
Theiß et al. Plant Methods           (2024) 20:21  
https://doi.org/10.1186/s13007-023-01130-x

METHODOLOGY Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Plant Methods

Completing the picture of field-grown cereal 
crops: a new method for detailed leaf surface 
models in wheat
Marie Theiß1*, Angelina Steier1, Uwe Rascher1 and Mark Müller‑Linow1* 

Abstract 

Background The leaf angle distribution (LAD) is an important structural parameter of agricultural crops that influ‑
ences light interception, radiation fluxes and consequently plant performance. Therefore, LAD and its parametrized 
form, the Beta distribution, is used in many photosynthesis models. However, in field cultivations, these parameters 
are difficult to assess and cereal crops in particular pose challenges since their leaves are thin, flexible, and often bent 
and twisted around their own axis. To our knowledge, there is only a very limited set of methods currently available 
to calculate LADs of field‑grown cereal crops that explicitly takes these special morphological properties into account.

Results In this study, a new processing pipeline is introduced that allows for the generation of realistic leaf surface mod‑
els and the analysis of LADs of field‑grown cereal crops from 3D point clouds. The data acquisition is based on a con‑
venient stereo imaging setup. The approach was validated with different artificial targets and results on the accuracy 
of the 3D reconstruction, leaf surface modeling and calculated LAD are given. The mean error of the 3D reconstruc‑
tion was below 1 mm for an inclination angle range between 0° and 75° and the leaf surface could be quantified 
with an average accuracy of 90%. The concordance correlation coefficient (CCC) of 99.6% (p‑value = 1.5 ∗ 10−29 ) indi‑
cated a high correlation between the reconstructed inclination angle and the identity line. The LADs for bent leaves 
were reconstructed with a mean error of 0.21° and a standard deviation of 1.55°. As an additional parameter, the inser‑
tion angle was reconstructed for the artificial leaf model with an average error < 5°. Finally, the method was tested 
with images of field‑grown cereal crops and Beta functions were approximated from the calculated LADs. The mean CCC 
between reconstructed LAD and calculated Beta function was 0.66. According to Cohen, this indicates a high correlation.

Conclusion This study shows that our image processing pipeline can reconstruct the complex leaf shape of cereal 
crops from stereo images. The high accuracy of the approach was demonstrated with several validation experiments 
including artificial leaf targets. The derived leaf models were used to calculate LADs for artificial leaves and naturally 
grown cereal crops. This helps to better understand the influence of the canopy structure on light absorption and plant 
performance and allows for a more precise parametrization of photosynthesis models via the derived Beta distributions.
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Background
One of the most important phenotypic parameters of a 
canopy is the angular orientation of leaves [1–4]. It is not 
only contributing to the complexity of canopy architec-
ture, but also impacting radiation fluxes, photosynthetic 
capacity and therefore the productivity of the whole plant 
[5, 6]. The angular orientation of the leaves is described 
by different parameters, the leaf inclination angle (LIA), 
the leaf azimuth angle and the leaf angle distribution 
(LAD) within the canopy [3, 7, 8]. The LIA describes the 
slope of a leaf with regard to the soil. The LAD refers 
to the probability to observe a defined inclination angle 
within a plant canopy. Horizontal leaves in the upper 
canopy layers intercept most of the incoming light, but 
they may also cause self-shading and reduce light avail-
ability for lower canopy layers. In contrast, erected 
leaves intercept less light and allow the light to penetrate 
through the canopy, resulting in a more homogeneous 
distribution of light in the canopy and an increased car-
bon gain. Varieties displaying this feature usually have 
a greater leaf area index and more leaf area exposed to 
sunlight. For this reason, yield is higher, too [9–11]. For 
planar-shaped leaves the inclination angle is almost con-
stant. However, leaves of cereal crop plants are very flex-
ible, usually bent along their own axis and the inclination 
angle varies accordingly [12, 13]. This has a strong impact 
on the LAD and on the light interception properties of 
the canopy. As an important factor of various photosyn-
thesis models, the LAD is commonly used there in a par-
ametrized form, the Beta function [14].

Various measurement methods have been devel-
oped to determine the angular orientation and LADs of 
plants, but the characterization of the complex architec-
ture of cereal crops under field conditions holds various 
challenges, making direct measurements of LAD too 
time-consuming or indirect determination based on 3D 
representations very complex, so that there are virtually 
no validated methods available to date. Their leaves are 
thin, long, and sometimes twisted around their own axis. 
Moreover, they are highly flexible and easily moved by 
wind and thus may change their angular orientation fre-
quently. For this reason, a suitable measurement method 
should be as insensitive as possible to leaf movements. If 
the stand becomes denser as it develops, most leaves can 
only be seen from the nadir position due to the neighbor-
ing plants. This limits the ability to obtain a complete 3D 
representation of individual plants.

