly available in plant research to obtain 3D 
microstructural information of the intercellular pore space and individual pore sizes and shapes of tissues. However, 
individual cell morphology is difficult to retrieve from micro-CT as cells cannot be segmented properly due to negligi-
ble density differences at cell-to-cell interfaces. To address this, deep learning-based models were trained and tested 
to segment individual cells using X-ray micro-CT images of parenchyma tissue samples from apple and pear fruit 
with different cell and porosity characteristics.

Results The best segmentation model achieved an Aggregated Jaccard Index (AJI) of 0.86 and 0.73 for apple 
and pear tissue, respectively, which is an improvement over the current benchmark method that achieved AJIs of 0.73 
and 0.67. Furthermore, the neural network was able to detect other plant tissue structures such as vascular bundles 
and stone cell clusters (brachysclereids), of which the latter were shown to strongly influence the spatial organization 
of pear cells. Based on the AJIs, apple tissue was found to be easier to segment, as the porosity and specific surface 
area of the pore space are higher and lower, respectively, compared to pear tissue. Moreover, samples with lower pore 
network connectivity, proved very difficult to segment.

Conclusions The proposed method can be used to automatically quantify 3D cell morphology of plant tissue 
from micro-CT instead of opting for laborious manual annotations or less accurate segmentation approaches. In case 
fruit tissue porosity or pore network connectivity is too low or the specific surface area of the pore space too high, 
native X-ray micro-CT is unable to provide proper marker points of cell outlines, and one should rely on more elabo-
rate contrast-enhancing scan protocols.

Keywords Plant microstructure, Fruit physiology, X-ray micro-computed tomography, Contrast-enhanced imaging, 
Image processing, Artificial intelligence, Instance segmentation

Background
Many structures in plants have three-dimensional (3D) 
features that are difficult to infer by conventional micros-
copy techniques that provide two-dimensional (2D) 
images. Physiological processes in plants such as photo-
synthesis [1], respiration [2], and morphogenesis [3] are 
governed by transport processes of water, metabolic gas-
ses, and nutrients that are essentially three-dimensional. 
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These transport processes are dictated by not only shape 
and size of the plant and its organs, but also by the tissue 
morphology determined by the spatial layout of cells and 
intercellular space in the tissue. The 3D organization of 
individual cells and intercellular spaces (pores) is relevant 
to many physiological questions [4, 5].

X-ray micro-computed tomography (micro-CT) is a 
powerful imaging technique to acquire complex 3D data 
of plant structures. Given the tremendous advances in 
the development of high-resolution X-ray micro-CT lab-
oratory instruments, this technique is becoming increas-
ingly available to plant researchers, making them less 
dependent on synchrotron facilities [6, 7]. Advantages 
include the good penetration of X-rays into biological 
samples, the scalable field of view and corresponding res-
olution from millimeter up to micrometer and beyond. 
As X-ray attenuation depends on density, micro-CT is 
suitable to easily distinguish intercellular spaces from the 
cell matrix in plant tissues to explore in three dimensions 
the intercellular pathways for gas exchange, for example 
[8]. The main advantages of using micro-CT over light 
and electron microscopy techniques for plant imaging 
based on density differences, lie in its minimal require-
ment for sample preparation or labeling and capability to 
acquire detailed 3D information. Also, larger tissue sam-
ples can be imaged using X-ray micro-CT compared to 
microscopy imaging as the latter typically has a smaller 
field of view [9]. To quantify the cell morphology in tis-
sues, the reconstructed X-ray images must be processed 
by a method called cell segmentation. Cell segmentation 
enables identification, separation and labeling of individ-
ual cells. If the cells would be completely outlined in the 
image, the segmentation procedure would be the easiest. 
Contrast-enhanced micro-CT scans can provide this by 
highlighting the cell walls [10, 11]. Contrast-enhance-
ment is, however, a tedious and invasive protocol. How-
ever, in standard micro-CT scans there is not sufficient 
contrast in X-ray attenuation at cell-to-cell interfaces [4, 
12]. Therefore, the cell outlines can only be seen at cell-
to-pore interfaces rendering them incomplete. Automatic 
segmentation is then hard to achieve using traditional 
image processing pipelines, and, as a result, manual seg-
mentation of the cell contour is often the only option that 
is very laborious.

Kar et  al. [13] compared different deep learning (DL) 
pipelines for 3D cell segmentation of confocal image 
datasets. U-Net [14] based boundary detection mod-
els were trained to collect semantic labels, e.g., the cell 
centroid, cell boundary, cell matrix and background. To 
obtain the individual cell labels, these methods required 
postprocessing such as graph partitioning as was done 
in PlantSeg [15] or seeded watershed segmentation [16]. 
Kar et al. [13] reported PlantSeg as the best performing 

DL model compared to other pipelines. However, it 
should be noted that such a U-Net based boundary 
detection method was specifically designed for images 
with fluorescently labeled cell boundaries, which was 
similar to the data used in the comparison study. Other 
instance segmentation pipelines using convolutional 
neural networks (CNNs), first solve an object detec-
tion problem by localizing each individual object with a 
bounding box [17]. In Mask R-CNN, an additional step is 
implemented to assign a binary label to each pixel within 
the bounding box of a detected individual object result-
ing in instance segmentation. However, due to the high 
model complexity and long latency for object detection, 
the Mask R-CNN framework is continuously improved 
or approached differently [18, 19].

The Cellpose algorithm [20] was recently built to 
improve instance segmentation tasks compared to other 
state-of-the-art methods for the segmentation of a wide 
range of biological image data types including cells with-
out fluorescent markers. Although Cellpose uses 2D data 
for training, the algorithm can be extended for 3D seg-
mentation prediction by slicing a volume dataset into 2D 
images according to XY, XZ an YZ orientations that are 
recombined into 3D. In recent works, the freely available 
generalist Cellpose algorithm was mainly used on fluores-
cence images without retraining the model, demonstrat-
ing its excellent performance for image processing [21]. 
For the only application in X-ray imaging to our knowl-
edge, Cellpose was used to segment the 3D structure of 
alveoli in intact mouse lungs of high-quality synchrotron 
X-ray CT data [22].

Results
Microstructure of parenchyma of different pome fruit 
cultivars
The extracted microstructural parameters of the cell 
matrix and pore space showed differences along the 
pome fruit cultivars (Table  1). Pear tissue samples con-
tained 2.3 to 6.2 more cells and 9.1 to 46.9 times more 
pores than apple samples. The amount of cells and pores 
was higher at the inner cortex position compared to that 
of the outer one. The stone cell density was the highest 
in ‘Celina’ pears, although no differences were found for 
the volume fraction of the stone cells. Figure 1 shows the 
stone cell clusters for the three pear cultivars, which were 
the largest in ‘Fred’. The cell matrix anisotropy of apple 
tissue was higher compared to pear tissue. For the apple 
cultivars, the specific surface area (SSA) of the cell matrix 
was the lowest for ‘Braeburn’ and for pear, ‘Fred’ had a 
lower SSA than ‘Celina’. A similar trend was observed for 
the porosity, whereby ‘Braeburn’ and ‘Fred’ had the low-
est for apple and pear, respectively. Overall, apple tissue 
had a higher porosity of 16.11–26.73% than pear tissue 
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with a porosity of 2.98–5.09%. The Pearson correlation 
coefficient between pore density and porosity was − 0.33 
and −  0.59 for pear and apple, respectively. Similar to 
pore density, the SSA of the pore space was higher in 
pear than apple and at the inner cortex compared to the 
outer cortex. The Euler number was the highest, indicat-
ing a less connected pore network, for ‘Conference’ and 
‘Fred’. The Euler numbers of ‘Celina’ were the lowest and 
even negative for two of the three samples at both inner 
and middle cortex position, meaning that the pore net-
work was a multiple connected structure in which the 
cell matrix was never isolated [23].