Manual measurements, e.g. with an inclinometer [15], 
are often applied to determine angular orientations of 
leaves. However, such methods are very time-consuming 
and consequently, not suitable for larger throughputs in 
cereal crops because of the complex 3D structure of cereal 
leaves [16, 17]. Other methods make use of 3D digitizers 

[18] or laser scanning devices [19] to generate 3D point 
clouds. These methods are most suited for rigid objects, 
which do not move during data acquisition. In contrast, 
photographic methods can be used to collect data for 
an individual plant within a very short timeframe, typi-
cally milliseconds, and therefore they are hardly affected 
by plant movements. It has been shown in several stud-
ies that camera-based methods are suitable to deter-
mine plant architecture and leaf angles for agricultural 
crops [4, 20–26]. A few studies have aimed at addressing 
the problem of estimating LAD for field-grown wheat 
plants [19, 24, 27]. Hosoi et al. [19] divided the leaf into 
segments of 15 mm and calculated the inclination angle 
for each individual segment. The author stated that the 
capacity to represent a detailed LAD strongly depends on 
the segment length alongside the leaf. However, a suffi-
ciently large number of points is needed to have robust 
surface fittings in each segment. For this reason, it is not 
possible to used infinitesimal intervals. Dornbusch et al. 
considered more complex leaf surface models [28, 29]. 
They reconstructed barley plants from detailed point 
clouds which were acquired with a 3D digitizer (Digiscan 
2000, RSI GmbH, Oberursel, Germany) in the lab. Their 
approach delivered accurate leaf reconstructions, which 
considered leaf twisting and bending amongst other fac-
tors. However, this methodic approach was not suitable 
to reconstruct cereal crop leaves under natural condi-
tions. Moreover, their approach was not evaluated with 
real objects or used to determine leaf-specific parameters 
like the leaf angle distribution.

With this study, we introduce a processing pipeline for 
assessing various leaf traits from accurate leaf surface 
reconstructions of cereal crops with a particular focus on 
the method evaluation and the usability in field applica-
tions. Our approach is based on stereo imaging, which 
is cheap and easy to implement, nevertheless suitable to 
deliver detailed leaf models as a basis for reliable analy-
sis of LADs of field-grown cereal crops. An essential step 
in the modeling is the consideration of the blade curva-
ture by approximating the blade axis with a second-order 
polynomial as well as the leaf twisting by a leaf twisting 
function. The computed leaf surface models allow pre-
cise and accurate calculation of leaf angles, insertion 
angles and LADs. Leaf area was included as an additional 
important surface parameter to judge the quality of the 
leaf reconstructions. Estimated leaf angles and leaf area 
were evaluated under outdoor conditions with different 
experiments. To our knowledge, there are no methods 
available to collect reference measurements for leaves 
with a broad LAD. Thus, a more realistic reference model 
was considered, and the reconstruction quality was eval-
uated using bent artificial leaves. Finally, the approach 
was applied to real wheat plants. The calculated LADs 
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were fitted with the Beta function. The comparison of 
the LAD and the fitted model was used to underline the 
plausibility of the approach and the applicability of the 
Beta function estimates for photosynthesis modelling.

Results
Our approach was validated with two different types of 
targets, a sphere displaying all possible angles and ori-
entations and artificial leaves with known geometries. 
The idea behind the sphere experiment was to relate the 
reconstruction quality to the number of reconstructed 
points per area (point density ρss ) in dependence of the 
sphere inclination. Method and results of the sphere 
experiment are explained in the Additional file 9 (Sphere 
reconstruction) In the following, we focus on the results 
for the artificial leaf targets.

Planar leaf model
An artificial flat leaf plant model was arranged with 
seven different inclination angles. Each inclination angle 
was imaged four times to evaluate the quality of surface 
reconstructions. The leaf surface was reconstructed from 
each pair of stereo images (28 pairs in total). Known leaf 
parameters (width, area, axis length) were compared to 
those reconstructed by our data processing workflow 
(Table 1).

The results for leaf width, leaf axis and leaf area were 
averaged over all reconstructed leaves. The mean recon-
structed leaf width and surface area were slightly smaller 
than the reference values, while the reconstructed leaf 
axis length was larger. On average, about 90% of the real 
surface area was reconstructed. Finally, the reconstructed 
inclination angle ir was compared to the measured inser-
tion angle αm (Fig. 1). Most points are evenly and closely 
distributed around the identity line (red). The correlation 
between the data points and the identity line was calcu-
lated by the concordance correlation coefficient [30] and 
produced a concordance of 99.6% (p-value = 1.5 ∗ 10−29 ). 
The high correlation to the identity line is also reflected 
by an accuracy of 0.5° and a precision of 1.72°.

Bent leaf model
For the next experiment, six different artificial plant 
models with a bent leaf (150  mm leaf axis length) were 
analyzed. Parameters like bending radius ( br ) and inser-
tion angle ( αRef  ) are shown in Table 2.

Each model was imaged four times. Thus, the dataset 
was composed of 24 stereo image pairs. The leaf area 
was reconstructed with a comparable accuracy as in the 
experiment with the planar leaf model. Table 3 summa-
rizes the mean error [%] for the reconstructed insertion 
angles.

A high mean error (marked with *) was associ-
ated with a high error for one of the image pairs of 
the model. In the following, a detailed description for 
model 1 is given (a Table with the reconstructed values 

Table 1 Reconstructed leaf parameter of the planar leaf model

Reference values and reconstructed values x , standard deviation σ , percentage 
change and variation coefficient: (i) for leaf axis length, (ii) width and (iii) leaf 
area averaged over all the reconstructed leaves

Reference x σ Percentage 
change [%]

Variation 
coefficient

Leaf axis length 
[mm]

150 155.42 6.34+3.6 ±4.2

Leaf width 
[mm]

11 10.74 1.32−2.4 ±1.2

Leaf area  [mm2] 1528 1371.23 78.54−10.3 ±5.1
Fig. 1 Relation between reconstructed inclination angle ir 
and manually measured inclination angle αm . The red line marks 
the identity line. All points are located very close to the identity line 
(red) indicating a high accuracy of the reconstructed inclination angle

Table 2 Leaf bending radius rb and insertion angle α for artificial 
leaf models with bent leaf

Model rb[mm] α[°]

1 82 35

2 155 26

3 125 36

4 125 44

5 155 50

6 115 50

Table 3 Reconstructed insertion angle for bent artificial leaf

Reference values αref  and reconstructed values αrec , and mean error for insertion 
angle α. *Marks those reconstructions with a mean error above 10%

Model αref[°] αrec[°] MeanError[%]

1 35 36.3 4

2 26 26.2 0.7

*3 36 3 9.8 10.5

4 44 46.7 6.1

5 50 50.2 0.4

*6 50 44.8 10.4
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for insertion angle, leaf width, leaf area and mean incli-
nation angle and a visual representation of a 3D point 
cloud and the reconstructed leaf axis and leaf edges are 
given in the Additional file  1). The reconstructed leaf 
model represented 97% of the leaf area, which was sim-
ilar to the results for the planar leaf.

The reconstructed inclination angle ir (which is 
given by the face normal) was compared to the refer-
ence inclination angle ic . Both angles ic(X), ir(X) fol-
low a similar progression (Fig. 2a)). The insertion angle 
of 35° is reconstructed with values ranging between 
33° and 37.5°. The difference �(ic, ir) between ir(X) 
and ic(X) exhibits an error between −  5.1° and 3.19° 
(Fig. 2b)). The mean error  �(ic, ir) for the four recon-
structions  (Recn) ranges between − 0.43° and 0.73° and 
σ ranges between 0.68° and 2.38°. At leaf axis position 
X ≈ 50mm , the value of �(ic, ir) shifts from positive to 
negative and vice versa (Fig.  2b)). The function profile 
of the reconstructed leaf angle distribution (LAD) θr is 
very similar to θc (Fig. 3a).

All distributions show a predictable drop for θr and 
θc for inclination angles around 35°. Larger deviations 
were observed for ir < 5◦ and ir > 50◦ . The recon-
structed inclination angle ir was compared to the refer-
ence inclination angle ic along the leaf axis for the given 

leaf blade. The error measure er(ic) was used to com-
pare the reconstructed LAD θr and θc

We calculated mean error and σ for each individual 
inclination angle (Fig. 3b).

Mean error varies between − 0.1° and 0.3° for inclina-
tion angles between 10° and 58°. It is higher for incli-
nation angles below 10° and above 58°. The standard 
deviation varies between 0.5° for ir = 0° and 2.05° for ir = 
61°. In general, higher values in σ were related to higher 
values for ir . The highest value for mean error is 2.18° and 
belongs to an inclination angle ic = 0°. Averaged over all 
inclination angles, the calculated mean error was 0.21° 
and σ was 1.55°. Analogue Figures for the other models 
(Additional file  2) and tables with the determined val-
ues for insertion angle and mean inclination angle for all 
models (Additional file 3) are given in the Additional files 
2 and 3.

Field experiment: leaf angle distribution of naturally 
grown cereal crops
Summer wheat was imaged under field conditions leaves 
were reconstructed from the images for this case study. 

(1)er(X) = (ic(X)− ir(X))(0 ≤ X ≤ 150)

Fig. 2 Reconstructed inclination angle along the leaf axis. Plot a 
shows the inclination angle ic (Ref ) and ir (Rec) along the leaf axis 
X  . Plot b shows the difference between ic and ir . The difference 
between ir and ic �(ic , ir) varies between − 6° and 4°. Mean error (ME) 
and standard deviation σ for �(ic , ir) for the four reconstructions 
 (Recn) were:  Rec1: ME = − 0.43°, σ = 2.38;  Rec2: ME = 0.37°, σ = 1.22°; 
 Rec3: ME = 0.73°, σ = 0.68;  Rec4: ME = 0.51, σ = 1.05

Fig. 3 Reconstructed leaf angle distribution and mean error 
of reconstructed leaf angles. a Calculated leaf angle distribution 
θc (red) versus reconstructed leaf angle distribution θr (black). 
Systematic differences only occurred for inclination angles close 
to 0°. b Mean error (black) and standard deviation (grey area) 
between the calculated leaf angle distribution θc and reconstructed 
distribution θr . The mean error is close to 0° for inclination angles 
between 10° and 60°. For horizontal surfaces with an inclination angle 
close to 0°, er shows the highest value of ~ 2°
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In comparison to the utilized artificial targets, leaves of 
crop plants occlude themselves and they exhibit addi-
tional shape features like leaf twisting. Leaf twisting is 
a common phenomenon for cereal crop leaves, which 
appears as uniform twisting around the leaf axis. In some 
cases, twisting and axis bending can combine to an addi-
tional 3D surface feature, which looks like a local lateral 
bending of the leaf axis. Leaf twisting produces addi-
tional slanted leaf surfaces, which are sometimes difficult 
to reconstruct, especially if these surfaces are oriented 
parallel to the imaging axis. Typical results of the recon-
struction and modeling process are exemplarily depicted 
in Figs. 4 and 5.