After the cells were segmented from the contrast-
enhanced images, the morphometric analysis was per-
formed and results are given in Additional file 1: Table S1. 
The cell shape and size was different for the fruit cultivars 
and along the cortex position (Fig. 2). Cell length, width, 
volume and surface area in apple tissue were greater than 
in pear tissue. The cell SSA was found to be larger in 
pear tissue. Significant differences in cell characteristics 
were also found between different cultivars and different 
cortex positions. In Fig.  3, cell size and shape distribu-
tions are shown. For pear, ‘Fred’ had the highest fraction 
of small cells of all cultivars, accompanied by a wider 

Table 1 Morphometric parameters of the cell matrix and pore space of three tissue samples (mean ± SD) per cortex position and 
pome fruit cultivar

Different upper case characters in the same column for each parameter indicate significant differences (p < 0.05) at different cortex position for the same cultivar. 
Different lower case characters in the same row indicate significant differences (p < 0.05) among different cultivars for the same cortex position

Parameter Cortex ‘Celina’ ‘Conference’ ‘Fred’ ‘Braeburn’ ‘Jonagold’ ‘Kizuri’

Cell density
[mm−3]

Inner 652 ±  169Aa 837 ±  189Aa 1005 ±  205Aa 221 ±  40Ab 187 ±  41Ab 258 ±  45Ab

Middle 606 ±  75Ba 652 ±  103Ba 593 ±  193Ba 224 ±  10Bb 172 ±  32Bb 197 ±  49Bb

Outer 743 ±  325Ba 626 ±  71Ba 695 ±  244Ba 183 ±  10Bb 162 ±  42Bb 215 ±  61Bb

Stone cell density  [mm−3] Inner 1.96 ± 1.43a 1.23 ± 0.12b 0.87 ± 0.00b – – –

Middle 2.83 ± 0.78a 1.16 ± 0.33b 1.38 ± 0.33b – – –

Outer 3.33 ± 1.38a 1.88 ± 0.45b 1.01 ± 0.25b – – –

Stone cell volume fraction [%] Inner 0.45 ± 0.50 0.42 ± 0.15 1.49 ± 1.26 – – –

Middle 0.66 ± 0.56 0.72 ± 0.77 0.85 ± 0.48 – – –

Outer 0.35 ± 0.14 0.45 ± 0.22 0.81 ± 0.63 – – –

Vascular tissue volume fraction [%] Inner 0.21 ± 0.36 0 ± 0 0.71 ± 1.22 0.11 ± 0.11 0.08 ± 0.13 0.59 ± 0.31

Middle 0.04 ± 0.04 0 ± 0 0 ± 0 0.05 ± 0.05 0 ± 0 0 ± 0

Outer 1.28 ± 1.21 0.64 ± 1.06 1.64 ± 2.85 0.05 ± 0.05 0.08 ± 0.13 0.11 ± 0.20

Cell matrix anisotropy Inner 0.007 ± 0.001b 0.005 ± 0.001b 0.008 ± 0.001b 0.037 ± 0.002a 0.036 ± 0.021a 0.047 ± 0.007a

Middle 0.005 ± 0.002b 0.008 ± 0.004b 0.010 ± 0.002b 0.019 ± 0.007a 0.014 ± 0.009a 0.025 ± 0.011a

Outer 0.015 ± 0.013b 0.007 ± 0.004b 0.006 ± 0.002b 0.022 ± 0.004a 0.030 ± 0.015a 0.028 ± 0.012a

Cell matrix specific surface area  [mm−1] Inner 15.13 ± 1.38ab 13.36 ± 2.48bc 12.78 ± 2.68c 13.93 ± 1.07 bc 15.91 ± 1.06a 15.85 ± 0.56a

Middle 15.27 ± 0.79ab 13.39 ± 1.84 bc 11.45 ± 1.06c 14.46 ± 0.01 bc 15.37 ± 0.56a 15.51 ± 1.29a

Outer 14.74 ± 1.93ab 13.34 ± 1.74 bc 10.07 ± 0.58c 13.21 ± 0.33 bc 16.94 ± 1.21a 16.08 ± 1.28a

Porosity
[%]

Inner 5.09 ± 1.09c 4.48 ± 1.27c 3.29 ± 0.53d 16.35 ± 1.47b 19.14 ± 1.20a 19.29 ± 0.98a

Middle 5.05 ± 0.42c 4.90 ± 1.39c 3.87 ± 0.94d 16.11 ± 0.70b 20.84 ± 4.75a 22.34 ± 3.40a

Outer 4.82 ± 0.18c 4.86 ± 1.28c 2.98 ± 0.54d 17.49 ± 0.93b 26.73 ± 1.13a 22.11 ± 2.77a

Pore density
[mm−3]

Inner 2692 ±  1226Aa 3732 ±  495Aa 4784 ±  1534Aa 211 ±  120Ab 221 ±  39Ab 295 ±  61Ab

Middle 3189 ±  646ABa 3322 ±  366ABa 2735 ±  1315ABa 249 ±  80ABb 147 ±  62ABb 139 ±  75ABb

Outer 3271 ±  1954Ba 2860 ±  1092Ba 2995 ±  467Ba 138 ±  17Bb 102 ±  57Bb 171 ±  78Bb

Pore space anisotropy Inner 0.12 ± 0.02ab 0.08 ± 0.01ab 0.23 ± 0.07a 0.16 ± 0.01ab 0.14 ± 0.07b 0.22 ± 0.04ab

Middle 0.09 ± 0.04ab 0.16 ± 0.11ab 0.23 ± 0.05a 0.10 ± 0.04ab 0.08 ± 0.06b 0.09 ± 0.04ab

Outer 0.23 ± 0.16ab 0.14 ± 0.09ab 0.19 ± 0.07a 0.10 ± 0.02ab 0.08 ± 0.04b 0.10 ± 0.06ab

Pore space specific surface area  [mm−1] Inner 228 ±  29Aa 219 ±  15Aa 227 ±  36Aa 60 ±  11Ab 58 ±  3Ab 57 ±  1Ab

Middle 228 ±  17ABa 203 ±  27ABa 209 ±  27ABa 64 ±  4ABb 52 ±  13ABb 48 ±  9ABb

Outer 231 ±  44Ba 203 ±  22Ba 225 ±  24Ba 52 ±  2Bb 42 ±  5Bb 50 ±  8Bb

Euler number Inner − 1202 ±  2666c 5761 ±  795a 9829 ±  2872a 1475 ±  646b 924 ±  287bc 1934 ±  395b

Middle − 733 ±  1076c 4384 ±  2609a 5638 ±  1877a 1577 ±  588b 728 ±  426bc 1015 ±  262b

Outer 1274 ±  1925c 4654 ±  1595a 5939 ±  2287a 1023 ±  226b 479 ±  232bc 1345 ±  575b
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range of cell sphericity. It was more difficult to see dif-
ferences between the other two pear cultivars. For apple, 
‘Jonagold’ had overall larger cells and ‘Kizuri’ smaller but 
more spherical cells, as also reported in Additional file 1: 
Table S1. Another clear observation was that the density 
distribution of the cell sizes in ‘Braeburn’ at the outer 
cortex deviated more from a normal distribution com-
pared to the other apple tissue samples.

After the pores were segmented from the conventional 
images, the morphometric analysis was performed and 
the results are given in Additional file  1: Table  S2. The 
pore shape and size was different for the fruit cultivars 
and along the cortex position (Fig. 4). Pore length, width, 
volume and surface area in apple tissue were greater 
than in pear tissue. The pore SSA was found to be larger 
in pear tissue. Significant differences were also found 
between different cultivars and different cortex positions 
for the pore characteristics.

A partial least squares discriminant analysis (PLS-DA) 
was applied to the morphometric and statistical param-
eters of parenchyma tissue with the cultivar as class label. 
The score plot of the first two latent variables (LVs) is pre-
sented in Fig. 5. The first two LVs explained 58.79% of the 
total variance in morphometric and statistical parame-
ters. Pear cultivars are separated from the apple cultivars 
by the first LV, with the former having positive scores and 
the latter having negative scores. The SSA of the pore 

space had the highest importance for the first LV with 
a positive factor loading and was highly correlated with 
porosity (r = − 0.94), pore density (r = 0.96) and cell den-
sity (r = 0.94). Additionally, the interquartile range (IQR) 
of the cell SSA and pore width had a high positive and 
negative factor loading for the first LV, respectively. With 
addition of the second LV, the 95% confidence ellipse for 
‘Celina’ can be separated from the other pear cultivars by 
lower scores. The kurtosis of the pore sphericity had the 
highest importance for this second LV with a negative 
factor loading and showed high correlation with the kur-
tosis of pore anisotropy (r = 0.91). Other LVs could not 
distinguish the cultivars.

Deep learning based cell segmentation
Use of different slice spacings for model development
We evaluated how model training with datasets using 
different spacings for slice retrieval affected the final seg-
mentation success. Table 2 summarizes the performance 
of the DL segmentation, expressed by the Aggregated 
Jaccard Index (AJI) of the test data. For both apple and 
pear tissue, the mean AJI slightly decreased with increas-
ing slice spacing and thus decreasing number of training 
images. However, based on the statistical analysis, this 
improvement was much more apparent for apple tis-
sue than for pear tissue. For apple tissue segmentation, 
all DL models performed significantly better than the 

Fig. 1 Stone cell clusters in pear tissue. (Top) 2D slices of contrast-enhanced micro-CT images of pear tissue samples of the inner cortex with stone 
cell clusters indicated with arrows. (Bottom) 3D visualization of the stone cell clusters
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Fig. 2 Individual cells of (top) pear and (bottom) apple cultivars at different cortex positions with labels shown in colour scale for the cell volume
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benchmark based on the chosen evaluation metric. For 
pear tissue, the DL models trained with slice spacings of 
128 and 512, did not perform better than the benchmark. 
Overall, the AJI was significantly higher for apple than for 
pear tissue. The mean AJI of the segmentation results by 
the model trained on training data retrieved with a spac-
ing of 8 slices was 0.861 and 0.732 for apple and pear 
tissue, respectively. In comparison, the mean AJI of the 
benchmark was only 0.730 and 0.667 for apple and pear 
tissue, respectively. From the statistical analysis we found 
that the benchmark scored similarly for apple and pear 
tissue. For apple tissue, the model trained with a spacing 
of 8 slices performed best on the test data and the AJIs 
of the segmentation results were significantly different 
compared to the other DL-based segmentation models 
and benchmark. The same applied for pear tissue, but the 
models trained with spacings of 16 and 32 slices were not 
significantly different to the model trained with a spacing 
of 8 slices.