To illustrate the influence of the aforementioned fac-
tors on particular properties of the leaf surface model, 
we took a closer look at six sample leaves in Figs. 4 and 
6 (red labeled), also to explain the main challenges to 
retrieve leaf incidence angles in natural canopies. Fig-
ure  4 shows three examples, where leaf edges and leaf 
axis were reconstructed accurately. In Fig. 4b) the leaf is 
partly occluded by another leaf. Therefore, the 3D point 

cloud does not contain points in this leaf part, but the 
leaf model covers this missing area.

i) Occlusions: Gaps due to occlusions emerged in leaf 
b), where the reconstructed 3D-point cloud is frag-
mented into two parts. Here, the leaf is partly cov-
ered by another leaf in the missing area. However, the 
leaf model could reliably fit these structurally com-
plex leaves and interpolate the missing areas.

ii) Uniform leaf twisting: In Fig.  5 right leaf a) is uni-
formly twisted around the leaf axis, i.e. the leaf tip is 
inclined towards the right of the image. This twisting 
is also visible in the corresponding reconstructions 
(right), were the bottom images clearly show the 
twisted leaf surface and the reconstructed 3D points, 
which are located between the fitted leaf edges. The 
influence of leaf twisting on reconstructed inclination 
angles is also visible in the top right image. Here, the 
inclination angle does not change uniformly along 
the leaf axis, but instead varies between the opposing 
leaf sides.

iii) Lateral axis bending: the leaf axis of leaf b) is tilted 
laterally due to local twisting and axis bending. This 
leads to a leaf axis fit, which is not located centrally 
on the leaf surface. As a consequence, we find overly 
broad leaf edges, which do not fit the border of the 
3D-point cloud over the entire leaf length.

iv) Slanted leaf surface: this effect is recognizable for 
leaf c). Up to the middle it is twisted around the leaf 
axis followed by a constant tilting in the upper part, 
which is why the leaf blade is only visible as a thin 
line from there. The calculated leaf model fits the 
reconstructed point cloud regarding axis bending 
and inclination angle. However, the point cloud does 
not contain the upper part of the leaf and the leaf tip 
is fitted in the twisting region.

Finally, the LADs and the respective Beta functions of 
the field-grown wheat plants were computed by process-
ing one stereo image pair per plot with the given pipe-
line. Assuming that a Beta function fit should reflect the 
course of the underlying LAD to a certain extent, each 
distribution and fitted function were compared by com-
puting the Concordance Correlation Coefficient (CCC). 
Figure  6 shows two examples for a reconstructed LAD 
(black) and the calculated Beta function (red).

The CCC is not only a measure of the correlation, 
but also describes the quality of the fitted Beta func-
tion with respect to the identity line. In our two exam-
ples, the depicted distributions have a CCC = 0.88 and 
0.56, respectively (Fig. 6). There are several definitions 
available, which describe the quality of the CCC. Cohen 

Fig. 4 Leaf reconstruction for field grown wheat plants. The stereo 
image (master camera) shows individual leaves, and the plots show 
different views of the respective reconstructed 3D point clouds 
and leaf fits (modeled edges and axis in black)
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defined a low correlation for values between 0.1–0.29, a 
moderate correlation between 0.3–4.9 and a high cor-
relation between 0.5–1.0 [31], while Altman defined 
the limits like those for the Pearson Coefficient. Values 
below 0.2 do not indicate any correlation and values 
above 0.8 describe a high correlation [32]. In our study, 
the mean CCC was 0.66 and the median 0.68. In 91% of 
reconstructed leaf angle distributions, the CCC values 
were greater than 0.5. According to Cohen, this value 
already indicates a high concordance between the Beta 
function and the reconstructed LAD. In 22% of cases, 
the CCC was above 0.8, which Altmann defines as a 
high correlation, as well.

Discussion
Measuring leaf inclination angles (LIA) among cereal 
crops under field conditions is an essential challenge in 
plant phenotyping. A common practice to collect ground 
truth data (e.g. for method evaluation or photosynthesis 
model parametrization) is the usage of inclinometers [19, 
33, 34]. However, this approach is time consuming and 
often difficult in cereal crops because of canopy move-
ments mainly due to wind. The stereo setup is robust 
against wind-induced canopy movement. However, the 
setup does not provide a complete 3D reconstruction. 
Instead, it delivers a 3D point cloud of the canopy sur-
face, which is sensitive to occlusions. Moreover, surfaces 
with inclination angles > 75° are hardly reconstructed. 

Fig. 5 Common errors of leaf reconstructions for field grown wheat plants. The image shows a stereo image (master camera) with three selected 
leaves. The 3D point clouds show three different views of the respective reconstructed leaf fits (modeled edges and axis in black) and a visualization 
of the reconstructed leaf inclination angle projected on the leaf model. Leaf a is uniformly twisted around the leaf axis (red arrow iv)). This 
twisting is visible in the corresponding reconstructions. Leaf b is partly occluded (red arrow i)) by another leaf. For this reason, the 3D‑point cloud 
is fragmented into two parts. However, the leaf model interpolates the missing areas. Moreover, leaf b is tilted laterally due to local twisting and axis 
bending. Therefore, the reconstructed leaf edges do not fit the border of the 3D‑point cloud over the entire leaf length. The leaf axis position 
in the image (red arrow iii)) differs from the leaf axis fit position (green arrow iii)). Leaf c as a slanted leaf surface. For this reason, the point cloud does 
not contain the leaf tip
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To overcome this problem the stereo setup could be 
tilted and images of the canopy could be acquired from 
different views and angles. Alternatively, a multi view-
based camera system could be used [26, 35–37]. These 
approaches could potentially increase the accuracy and 
decrease the occlusion-error. However, besides the addi-
tional costs, synchronizing and calibrating a multi-setup 
is far more complicated than a two-camera setup. Photo-
graphing from different points of view is time-consuming 
especially under field conditions and sensitive to canopy 
movement. For this reason, a multi-view-based approach 
would be feasible under calm conditions or sing addi-
tional enclosures, e. g. in single plant studies. The influ-
ence of the light conditions is another important point, 
which needs to be considered when conducting the 
acquisition, e. g. by choosing appropriate time points 
with constant ambient light. Nevertheless, to reduce 
the impact of light fluctuations, which may occur when 
clouds are constantly changing, additional artificial illu-
mination could be considered.

In contrast to the available methods, we focused on 
the application scenarios of our approach, which are 
primarily but not limited to field research. We con-
sciously decided against a comparison with another, pos-
sibly more accurate method and instead validated our 
approach on a rigid artificial plant model with known 
geometry leaf properties such as dimensions, area and 
angular distribution. Therefore, the model was primar-
ily used to validate inaccuracies typically found outdoors 
like changing light conditions and variations in leaf orien-
tation. In view of this fact, we found very high accuracies 
in leaf axis length and leaf area (Table 1). To our knowl-
edge, there are no studies, which validate the estimation 
of leaf surface parameters under outdoor conditions. 

However, some studies are available, where artificial 
plant models were used for validation und controlled 
conditions. Müller-Linow et al. [23] used a wooden plant 
model with adjustable broad flat leaves, while Dandri-
fosse et  al. [24] used fixed flat crop leaves to determine 
the accuracy of their approach. However, cereal crop 
leaves are often bent and twisted along their leaf axes. For 
this reason, they do not have a constant inclination angle, 
but each leaf is characterized by an individual leaf angle 
distribution (LAD). In this study, flat and curved artifi-
cial leaf models were used. The evaluation experiment 
with planar artificial leaves showed high accuracies with 
a CCC of 99.6% (p-value = 1.5 ∗ 10−29 ). This is in line with 
the results from previous studies which showed similar 
accuracies in flat leaves [19, 23, 24]. Since cereal crop 
leaves are curved along their own axis, a more realistic 
bent leaf model with a known reference distribution was 
chosen for the main evaluation experiment. The distri-
bution θ was reconstructed with a mean error between 
−  0.43° and 0.73°, which supports the low reconstruc-
tion error for flat leaves and punctuates the high accu-
racy of our reconstruction pipeline. The mean error for 
inclination angles close to 0° was greater than the mean 
error for higher inclination angles between 10° and 60°. 
(Fig. 4). It is known that the reconstruction quality (and 
the ME) of higher inclination angles can benefit from an 
error compensation effect [20, 21], while the increase of 
the ME for lower angles may be attributed to the absence 
of this effect. The progression of the leaf inclination angle 
for the bent artificial leaf is determined by two factors, 
the adjusted insertion angle α and the bending radius rb . 
Table  3 shows the mean error for reconstructed inser-
tion angles. High variations were associated with a mis-
match of leaf tip and leaf base. This fact did not affect the 

Fig. 6 Leaf angle distribution modelled by Beta function. Analysis of two reconstructed field‑grown wheat canopies that shows the reconstructed 
leaf angle distributions θ (black bars) and calculated Beta functions with f (t) = 1

B(µ,ν)
∗ (1− t)µ−1

∗ tν−1 (a) red; (b) orange), both displaying a high 
concordance (CCC > 0.5) between distribution and fit; a) CCC = 0.8, and b) CCC = 0.56 (Variety: Matthus; sowing density: 250 seeds

m2 )
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accuracy for reconstructed LAD. A detailed analysis of 
the leaf inclination angle was presented for model 1 with 
α = 35◦ and rb = 82mm. The parameters α and rb deter-
mine the leaf axis position, where the inclination angle is 
0°. This position is shifted slightly for the reconstructed 
inclination angles (Fig. 2b, shift at X ≈ 50 mm). Since the 
inclination angle is only defined for positive values and α 
was adjusted to 35°, we expected a jump in θr at this incli-
nation angle (Fig. 3a). This jump was related to the circu-
lar bending and the fact that inclination angles between 
0° and 35° occurred twice along the leaf axis.