Figure 6 shows the segmentation results on a ‘Jonagold’ 
apple and ‘Conference’ pear tissue sample from the test 
data. The identification of clustered cells without signifi-
cant intercellular spaces was problematic for the bench-
mark in both fruit, leading to unrealistic segmentations. 
Considering the DL segmentation models, the results 
of the model trained with a slice spacing of 8 were most 
similar to the ground truth (GT). For apple, the differ-
ences between the two slice spacings shown are less 
clear than the differences with the benchmark. For the 

pear sample, in which stone cells were present, the dif-
ference between the two DL-based segmentations were 
more apparent. Both the model trained with a larger slice 
spacing and the benchmark failed to properly identify the 
stone cell clusters. Similarly, the identification of vascu-
lar bundles was only possible with the model trained by a 
slice spacing of 8 (Fig. 7).

Transferability of deep learning models
We evaluated whether models trained on a particular 
fruit dataset would also perform well on different fruit, or 
whether data would need to be combined in training to 
improve performance. The resulting AJIs of the test data 
are summarized in Table  3. For apple tissue, the model 
trained on the combined dataset was significantly bet-
ter than the model trained on pear data. However, the 
model trained on apple data solely performed better than 
the model trained on combined data. The original com-
bined dataset of the second experiment comprised half 
the slices (5976) from both XY and YZ orientations with 
a slice spacing of 8. Therefore, another comparison can 
be made with the combined model using all slices from 
Table  2. This combined model and the model trained 
solely on apple data performed similarly for the apple tis-
sues. For pear tissue, the model trained on the original 
combined dataset of 5976 slices was significantly better 
than the model trained on apple data (Table 3). The com-
bined model and the model trained solely on pear data 
performed similarly.

Fig. 3 Probability density plots of the cell equivalent spherical diameter (top) and sphericity (bottom) of the pear (left) and apple (right) cultivars 
at different cortex positions with the dot and line representing the mean and standard deviation
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Fig. 4 Individual pores of pear (top) and apple (bottom) cultivars at different cortex positions with labels shown in colour scale for the pore mean 
radius
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Relation between microstructural features 
and segmentation
The AJIs of the model trained with combined data using a 
spacing of 8 slices are shown for each cultivar and cortex 
position in Fig.  8. To explore which morphometric fea-
tures of parenchyma tissue influence segmentation qual-
ity, a partial leased square regression (PLSR) analysis was 
performed. The PLSR model was built using the follow-
ing six morphological parameters for predictor variables: 

porosity, cell matrix anisotropy, SSA of the cell matrix, 
pore space anisotropy, SSA of the pore space and Euler 
number. The AJIs of the model developed with combined 
training data retrieved with spacing by 8 slices were used 
as response variable. The X- and Y-scores of the first LV, 
which explained 57.76% of the total variance in the pre-
dictor variables and 79.95% of the total variance in the 
response variable, are illustrated in Fig. 9. The XY scores 
plot of the first LV shows a linear positive correlation 
and distinguishes the apple from the pear cultivars. For 
the first LV, all apple cultivars showed positive X-scores, 
while all pear cultivars negative X-scores. Moreover, 
‘Fred’ and ‘Braeburn’ tissue samples had lower X-scores 
than the other pear and apple cultivars, respectively. Fig-
ure 10 presents the regression coefficients of the predic-
tor variables, ranking them by their influence on the AJI, 
following the positive correlation found in Fig.  9. The 
most important predictor variable was the SSA of the 
pore space, which had a negative regression coefficient. 
The second most important and also negative predictor 
variable was the Euler number. For a sample with a lower 
Euler number, meaning increased connectivity of the 
pore network, the PLSR model predicts a higher AJI. The 
third most important predictor variable was the porosity, 
which had a positive regression coefficient.

Discussion
Deep learning‑based instance segmentation outperforms 
watershed segmentation
Automatic instance segmentation of 3D X-ray micro-CT 
data of plant tissue was achieved using a DL-based model 
on the freely available Cellpose network [20]. Unlike other 
DL approaches where the focus is mainly on collecting 
semantic labels, the 2D U-Net of Cellpose was trained on 
transformed image representations of directional heat 
diffusion within a cell. By combining the predictions in 
XY, YZ and XZ orientations, the 3D organization of indi-
vidual cells was obtained. The approach outperformed 
the current state-of-the-art method for cell segmentation 
of plant tissue micro-CT images with the marker-based 
watershed algorithm. This can be explained for multiple 
reasons. First, the binary image of the cell matrix, col-
lected using Otsu’s threshold, contains vascular tissue 
in addition to cells. Moreover, brachysclereids (stone 
cells; clusters of small cells with thick lignified cell walls) 
that appear frequently in pear tissue are also present. 
As a result, the vasculature and stone cells will be seg-
mented as if they were cells using the benchmark method 
(Fig.  7). Second, when the cells are segmented with a 
marker-based watershed algorithm, the marker extent 
parameter is typically chosen based on visual inspection. 
However, the segmentation is highly sensitive to changes 
in this marker, provoking non-optimal segmentations for 

Table 2 Aggregated Jaccard Index (mean ± SD) of segmented 
cells in pome fruit tissues (n = 9) by deep learning models 
trained on data retrieved using different slice spacings and the 
benchmark method

Different upper case characters in the same column indicate significant 
differences (p < 0.05) between the segmentation results of models trained on 
pome fruit data retrieved using different slice spacings and the benchmark 
method using the watershed algorithm on different datasets on either apple 
or pear tissue samples. Between columns is marked with ‘ns’ if the model is not 
statistically different for apple or pear tissue

Model Aggregated Jaccard Index

Apple Pear

8 0.861 ± 0.028A 0.732 ± 0.075AB

16 0.849 ± 0.026B 0.729 ± 0.081A

32 0.846 ± 0.027C 0.719 ± 0.089BC

64 0.842 ± 0.026D 0.721 ± 0.082C

128 0.837 ± 0.026E 0.718 ± 0.083CD

256 0.836 ± 0.029E 0.718 ± 0.085C

512 0.825 ± 0.028F 0.697 ± 0.092E

Benchmark 0.730 ± 0.034G,ns 0.667 ± 0.117DE,ns

Fig. 5 PLS-DA score plot with the scores of tissue samples used 
in train (•, n = 36) and test (x, n = 18) set in colour code according 
to the pome fruit cultivar with 95% confidence ellipses
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different samples due to the highly heterogenous tissue 
structure (Additional file  2). Third, the watershed algo-
rithm cannot properly segment densely clustered cells as 
was already reported by Herremans et al. [5].

Deep learning training requires data that retain spatial 
correlations
It was overall found that the smaller the interspacing 
between training data slices, the better the segmenta-
tion model. This can be for several reasons. First, pear 
tissue contains stone cell clusters which ensure a very 
compact arrangement of cells (Fig.  1). Second, apple 
parenchyma tissue exhibited a significant anisotropy, 
with cells and intercellular spaces having preferred 
radial orientation [8]. Finally, the vascular bundles can 
be better detected by models trained with lower slice 
spacing. All these features have a short distance spatial 
correlation that needs to be resolved in the training. 

Fig. 6 Cell segmentation results for a tissue sample of A ‘Jonagold’ and B ‘Conference’ in the test set with labels shown in colour scale 
for cell volume. From left to right: input volume of 667 × 667 × 667 voxels in grayscale values, ground-truth segmentation as collected 
with the semi-automated cell segmentation protocol, segmentation results of deep learning-based models trained with slice spacing of 8, 512 
and segmentation result of the benchmark method using the watershed algorithm. AJI Aggregated Jaccard Index

Fig. 7 2D slice of cell segmentation results for a ‘Celina’ tissue sample with vascular tissue and a stone cell in the test set with labels shown in colour 
scale for cell volume. From left to right: 2D slice of the input volume of 667 × 667 × 667 voxels in grayscale values, ground-truth segmentation 
as collected with the semi-automated cell segmentation protocol, segmentation results of deep learning-based models trained by slice spacing 8, 
512 and segmentation result of the benchmark method using the watershed algorithm. AJI Aggregated Jaccard Index

Fig. 8 Aggregated Jaccard Index of the (left) apple and (right) pear 
tissue samples cell segmentations of the test set by the deep learning 
model trained on pome fruit data by slice spacing 8 for the different 
cultivars and cortex positions
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Loss of correlation by using more distant 2D slices 
makes proper segmentation of these features difficult 
or impossible.