Recent studies reported photogrammetric methods to 
estimate plant parameters such as leaf width, leaf axis 
length and leaf area. However, the proposed methods 
were not applied to cereal crop leaves [38, 39]. Although 
leaf area was not the focus of this study, some of the find-
ings will be discussed in the following. Our leaf mod-
eling process underestimates leaf surface area slightly. 
Overall, 90% of the leaf area for the flat artificial leaf was 
reconstructed. In comparison, other approaches based 
on Delaunay triangulation tend to overestimate leaf area 
by up to 50% due to a stair-step effect [24, 27]. The fact 
that our pipeline underestimates leaf area results from 
two factors: Firstly, the fitted leaf model did not cover the 
given leaf shape perfectly, and secondly, reconstructed 
leaf edges were sometimes excluded from the fitting pro-
cess due to edge effects at object corners [40]. This loss 
of edge points had an impact on leaf width resulting in 
a narrower leaf model fit. In some cases, more notice-
able variations within the point cloud, visible as peaks, 
were caused by leaves that were close to a reconstructed 
leaf (Fig.  4a). The points in these areas were not accu-
rately reconstructed and could result in these observed 
edge effects. However, this case shows the advantage of 
using a functional description of the leaf surface, which 
is (within a certain range) robust to such erroneous esti-
mates of the 3D point cloud position. The pipeline calcu-
lates a Beta function fit for the reconstructed LAD, which 
provides a more accurate description of the LAD than 
one-parametric functions [14]. The average concord-
ance correlation coefficient (CCC) was 0.66, indicating 
a high correlation between LAD and Beta function [31]. 
A fit with a very high CCC of 0.88 is shown in Fig. 6a). 
The shape of the LAD is described very well by the Beta 
function. Figure  6b) shows the LAD and Beta func-
tion with a lower CCC of 0.56. This is a typical example, 
where the decrease in correlation is mainly caused by a 
small range in the LAD (here by an overrepresentation of 
angles between 57° and 65°). This peak was not mapped 
by the Beta function, while the general distribution of 
leaf angles is represented by the fit. Wang et al. describe 
that the Beta function is superior to the ellipsoid function 
in grasses. This should be evaluated in further analysis 

[41]. Our modeling approach is applicable to 3D data 
from various sensory methods like stereo imaging, multi-
view setups, LiDAR or structured light imaging, which is 
employed for example in the commercially available sys-
tem PlantEye (Phenospex, NL). Depending on scanning 
time and ambient conditions, LiDAR-based sensors and 
PlantEye have the potential to provide 3D data with high 
resolution and accuracy. Nevertheless, to our knowl-
edge there are no studies available that have evaluated 
the efficiency under outdoor conditions. Maphosa et  al. 
[42] used the PlantEye for wheat phenotyping. The sen-
sor was only applied under controlled conditions and the 
study did not investigate the properties of the retrieved 
LADs. Hosoi et al. [19] used a portable scanning LiDAR 
to acquire high-resolution 3D point clouds. The method 
evaluation was only demonstrated for still-air conditions. 
In a typical cultivation scenario, cereal crop plants are 
moved by wind and long scanning times will likely cause 
noisy and distorted data. Therefore, the stereo setup 
applied as single shot approach meets the prerequisites 
best and is comparatively cheap. The processing pipeline 
was automated for data from a stereo setup as far as pos-
sible to make it applicable to large data sets. However, 
there are two issues that need to be addressed to improve 
the processing pipeline. Considering the amount of field 
data that is usually acquired in experimental studies, one 
important aspect is to minimize hands-on time during 
data processing. For this purpose, imaging data should be 
assigned automatically to field plots via GPS. Moreover, 
our pipeline still includes time-consuming manual leaf 
segmentation and segment merging steps, which should 
be automated when developing the software further. 
Deep learning-based methods have made noteworthy 
progress and became more important in plant phenotyp-
ing research. These methods could be used to facilitate 
the opportunity for automatic leaf segmentation [43, 44]. 
For natural leaves an additional challenge that concerns 
the leaf edge fitting process was observed. The leaf width 
function does not include the option to apply different 
widths for left and right leaf sides, i.e. it requires a leaf 
axis fit, which is aligned centrally [28]. A more flexible 
asymmetric leaf edge model could overcome this restric-
tion. The leaf width function is restricted to a long and 
tapering leaf shape but is not restricted in leaf size. Fur-
thermore, the current workflow focusses on calculating 
the LAD of leaf blades. However, other organs of cereal 
crops also contribute to light interception, a topic that 
should be considered in future studies.