Deep learning training with more diverse data works best 
for segmenting all tissue types
It was demonstrated that a generalist (i.e., combined) 
model performs similarly to the specialist models, given 
that the Cellpose model obtains a representation of the 
image style of each [20]. This allows the model to learn 
how to handle different styles differently, which is inter-
esting for further applications where one can think of 
extending the model to segment new pome fruit cultivars 
or other plant tissues that have different microstructures. 
Still, the combined model requires more data to train. 

Transferring the model from one fruit to the other was 
not successful, so future extensions likely will require 
retraining.

Improving accuracy and generalizability in future work
One of the advantages of a 2D model is that even with 
a limited amount of labeled 3D samples, thousands of 
images could be generated for the training set. However, 
a 3D model may be able to achieve better results and 
increase the generalizability, especially in the area around 
stone cell clusters and vasculature. In 2022, Eschweiler 
et al. [24] developed a 3D model to extend the Cellpose 
approach to improve segmentation accuracy on 3D data. 
Furthermore, they simplified the computation of com-
plex gradient maps by using a hyperbolic tangent span-
ning, while still achieving similar segmentation accuracy. 
Future research will have to show whether such 3D mod-
els can outperform the current 2D models and further 
improve cell segmentation quality.

Segmentation quality can be linked to difference 
in microstructure
Considerable differences and changes in microstructure 
of parenchyma tissue of different fruit cultivars along the 
cortex position were revealed as summarized in Table 1, 
Additional file 1: Tables S1 and S2, and shown in Fig. 3. 
The PLS-DA visualizes the structure of the dataset 
(Fig. 5) and identifies crucial microstructural features to 
distinguish pome fruit cultivars. The first LV succeeded 
to differentiate pear from apple tissue, while the second 

Fig. 9 XY scores plot of the first latent variable in the PLS model 
to predict the segmentation results with colour code according 
to the pome fruit cultivar

Fig. 10 Regression coefficients of the predictor variables for the first 
latent variable in the PLS model, shown in colour scale, to predict 
the segmentation results, expressed by the Aggregated Jaccard 
Index. SSA specific surface area

Table 3 Aggregated Jaccard Index (mean ± SD) of segmented 
cells in pome fruit tissues (n = 9) by deep learning models 
trained on apple and pear data combined or separately and the 
benchmark method

Different upper case characters in the same column indicate significant 
differences (p < 0.05) between the segmentation results of models trained on 
apple and pear data combined or separately on either apple or pear tissue 
samples. Between columns is marked with ‘ns’ if the model is not statistically 
different for apple or pear tissue

Model Aggregated Jaccard Index

Apple Pear

Combined 0.849 ± 0.027B 0.731 ± 0.082A

Apple 0.863 ± 0.028A 0.710 ± 0.101B

Pear 0.821 ± 0.027C 0.731 ± 0.079AB
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LV was able to separate ‘Celina’ from the other cultivars. 
After selecting the best segmentation model, we tried to 
verify if the segmentation quality can be explained by 
these differences in microstructure. Hereto, a PLSR anal-
ysis was performed with only using the morphological 
parameters that can be obtained from conventional X-ray 
micro-CT images of fruit tissue (Fig.  9). The first LV of 
the PLSR model also succeeded to differentiate pear 
from apple tissue and additionally was able to distinguish 
‘Fred’ and ‘Braeburn’ from the other pear and apple culti-
vars, respectively.

The SSA of the pore space, highly negatively corre-
lated to porosity, was the most important morphometric 
parameter to predict the segmentation quality (Figs.  9 
and 10), both of which were also relevant in the PLS-DA. 
Pear is known to be less porous than apple. Moreover, 
‘Braeburn’ and ‘Fred’ emerged as the least porous apple 
and pear cultivars analysed in this study (Table 1). Addi-
tionally, the SSA of the pore space was higher in pear 
tissue compared to apple. This means that for the same 
amount of pore volume, pear has more cell-pore inter-
faces which can explain the difference in layout of the 
cells and pores between apple and pear fruit: pear cells 
are more homogeneously distributed within the fruit tis-
sue where almost all cells are surrounded by small con-
nected pores. On the other hand, apple tissue has large 
pores and the cells are typically more clustered compared 
to in pear. For this reason, other studies suggested that 
pore formation in pear occurs in a schizogenous man-
ner, while in apple pores would be formed in a lysigenous 
manner [8, 25]. The observation that the segmentation 
models work better on apple tissue compared to pear can 
thus be explained by the difference in porosity or SSA 
of the pore space. In fact, despite the high correlation 
of the SSA of the pore space with the porosity, the first 
might still have added value in predicting the segmenta-
tion quality as it was found to be typically higher in the 
inner cortex tissue compared to outer (Table 1). In Fig. 8 
can be seen that the inner cortex tissues in pear typically 
had a lower AJI. Given that this could not be determined 
for apple, this would indicate that for low porous pear 
tissue, an increase in SSA of the pore space has a more 
detrimental effect on the segmentation than for apple. 
Similarly, from Figs. 8 and 9 it is clear that the segmen-
tation quality was lower for ‘Fred’ and not for ‘Braeburn’ 
compared to the other pear and apple cultivars, respec-
tively. For the low porous pear tissue, a further decrease 
in porosity is more detrimental than in apple, indicat-
ing porosity as a limiting factor. Additionally, a strong 
correlation with cell and pore density suggests that seg-
mentation becomes more difficult when cells are densely 
packed, which is typical for pear and/or inner cortex tis-
sue (Table 1). Both apple and pear had a negative Pearson 

correlation coefficient between porosity and pore density, 
which was weaker for pear. However, for ‘Braeburn’ and 
‘Fred’, pore density was similar to that of the other apple 
and pear cultivars, while porosity was lower (Table 1). An 
explanation could be found in the large variability in the 
number of pores per tissue sample, mainly caused by the 
presence or absence of vasculature, which is reflected in 
the relatively high standard deviations in pore density. 
Similarly, the weaker negative correlation found in pear 
could be explained by different density, shape and size of 
stone cell clusters, which greatly affect the microstruc-
ture in pear tissue. This was also reflected in the differ-
ence in standard deviation in pore density between apple 
and pear tissue, which was 84 and 1133/mm3, respec-
tively. Finally, in the PLS-DA, the IQR of the cell SSA and 
pore width also had a high importance for the first LV. 
More specifically, the distribution of the cell SSA is more 
spread out in pear cortex tissue compared to apple, likely 
due to the presence of stone cell clusters. These clusters 
greatly contribute to a variety of cell shapes (Fig. 2, top), 
as the surrounding cells are typically elongated in the 
radial direction (Fig.  1, top). Additional file  1: Table  S1 
indeed showed that 1.7–4 times higher standard devia-
tions of cell SSA were found for pear. ‘Fred’ typically had 
the highest standard deviation, which can be explained 
by the large stone cell clusters that have a greater impact 
on the layout of the cells (Figs. 1 and 2). Meanwhile, the 
distribution of the pore width would be more uniform 
in pear. Additional file  1: Table  S2 showed that 2.9–8.3 
times smaller standard deviations of pore width were 
found. This is again probably due to schizogenous pore 
formation in pear tissue where pores are formed by cell 
separation during growth opposed to lysigenous pore 
formation in apple caused by cell death.

The Euler number was the second most important 
morphometric parameter to predict the segmentation 
quality. For a sample with a lower Euler number, mean-
ing increased connectivity of the pore network, the 
PLSR model predicts a higher AJI. ‘Celina’ could be dis-
tinguished from the other pome fruit cultivars based on 
the second LV of the PLS-DA, due to its lowest Euler 
numbers (Fig. 5 and Table 1). The highest Euler numbers, 
meaning reduced connectivity, were found in ‘Confer-
ence’ and ‘Fred’ tissue. Probably ‘Celina’ had increased 
connectivity, especially compared to ‘Fred’ and ‘Confer-
ence’, because of the smaller and more frequent stone cell 
clusters (Fig. 1 and Table 1). In the PLS-DA, the kurtosis 
of the pore sphericity, highly related to kurtosis of pore 
anisotropy, had the highest importance for the second 
LV. Meaning that in ‘Celina’ tissue the distribution of 
both pore shape characteristics typically had a high peak 
with heavy tails, indicating outliers. Again, this can be 
explained by the more homogeneous cell matrix related 
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to the frequent presence of small stone cells in ‘Celina’ 
that affect the pore network and connectivity differently 
compared to in ‘Fred’ and ‘Conference’.

The developed DL-based model can be used not only 
for cell segmentation and analysis within fruit, but also 
between fruit of the same cultivar or between fruit of dif-
ferent cultivars. For future application of the model to 
segment parenchyma tissue, the porosity, SSA of the pore 
space and Euler number can be easily determined. From 
these, a rough estimation can then be made as to whether 
these tissues can be segmented with the same quality 
as determined in this study. For example, a less porous 
pear tissue than ‘Fred’ would probably result in poor seg-
mentation quality and misleading results. In addition, 
Fig.  1 illustrated the biological variability in stone cell 
clusters in pear, which greatly affect the microstructure. 
This could hinder the use of the DL-based segmentation 
model for new pear cultivars. On the other hand, the 
model would be better suited to segment new apple cul-
tivars as the microstructure is less heterogeneous com-
pared to pear.

Microstructure might explain susceptibility 
to physiological disorders
Apple cultivar ‘Braeburn’ is known to be highly suscep-
tible to physiological disorders induced by CA [26–28]. 
Additionally, ‘Celina’ and ‘Fred’ are difficult pear cultivars 
to store over a long storage period (VCBT, personal com-
munication). ‘Celina’ is very sensitive to  CO2 and best 
stored in storage conditions below 0.5%  CO2.

Previous studies using multiscale modelling reported 
that the lowest  O2 concentrations were found within 
apple [2] and pear cells [32] due to respiration and gas 
diffusion at the microscale level within the fruit. There-
fore, resolving the spatial organization of the cells is 
essential for the detection of the lowest  O2 concentration 
within the fruit to prevent the development of anoxia-
related physiological disorders during CA storage [33].

For ‘Fred’ and ‘Braeburn’, this increased susceptibil-
ity might be explained by the porosity as it was the low-
est in the pear and apple cultivars analysed in this study, 
respectively (Table  1). As low porosity increases the 
chance of disconnected pores and limits gas diffusion, 
local anoxic or hypoxic conditions may occur inside the 
fruit which can initiate the development of physiologi-
cal disorders [29, 30]. Additionally, it was found that the 
SSA of the cell matrix was the lowest in ‘Braeburn’, for all 
apple cultivars, and lower in ‘Fred’ compared to ‘Celina’. 
This implies that for the same volume of cell matrix, 
more clustering occurs. As clustering decreases the sur-
face for gas-fluid exchange, the overall gas conductance is 
reduced as gas diffusivity in water is lower than in air [2].

‘Jonagold’ has been shown to have higher gas diffusiv-
ity and permeability of cortex tissue than ‘Braeburn’ [36], 
which is in line with the observed lower porosity and SSA 
of the cell matrix of the latter (Table 1). ‘Braeburn’ has a 
larger respiration rate, potentially aligning with a higher 
cell density compared to ‘Jonagold’. Differences in cell 
density were not significantly different in this study, but 
the above correlates well with the smaller cell sizes found 
in ‘Braeburn’ (Fig. 3 and Additional file 1: Table S1.).

Low SSA of the cell matrix, and thus high clustering, in 
‘Fred’ can be explained by looking at organisation, shape 
and size of the cells around the large stone cell clusters in 
Fig. 1. The smaller and more frequent stone cell clusters 
in ‘Celina’ likely clarify the lower clustering compared to 
‘Fred’ (Table  1). In addition, ‘Fred’ had more small cells 
compared to the other pear cultivars (Fig.  3). In mango 
fruit, it was observed that the respiration rate during 
ripening was related to cell density and inversely related 
to cell size [31]. Consequently, this could support the 
hypothesis that higher respiration occurs because of the 
higher amount of small cells within ‘Fred’ pears.

Despite the fact that ‘Celina’ had a well-connected 
pore network, in practice this cultivar is found to be very 
sensitive to physiological disorders (unpublished data). 
However, only a few differences in cell and pore mor-
phology according to the cortex position compared with 
the other pear cultivars were found (Additional file  1: 
Tables  S1 and S2). The main observations for ‘Celina’ 
were that the stone cell density was remarkably higher 
and that more small cells were found in the outer cor-
tex (Fig. 3). The significant presence of stone cell clusters 
likely hinder  O2 and  CO2 diffusion by altering the struc-
ture of the pore network. This obstructed gas diffusiv-
ity may contribute to typical gas conditions in the fruit 
that are related to the development of physiological dis-
orders [30, 34, 35]. Additionally, stone cell clusters could 
worsen the creation of unfavourable gas conditions in 
the fruit due to their impact on cellular gas transport. 
Ho et al. (2011) hypothesized that although  O2 and  CO2 
diffuse faster in air than in water, the higher solubility of 
 CO2 in water would indicate that cells provide an addi-
tional transport route for  CO2, which was supported by 
their computational results. Therefore,  CO2 diffusion 
through the cell matrix is probably hindered by the stone 
cell clusters or at least may affect the intracellular  CO2 
distribution. The same reasoning can be made for ‘Fred’, 
which had remarkably large stone cell clusters (Fig.  1). 
Additionally, the higher amount of small cells in the outer 
cortex region of ‘Celina’ could also affect gas distributions 
through locally increased respiration (Fig. 3). Altogether, 
this could contribute to unfavourable gas conditions ini-
tiating the development of physiological disorders.
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Conclusion
A DL-based method to obtain the complete 3D tissue 
microstructural information of pome fruit from X-ray 
micro-CT imaging of tissue samples was developed. The 
Cellpose model was adopted to perform instance seg-
mentation without the need for contrast enhancement 
and manual segmentation steps. Two experiments were 
conducted to determine the best segmentation model. 
There appeared to be a trend that the more data, and thus 
lower slice spacing to retrieve 2D training images, the 
better. A generalist pome fruit segmentation model per-
formed as well as the specialist models of apple and pear 
tissue, separately.

For the relation between the microstructural features 
and segmentation, the lower SSA of the pore space and 
higher porosity, which are typical for apple tissue, pro-
mote the segmentation quality. Furthermore, a high Euler 
number, indicating lower connectivity of the pore net-
work, would worsen the segmentation. Substantial dif-
ferences in the microstructure of the parenchyma tissue 
of different fruit cultivars along the cortex position were 
found which might explain susceptibility to physiologi-
cal disorders. Notable was the effect of the size of stone 
cell clusters in pear on the shape, size and orientation of 
neighbouring cells.

In the future, the segmentation model will be extended 
to 3D to further improve segmentation quality. In addi-
tion, vascular tissue and stone cells will be segmented 
separately, as it could already be established in this study 
that a neural network is able to recognize them.

Methods
The aim of this work was to train and test a DL network 
for 3D plant tissue segmentation into individual cells 
from X-ray micro-CT images without a need for con-
trast-enhancing and manual segmentation steps. Paren-
chyma tissue samples from different pome fruit were 
used for imaging and analysis, for the following reasons:

• Parenchyma tissue is abundant and easy to sample 
in the hypanthium of mature apple and pear fruit. 
Parenchyma consists of cells and pores with wide dis-
tributions of size and shape providing large and vari-
able datasets [37–39].

• Apple and pear fruit parenchyma are distinct as the 
cells and pore characteristics have been shown to be 
significantly different, even between cultivars [5, 40]. 
This allows to test generalizability and transferability 
of the results.

• The storability of pome fruit, and hence their avail-
ability to consumers throughout the year, depends 
heavily on their gas exchange properties [1]. Unravel-

ling the complex cellular architecture helps in under-
standing the susceptibility to physiological disorders.

• A benchmark segmentation pipeline is avail-
able using conventional image processing with the 
marker-based watershed algorithm [5].

To achieve the objective, the Cellpose model was 
adopted to develop instance segmentation algorithms 
for accurate and automated cell segmentation of tissue 
micro-CT images. First, an X-ray imaging protocol was 
developed and applied to perform conventional and suc-
cessive contrast-enhanced scans on the same tissue sam-
ples. Then, the corresponding images were registered and 
a semi-automated segmentation workflow was developed 
and validated to extract cell labels from the contrast-
enhanced scans as GT data. Cellpose was trained on the 
2D slices of the conventional micro-CT images against 
the GT labels. Training based on different numbers of 
images was investigated. Further, the DL model was 
trained on the images of apple or pear parenchyma tissue 
separately or combined to test transferability to different 
datasets. The different models were then evaluated and 
compared to the benchmark cell segmentation method. 
Finally, the relationships between microstructural 
parameters and segmentation quality were investigated 
to understand why the performance may be different on 
different microstructures.