Conclusions
The leaf angle distribution (LAD) of cereal crops is an 
important phenotypic parameter as it affects radia-
tion flux and resource efficiency within a canopy. We 
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developed a new evaluated processing pipeline for field 
applications based on, but not limited to stereo images, 
which produces detailed models of individual leaves in 
plant canopies that take the flexible structure of cereal 
crop leaves into account like leaf bending and twist-
ing. Our evaluation experiment with artificial leaves 
proved the accurate calculation of LADs ( θ ). Although 
LAD is a simplified abstraction of canopy structure, it 
is an important phenotypic parameter. Therefore, our 
method will help to get a better understanding of can-
opy architecture and of the light interception proper-
ties. While our leaf surface reconstructions could be 
used in realistic light interception models, more accu-
rate estimations of LAD would have the potential to 
increase the quality of photosynthesis models, e.g. by 
computing and utilizing the Beta function. In addition, 
the computed leaf models allow for robust estimations 
of important parameters like leaf area and leaf inclina-
tion angle (LIA).

Furthermore, accurate leaf surface reconstructions 
and better estimations of LAD can be used to study the 
impact of environmental conditions, climate change 
and crop management on both canopy structure and 
leaf morphology. Furthermore, the method can be used 
for the analysis of leaf morphology. Accurate estima-
tions of LAD also allow to quantify the impact of envi-
ronmental conditions and crop management on canopy 
structure. Especially with respect to the effects of climate 

change resulting e.g. in longer draught periods, studying 
the adaptation of canopy structure could lead to better 
insights, how plants are mitigating the effects of sunlight 
water loss and leaf wilting (e.g. by steeper leaf angles).

A key advantage of the processing pipeline is that 
is flexible regarding sensors and plants. Thus, it is not 
restricted to stereo imaging data or wheat plants. It can 
be adapted for different cereal crops with leaf shapes sim-
ilar to wheat and it can be applied on for 3D point clouds 
from various sensors.

Methods
Imaging setup
Two Gig E cameras (AV Prosilica GT3400C) equipped 
with 35  mm lenses (Schneider Kreuznach APO-XEN-
OPLAN 1,8/35–1901) were fixed parallel to each other 
with a baseline of 72 mm. The cameras were inclined to 
each other, to get a similar field of view. The setup was 
mounted in a nadir position (90–115 cm) above the tar-
get (Fig. 7a)).

For simultaneous image acquisition one camera was 
triggered (master) via software, the second camera (slave) 
was then triggered via a cable connecting both cameras. 
The stereo-setup was focused on the upper part of the 
object. Highlight conditions and shadows were avoided 
during imaging. All evaluation experiments were carried 
out outdoors but under obscured conditions. Exposure 
adaptation to changing light conditions (e.g., to avoid 

Fig. 7 Experimental setup. a The stereo‑setup was mounted in nadir position to the imaging object. b Stereo‑setup with two AV Prosilica GT3400C 
cameras and 35 mm lenses. c Artificial plant model composed of a node module and a bent leaf
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overexposure and bright spots) was controlled via the 
iso-number, which was set to auto mode. The exposure 
time was fixed. The stereo camera setup was calibrated 
with a flat 6 × 7 dot pattern target (22 mm spacing). Cam-
era calibration and image analysis were performed with 
OpenCV and Python 2.7.6. The stereo camera setup was 
calibrated with the calibration method of Zhang (here 
with a maximum number of 1000 iterations and a stop 
accuracy criterion of 10e−8) [45]. The disparity map 
was calculated by a modified semi-global block match-
ing algorithm [46, 47] with a block size of one and sub-
sequently transformed to a 3D surface. Instead of the 
mutual information cost function, the Birchfield-Tomasi 
sub-pixel metric was implemented [48]. Further analyses 
were based on rectified stereo images, the obtained dis-
parity map, and the back-projected 3D point cloud. For 
the validation experiments, we conducted an additional 
calibration step to correct the orientation of our cam-
era setup in relation to the plant. This ensured that the 
camera baseline was oriented parallel to the ground. For 

this purpose, the ground was reconstructed from one of 
the images and a suitable area for ground calibration was 
selected manually. A plane was fitted to the ground data 
points and the plane inclination was used as a correction 
value for the inclination values in all images.

Artificial plant model
For method evaluation, a modular artificial plant 
model (Fig.  7c)) resembling the leaves of cereal crops 
was designed with Autodesk® Inventor® 2018 (Build 
220,112,000, 112). The modular design allowed plants of 
varying sizes, leaf numbers, leaf inclination angles (angle 
between a slanted surface and a horizontal plane) and leaf 
spacing (for plants of different growth stages, e. g. before 
and after stem elongation) to be assembled. In this man-
ner, it was possible to assemble different plant models 
with known geometric parameters. The model comprised 
a leaf module and two types of stem modules (Fig. 8a).