Pome fruit
Commercial pear (Pyrus communis L.) cultivars ‘Celina’, 
‘Conference’ and ‘Fred’ were harvested by a Flemish 
grower (50°53′48.80″ N 5°08′48.25″ E, Geetbets, Bel-
gium) on August 23, September 11 and 22, 2021, respec-
tively. Commercial apple (Malus × domestica Borkh.) 
cultivars ‘Jonagold’, ‘Kizuri’ and ‘Braeburn’ were harvested 
by another Flemish grower (50°49′4.10″ N 4°46′34.66″ 
E, Bierbeek, Belgium) on October 7, 19 and 26, respec-
tively. The fruit were stored for several days to no more 
than a month after harvest until used for X-ray imaging. 
‘Fred’ and ‘Celina’ were stored under regular air at 0  °C 
and ‘Conference’ at − 1  °C. ‘Braeburn’ and ‘Kizuri’ were 
stored under regular air at 1 °C and ‘Jonagold’ under con-
trolled atmosphere conditions (1%  O2, 3%  CO2) at 1 °C.

X‑ray micro‑CT
The X-ray imaging protocol to perform conventional 
and successive contrast-enhanced scans on the same 
tissue samples is illustrated in Fig.  11. Sampling of the 
pome fruit tissue was done in a standardized manner 
(Fig.  11A). Inner, middle and outer cortex tissue sam-
ples of 4 × 4 × 10  mm were excised with a razor blade 
from the fruit equator at radial positions 0.6 R, 0.75 R 
and 0.9 R, with R the pome fruit radius, respectively. A 
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corner piece was cut off, the sample was patted dry with 
tissue paper and then wrapped in parafilm to prevent 
dehydration while scanning. X-ray projection images 
of the tissue sample were acquired using a UniTom HR 
micro-CT system (Tescan XRE nv, Ghent, Belgium) with 
voxel resolution of 3 µm at 60 kV and 5 W for apple and 
2.5 µm at 55 kV and 6 W for pear (Fig. 11B). Two thou-
sand projection images were captured with an exposure 
time of 140 and 310 ms for apple and pear tissue samples, 
respectively. After performing the conventional scan, the 
sample was carefully unwrapped and incubated in a 10% 
(w/v) caesium iodide solution for 1 (all pear cultivars and 
‘Jonagold’) or 2  h (‘Braeburn’ and ‘Kizuri’) while agitat-
ing every 15 min (Fig. 11C). After incubation, the above-
mentioned scanning procedure was repeated to obtain a 
contrast-enhanced scan (Fig. 11D). The projection images 
of both scans were reconstructed using the filtered back-
projection method in Panthera (Tescan XRE nv, Ghent, 
Belgium). For every apple and pear cultivar, four fruit 
were sampled at the three cortex positions. However, 
some scans were unusable due to motion artifacts during 
micro-CT imaging resulting from damage done by the 
contrast-enhancement procedure. As a result, three rep-
etitions per sampling position were finally used, which 
provided nine samples per cultivar.

Image registration
The reconstructed 16-bit grayscale image stacks were 
converted to 8-bit using MATLAB R2020b (The Math-
works, Inc., Natick, MA, USA) and the following image 

processing protocol was performed in Avizo 2020.3.1 
(Thermo Fisher Scientific, Waltham, MA, USA). First, 
the corresponding image stacks of the same tissue sam-
ple were registered (aligned in 3D), as illustrated in Addi-
tional file  3. The samples were manually pre-aligned to 
reduce computational time. The inner part of the tissue 
sample was indicated as a rectangular subsample to per-
form the image registration with rigid and aniso-scale 
transformation using the normalized mutual information 
metric based on the publication of Studholme et al. [41]. 
Following the image registration, a volume of interest 
(VOI) of 667 × 667 × 667 voxels was extracted at the same 
position for both scans.

Cell matrix and pore labelling
The conventional images were used to extract the binary 
volume of the cell matrix, the pore space and the individ-
ual pore labels as illustrated in Additional file 4. Hereto, 
the cell matrix was segmented using Otsu’s thresholding 
[42] after a filtering step. The binary of the cell matrix 
was denoised using a morphological opening operation. 
After that, the binary of the cell matrix was inverted to 
retrieve the pore space. Next, watershed segmentation 
was applied to obtain the individual pore labels after 
determining the optimal segmentation marker using the 
highest Calinski-Harabasz index value in MATLAB [43].

Ground truth cell labels
A semi-automated cell segmentation workflow was 
developed to extract individual cell labels from the 

Fig. 11 A Excision of pome fruit parenchyma tissue samples at inner, middle and outer positions on the fruit equator followed by B conventional 
X-ray micro-CT imaging. C Incubation of the tissue sample in a 10% (w/v) cesium iodide solution D followed by contrast-enhanced X-ray micro-CT 
imaging
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contrast-enhanced scans that will serve as GT (Addi-
tional file 5: Fig. S1). The workflow consisted of two steps. 
First, voxels with grayscale values higher than those of 
the cells, i.e., cell walls, pores filled with contrast agent, 
vascular tissue and brachysclereids (stone cells; clusters 
of small cells with thick lignified cell walls) were removed 
to mask only cells and some remaining cell walls. Second, 
these remaining cell walls were removed from the cell 
matrix by setting a manual threshold before perform-
ing watershed segmentation. The segmented cells were 
labelled and dilated to compensate for previous removal 
of the cell wall. The vascular tissue, if present, was manu-
ally segmented over multiple 2D slices in XY orientation 
using a region growing algorithm and interpolated to 
retrieve the 3D segmentation. The 3D segmentation was 
checked and refined in the YZ and XZ orientation. The 
same applied to stone cells that appear frequently in pear 
tissue. The semi-automated cell segmentation workflow 
for collecting GT cell labels was validated by comparison 
with a manually corrected dataset, as reported in Addi-
tional file 5.

Morphometric parameters of tissues from different pome 
fruit cultivars
The cell matrix, pore space, pore labels and cell labels 
were analysed to obtain characteristic morphometric 
parameters. The calculated morphometric parameters at 
the sample level (cell matrix and pore space) and for indi-
vidual cells and pores are described in Additional file 6. 
The mode, IQR, skewness and kurtosis were extracted as 
statistical parameters for all cell and pore parameter dis-
tributions. A total of 83 parameters were collected per 
sample. A PLS-DA with full cross-validation was per-
formed on standardized data to visualize the structure of 
the dataset with different cultivars using mdatools [44] in 
RStudio 1.2.5033 (RStudio Inc., Boston, MA, USA). The 
loadings of the first two LVs were evaluated to identify 
key microstructural features to differentiate between dif-
ferent pome fruit cultivars.

Dataset generation for deep learning model training 
and testing
The dataset consisted of three repetitions per sampling 
position for each cultivar, thus 54 samples in total. Two 
repetitions per sampling position for each cultivar, 36 
samples in total, were used in the training and validation 
set. The XY and YZ slices (667 × 667 pixels) were included 
in the training set and the XZ slices in the validation set. 
The test set included the VOIs (667 × 667 × 667 voxels) of 
the three sampling positions from one separate fruit for 
each cultivar, with 18 samples in total (Fig. 12).

Two experiments with different datasets for 2D train-
ing of the neural network were set up:

1) Training with a different number of slices per dataset
2) Training on different fruit datasets

Every tissue sample consisted of 667 2D slices in each 
orientation. To investigate whether the training would 
need all slices to perform proper cell segmentation, in 
the first experiment, seven training datasets were made 
by skipping XY and YZ slices in each dataset. Hereto, 
spacings of 8, 16, 32, 64, 128, 256 and 512 slices were 
considered, resulting in different amounts of slices in the 
training sets (Table 4). The XZ slices for the validation set 
were collected with 512 slice spacing, thus containing 36 
images. For the second experiment, three training data-
sets were made using a spacing of 8 slices: apple and pear 
data separately, and combined. For the combined dataset 
only the first half of the slices in XY and YZ orientations 
were used to have a total amount of 5976 slices in each 
training set. The validation set of the first experiment was 
re-used in the second experiment.

3D cell segmentation
Deep neural networks were trained for cell segmenta-
tion of the fruit tissue samples imaged with conven-
tional X-ray micro-CT using the individual cell labels as 
GT data. The Cellpose network of Stringer et al. (2020), 
implemented by https:// github. com/ Mouse Land/ cellp ose 
in the PyTorch framework in Python, was used.

The models of the two experiments described in the 
previous section were trained for 250 epochs with the 
RAdam optimizer (β1 = 0.95, β2 = 0.999) using a weight 
decay of  10–5 and ϵ of  10–8. The combined loss function 
consisted of the L2 loss for the horizontal and vertical 
gradient maps which were multiplied by a factor of five 
and a cross-entropy loss for the region of interest (ROI) 
map. Random rotation, scaling and flipping were used 
for data augmentation. Hyperparameter tuning was per-
formed as described in Additional file 7 to then train the 
models with the best combination of hyperparameters 
and model architecture. An initial learning rate of 0.002 
was decayed by a factor of 0.1 at epoch 200 and a batch 
size of 8 images was used. The first layer consisted of 48 
feature maps and the network had a depth of 4 layers. 
The training and validation loss during training on a dif-
ferent number of slices per dataset and on different fruit 
datasets are show in Additional file  7: Figs.  S1 and S2, 
respectively.

In the testing phase, the 3D extension framework 
of Stringer et  al. (2020) was adopted. The 2D trained 
models were used to predict the ROI map along the 
horizontal and vertical gradient maps on all XY, YZ and 
XZ slices independently. The 3D ROI and vector gra-
dients were then obtained by averaging. Additionally, 

https://github.com/MouseLand/cellpose
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the binary of the cell matrix retrieved from the conven-
tional scans (see Additional file 4) was multiplied with 
the 3D ROI map. Then, the gradient tracking algorithm 
was ran to cluster the voxels to cell labels.

Verification of segmentation accuracy
The DL based segmentation of the test set data was 
compared to the GT using the AJI. This evaluation 
metric was proposed by Kumar et  al. [45] to evaluate 
nuclear segmentation results from microscopy images. 
The AJI penalizes both detection (object-level) and 
segmentation (px-level) errors as opposed to other 
metrics that focus on one type of error. First, for each 
combination of GT and segmented label, the Jaccard 
index (Intersection over Union metric) was calculated, 
defined as [46]:

where Gi and Sj are the sets of voxels in GT label i and 
segmented label j , respectively. Then, each GT label was 
matched with the segmented cell label that yielded the 
highest Jaccard index, with each segmented cell label 
only used once. Finally, using these pairs of GT and seg-
mented cell labels, the AJI was calculated as follows:

(1)Jij =

∣

∣Gi ∩ Sj
∣

∣

∣

∣Gi ∪ Sj
∣

∣

Fig. 12 Data split into training, validation and test set

Table 4 Spacings by which 2D slices were extracted resulting a 
different number of slices per training set

Slice spacing Slices per sample Slices in 
training 
set

8 83 5976

16 41 2952

32 20 1440

64 10 720

128 5 360

256 2 144

512 1 72
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where Gi is the ith GT label within the sample that con-
tains N  cell labels. SiM is the Mth segmented cell label 
which has the largest Jaccard Index with Gi . In case no 
segmented cell label could be assigned to a GT label, the 
intersection term in the numerator is zero and the union 
term in the denominator is equal to |Gi| , penalizing false 
negatives. U is the set of segmented cell labels that could 
not be assigned to a GT label and this term, therefore, 
penalizes false positives. This evaluation metric penal-
izes thus false positives, false negatives, under and over-
segmentation of true positives. The AJI ranges between 
0 and 1, with the first in case of no intersection between 
GT and the segmented sample and the latter for a per-
fect match. The calculation of the AJI was performed in 
Python 3.8 after adapting the implementation of Stringer 
et al. (2020) to 3D evaluation.

Benchmark
The current state-of-the-art method for cell segmenta-
tion in micro-CT images of plant tissue relies on semi-
automatic marker-based watershed segmentation and 
sieving as reported by Herremans et al. (2015). Therefore, 
as a benchmark to demonstrate progress made by the 
DL method, the marker-based watershed algorithm [47] 
was applied to the binary of the cell matrix in Avizo using 
marker extents of 0, 1, 2, 3 and 4 as shown in Additional 
file 2. The best marker extent for the benchmark was cho-
sen according to the highest AJIs.

Statistical analysis
All statistical analyses were done in RStudio with data 
visualization using ggplot2 [48] and ggpubr [49]. For 
the statistical analysis of the morphometric param-
eters, two-way ANOVA and post-hoc Tukey was used. 
In case of nonnormality or inhomogeneous variances, 
rank transformation of the data was performed [50]. 
To compare the segmentation results of the developed 
models, repeated-measures ANOVA and post hoc pair-
wise paired sample t-tests with Benjamini–Hochberg 
multiple testing correction method were performed on 
the nine test samples of each fruit type using the rstatix 
package [51]. A PLSR with full cross-validation was 
performed on standardized data using mdatools [44] to 
understand how the segmentation quality can be linked 
to the microstructure. The AJIs of the best model were 
used as response variable. For the predictor variables, 
only the morphometric parameters that could also be 
collected from conventional scans were considered.

(2)AJI =

∑N
i=1

∣

∣Gi ∩ SiM
∣

∣

∑N
i=1

∣

∣Gi ∪ SiM
∣

∣+
∑

F∈U |SF |

Abbreviations
AJI  Aggregated Jaccard Index
CCN  Convolutional neural network
DL   Deep learning
GT  Ground truth
IQR   Interquartile range
PLS-DA  Partial least squares discriminant analysis
LV  Latent variable
PLSR  Partial least squares regression
ROI   Region of interest
SSA  Specific surface area
VOI  Volume of interest

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007- 024- 01137-y.

Additional file 1: Morphometric properties of individual cells and pores.

Additional file 2: Benchmark.

Additional file 3: Image registration.

Additional file 4: Cell matrix and pore labeling.

Additional file 5: Semi-automated cell segmentation workflow.

Additional file 6: Description of the 3D morphometric parameter.

Additional file 7: 2D training of Cellpose network.

Acknowledgements
This article is funded by the Research Foundation—Flanders (FWO) and KU 
Leuven. X-ray computed tomography was performed at the XCT Core Facility 
of KU Leuven.

Author contributions
LVD performed the X-ray micro-CT measurements, image analysis, training 
and evaluation of the algorithms and PV and BN supervised the study and 
contributed to the draft of the manuscript. All authors read and approved the 
final manuscript.

Funding
Research Foundation—Flanders (FWO, grant number S003421N, SBO project 
FoodPhase) and KU Leuven (project C1 C14/22/076).

Availability of data and materials
The datasets used and analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 September 2023   Accepted: 8 January 2024

References
 1. Ho QT, Rogge S, Verboven P, Verlinden BE, Nicolaï BM. Stochastic model-

ling for virtual engineering of controlled atmosphere storage of fruit. J 
Food Eng. 2016;176:77–87.

https://doi.org/10.1186/s13007-024-01137-y
https://doi.org/10.1186/s13007-024-01137-y


Page 18 of 19Van Doorselaer et al. Plant Methods           (2024) 20:12 

 2. Ho QT, Verboven P, Verlinden BE, Herremans E, Wevers M, Carmeliet J, 
et al. A three-dimensional multiscale model for gas exchange in fruit. 
Plant Physiol. 2011;155:1158–68.

 3. Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, et al. Hetero-
geneity and robustness in plant morphogenesis: from cells to organs. 
Annu Rev Plant Biol. 2018;69:469–95.

 4. Théroux-Rancourt G, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, 
McElrone AJ, et al. The bias of a two-dimensional view: comparing two-
dimensional and three-dimensional mesophyll surface area estimates 
using noninvasive imaging. New Phytol. 2017;215:1609–22.

 5. Herremans E, Verboven P, Verlinden BE, Cantre D, Abera M, Wevers M, 
et al. Automatic analysis of the 3-D microstructure of fruit parenchyma 
tissue using X-ray micro-CT explains differences in aeration. BMC Plant 
Biol. 2015;15:1–15.

 6. Piovesan A, Vancauwenberghe V, Van De Looverbosch T, Verboven P, 
Nicolaï B. X-ray computed tomography for 3D plant imaging. Trends Plant 
Sci. 2021;26:1171–85.

 7. Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy 
enables multiscale high-resolution 3D imaging of plant cells, tissues, and 
organs. Plant Physiol. 2022;188:831–45.

 8. Verboven P, Kerckhofs G, Mebatsion HK, Quang TH, Temst K, Wevers 
M, et al. Three-dimensional gas exchange pathways in pome fruit 
characterized by synchrotron X-ray computed tomography. Plant Physiol. 
2008;147:518–27.

 9. Verboven P, Defraeye T, Nicolai B. Measurement and visualization of food 
microstructure. In: Devahastin S, editor. Food microstructure and its rela-
tionship with quality and stability. Amsterdam: Elsevier Ltd; 2018. p. 3–28.

 10. Wang Z, Verboven P, Nicolai B. Contrast-enhanced 3D micro-CT of 
plant tissues using different impregnation techniques. Plant Methods. 
2017;13:1–16.

 11. Xiao H, Piovesan A, Pols S, Verboven P, Nicolaï B. Microstructural changes 
enhance oxygen transport in tomato (Solanum lycopersicum) fruit during 
maturation and ripening. New Phytol. 2021;232:2043–56.

 12. Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, et al. 
Cell density and airspace patterning in the leaf can be manipulated to 
increase leaf photosynthetic capacity. Plant J. 2017;92:981–94.

 13. Kar A, Petit M, Refahi Y, Cerutti G, Godin C, Traas J. Benchmarking of deep 
learning algorithms for 3D instance segmentation of confocal image 
datasets. PLoS Comput Biol. 2022;18: e1009879.

 14. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for bio-
medical image segmentation. Lect Notes Comput Sci. 2015;9351:234–41.

 15. Wolny A, Cerrone L, Vijayan A, Tofanelli R, Barro AV, Louveaux M, et al. 
Accurate and versatile 3D segmentation of plant tissues at cellular resolu-
tion. Elife. 2020;9:1–34.

 16. Eschweiler D, Spina TV, Choudhury RC, Meyerowitz E, Cunha A, Stegmaier 
J. CNN-based preprocessing to optimize watershed-based cell segmenta-
tion in 3d confocal microscopy images. In: Proc - Int Symp Biomed Imag-
ing. 2019; pp. 223–7.

 17. He K, Gkioxari G, Doll P, Girshick R. Mask R-CNN. IEEE Trans Pattern Anal 
Mach Intell. 2020;42:386–97.

 18. Yin C, Tang J, Yuan T, Xu Z, Wang Y. Bridging the gap between seman-
tic segmentation and instance segmentation. IEEE Trans Multimed. 
2022;24:4183–96.

 19. Mueed Hafiz A, Mohiuddin BG. A survey on instance segmentation. Int J 
Multimed Inf Retr. 2020;9:171–89.

 20. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist 
algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.

 21. Waisman A, Norris AM, Elías Costa M, Kopinke D. Automatic and unbi-
ased segmentation and quantification of myofibers in skeletal muscle. 
Sci Rep. 2021;11:1–14.

 22. Shin S, Kim MW, Jin KH, Yi KM, Kohmura Y, Ishikawa T, et al. Deep 3D 
reconstruction of synchrotron X-ray computed tomography for intact 
lungs. Sci Rep. 2023;13:1–9.

 23. Odgaard A, Gundersen HJ. Quantification of connectivity with special 
emphasis on 3D reconstractions. Bone. 1993;14:173–82.

 24. Eschweiler D, Smith RS, Stegmaier J. Robust 3D cell segmentation: 
extending the view of cellpose. In: IEEE International Conference on 
Image Processing. 2022. p. 191–5.

 25. Abera MK, Verboven P, Herremans E, Defraeye T, Fanta SW, Ho QT, et al. 
3D Virtual pome fruit tissue generation based on cell growth mod-
eling. Food Bioprocess Technol. 2014;7:542–55.

 26. Herremans E, Verboven P, Bongaers E, Estrade P, Verlinden BE, Wevers 
M, et al. Characterisation of ‘Braeburn’ browning disorder by means of 
X-ray micro-CT. Postharvest Biol Technol. 2013;75:114–24.

 27. Lee J, Mattheis JP, Rudell DR. Antioxidant treatment alters metabolism 
associated with internal browning in ‘Braeburn’ apples during con-
trolled atmosphere storage. Postharvest Biol Technol. 2012;68:32–42.

 28. Elgar HJ, Burmeister DM, Watkins CB. Storage and handling effects on 
a CO2-related internal browning disorder of ‘Braeburn’ apples. HortSci-
ence. 1998;33:719–22.

 29. Nugraha B, Verboven P, Janssen S, Hertog MLATM, Boone M, Josipovic 
I, et al. Oxygen diffusivity mapping of fruit and vegetables based on 
X-ray CT. J Food Eng. 2021;306:110640.

 30. Franck C, Lammertyn J, Ho QT, Verboven P, Verlinden B, Nicolaï 
BM. Browning disorders in pear fruit. Postharvest Biol Technol. 
2007;43:1–13.

 31. Paul V, Pandey R, Malik SK. Varietal variations in rate of ripening and 
respiration of mango (Mangifera indica L.) fruits: anatomical substantia-
tion. Plant Physiol Rep. 2019;24:340–50.

 32. Bessemans N, Verboven P, Verlinden BE, Janssens M, Hertog MLATM, 
Nicolaï BM. Apparent respiratory quotient observed in headspace of 
static respirometers underestimates cellular respiratory quotient of 
pear fruit. Postharvest Biol Technol. 2020;162:111104.

 33. Nugraha B, Verboven P, Verlinden BE, Verreydt C, Boone M, Josipovic 
I, et al. Gas exchange model using heterogeneous diffusivity to study 
internal browning in ‘Conference’ pear. Postharvest Biol Technol. 
2022;191:111985.

 34. Ho QT, Verboven P, Verlinden BE, Lammertyn J, Vandewalle S, Nicolaï 
BM. A continuum model for metabolic gas exchange in pear fruit. PLoS 
Comput Biol. 2008;4: e1000023.

 35. Ho QT, Verlinden BE, Verboven P, Vandewalle S, Nicolaï BM. A permea-
tion-diffusion-reaction model of gas transport in cellular tissue of plant 
materials. J Exp Bot. 2006;57:4215–24.

 36. Ho QT, Verboven P, Verlinden BE, Schenk A, Nicolaï BM. Controlled 
atmosphere storage may lead to local ATP deficiency in apple. Posthar-
vest Biol Technol. 2013;78:103–12.

 37. Janssen S, Verboven P, Nugraha B, Wang Z, Boone M, Josipovic I, et al. 
3D pore structure analysis of intact ‘Braeburn’ apples using X-ray micro-
CT. Postharvest Biol Technol. 2019;2020(159):111014.

 38. Chalermchat Y, Malangone L, Dejmek P. Electropermeabilization of 
apple tissue: effect of cell size, cell size distribution and cell orientation. 
Biosyst Eng. 2010;105:357–66.

 39. Naets M, Wang Z, Verboven P, Nicolaï B, Keulemans W, Geeraerd A. Size 
does matter—susceptibility of apple for grey mould is affected by cell 
size. Plant Pathol. 2020;69:60–7.

 40. Hou J, Sun Y, Chen F, Yu L, Mao Q, Wang L, et al. Analysis of micro-
structures and macrotextures for different apple cultivars based on 
parenchyma morphology. Microsc Res Tech. 2016;79:304–12.

 41. Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy meas-
ure of 3D medical image alignment. Pattern Recognit. 1999;32:71–86.

 42. Otsu N. A threshold selection method from gray-level histograms. IEEE 
Trans Syst Man Cybern. 1979;9:62–6.

 43. Piovesan A, Achille C, Ameloot R, Nicolai B, Verboven P. Pore network 
model for permeability characterization of three-dimensionally-printed 
porous materials for passive microfluidics. Phys Rev E. 2019;99:1–13.

 44. Kucheryavskiy S. mdatools—R package for chemometrics. Chemom 
Intell Lab Syst. 2019;2020(198):103937.

 45. Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A. A dataset 
and a technique for generalized nuclear segmentation for computational 
pathology. IEEE Trans Med Imaging. 2017;36:1550–60.

 46. Jaccard P. The distribution of the flora in the alpine zone. New Phytol. 
1912;11:37–50.

 47. Beucher S, Meyer F. The morphological approach to segmentation: 
the watershed transformation. In: Dougherty E, editor. Mathematical 
morphology in image processing. New York: Marcel Dekker Inc.; 1993. p. 
433–81.

 48. Wickham H. ggplot2: elegant graphics for data analysis. New York: 
Springer-Verlag; 2016.

 49. Alboukadel Kassambara. ggpubr: ‘ggplot2’ based publication ready plots. 
2023. https:// rpkgs. datan ovia. com/ ggpubr/. Accessed 05 June 2023.

 50. Conover WJ, Iman RL. Rank transformations as a bridge between para-
metric and nonparametric statistics. Am Stat. 1981;35:124–9.

https://rpkgs.datanovia.com/ggpubr/


Page 19 of 19Van Doorselaer et al. Plant Methods           (2024) 20:12  

 51. Alboukadel Kassambara. rstatix: pipe-friendly framework for basic statisti-
cal tests. 2023. https:// rpkgs. datan ovia. com/ rstat ix/. Accessed 05 June 
2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://rpkgs.datanovia.com/rstatix/

	Automatic 3D cell segmentation of fruit parenchyma tissue from X-ray micro CT images using deep learning
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Results
	Microstructure of parenchyma of different pome fruit cultivars
	Deep learning based cell segmentation
	Use of different slice spacings for model development
	Transferability of deep learning models

	Relation between microstructural features and segmentation

	Discussion
	Deep learning-based instance segmentation outperforms watershed segmentation
	Deep learning training requires data that retain spatial correlations
	Deep learning training with more diverse data works best for segmenting all tissue types
	Improving accuracy and generalizability in future work
	Segmentation quality can be linked to difference in microstructure
	Microstructure might explain susceptibility to physiological disorders

	Conclusion
	Methods
	Pome fruit
	X-ray micro-CT
	Image registration
	Cell matrix and pore labelling
	Ground truth cell labels
	Morphometric parameters of tissues from different pome fruit cultivars
	Dataset generation for deep learning model training and testing
	3D cell segmentation
	Verification of segmentation accuracy
	Benchmark
	Statistical analysis

	Acknowledgements
	References