The leaf module represented the leaf blade and came 
in two different sizes. Leaf modules were laser-cut from 

Fig. 8 Artificial plant model. a The node module fixes the leaf module with a defined inclination angle. The leaf is plugged in a small socket 
in the module center. The socket inclination is changed by a screw and determines the inclination angle of the fixed leaf (left). The spacer module 
is used to vary the distance between leaves. They are available in heights (h) of 20 mm, 40 mm and 50 mm (right). Lateral view on b planar and c 
bent artificial leaves. The insertion angle α describes the initial inclination angle at the stem. Parameter r denotes the leaf bending radius
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thin (1  mm) aluminum sheets. Their shape resembled 
wheat leaves. We decided to build the leaves from bend-
able thin metal plates, which offered a high flexibility 
to create various leaf geometries. The leaves’ cross-sec-
tions needed to be very thin. According to manufacturer 
informationleaves of the required length would break 
easily. The leaf surface was colored with acrylic paint to 
produce irregular textures with various tones of green. 
An irregular pattern was chosen to facilitate the stereo 
reconstruction process. At the same time, our aim was to 
create a surface that has comparable reflective properties 
to natural leaves. The thin material maintained its shape 
and allowed leaf bending to be adjusted by hand. The leaf 
blade had a leaf axis length of 150 mm, a maximal width 
of 11 mm and a leaf area of 1528 mm.

Both types of stem modules (node module and stem 
module, Fig. 8a) were colored with a blue paint and pro-
duced with a 3D printer (Felix Pro2, FELIXprinters, Tech-
nology FDM, plane-thickness 0.05  mm, Material PLA). 
The blue color gives the advantage that leaves can easily 
be segmented from stem modules during image process-
ing. The modules have a cylindrical shape of 30  mm in 
diameter with magnetic plug connectors at the top and 
bottom.

Image processing
For stereo 3D reconstruction, the semi-global block 
matching algorithm was applied as described in the 
imaging setup. Further processing steps were applied to 
the resulting disparities in order to create an image with 
labeled areas that correspond to the wheat leaves or the 
evaluation object (sphere, artificial leaf ). Pixels with 
unknown disparity and those containing background 
were masked out. Background pixels were identified via 
color channel thresholding in HSV-space [49]. The fil-
tered disparity map then contained areas that mainly rep-
resented leaves or leaf parts. A connected components 
algorithm implemented in OpenCV [50] was applied 
to search for connected pixels in the disparity map and 
labeled related areas. We cannot rule out the possibility 
that the disparity map still contained background pix-
els. For this reason, a manual editing step was added to 
either (i) cut components that contained different leaves 
(which may occur e. g. in overlapping leaves), (ii) remove 
components that did not represent leaf parts, or (iii) join 
components that belong together, but were not recon-
structed as a whole. The perspective transform matrix, 
obtained by stereo calibration, was used to project these 
disparities back into 3D space. In the following step, leaf 
angle distributions (LAD) were calculated from our 3D 
point clouds. Therefore, they were further processed to 
calculate a surface mesh, which is built up from triangles 

called faces. Each face is represented by an inclination 
angle and a face area. The sum of all face areas represents 
the leaf area. Since both parameters, surface area and 
inclination angle, affect LAD, both variables were evalu-
ated independently.

Further processing and experiment evaluation
The preliminary experiment with the sphere target is 
described in detail in the Additional file 9 (Sphere recon-
struction). In the following, the method evaluation with 
different types of artificial leaf models is described. A vis-
ualization of an artificial model is shown in Fig. 7c) and 
Fig.  8. In the Evaluation Experiment Planar Leaf Model 
(Fig.  8b)), the potential to reconstruct surfaces shaped 
like planar cereal crop leaves was determined. Estimated 
parameters were leaf width and leaf area for a planar arti-
ficial leaf with different insertion angles α (see Fig.  8), 
which is the initial inclination angle between the stem 
and node. The focus of this experiment was the quality 
of a surface, reconstructed from 3D point clouds. The 
assumption was that the number of points reconstructed 
for a given area affects the resolution of a fitted surface. 
In the Evaluation Experiment Bent Leaf Model (Fig. 8c)), 
we combined the previous questions and determined 
the accuracy of leaf angle reconstruction. An artificial 
plant with a curved leaf was used for this experiment and 
reconstructed LAD were compared to calculated refer-
ence results. Realistic field data were processed to calcu-
late LAD of cereal crops and a Beta function was used to 
model the distribution.

Planar leaf model
For this experiment, an artificial plant that contained a 
small flat leaf blade (Fig. 8b) was assembled to compute 
the accuracy of leaf angle, leaf width and leaf area meas-
urements, respectively. For imaging, the aperture was 
set to a value to get the whole object in focus. Although 
the leaves of our artificial model did not move, camera 
exposure was adjusted according to the field applica-
tion, meaning that short exposure times were used to 
avoid blurred regions that may occur due to leaf move-
ment. To figure out an optimal exposure value, a gray 
panel calibration was used. For this purpose, a gray panel 
was imaged several times, thereby decreasing the expo-
sure time continuously until the gray value remained 
unchanged in the image. A dataset with 28 image pairs 
was prepared, including images with different leaf incli-
nation angles and leaf orientations. The initial leaf angle, 
the insertion angle α (the inclination angle at the node), 
was adjusted between 0 and 60° in steps of 10°. For each 
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insertion angle α, four images with different plant orien-
tation (model rotation around its own axis in steps of 90°) 
were taken. A protractor (Leitz) was used to measure αm 
manually.

Bent leaf model
For this experiment, a small leaf was bent in the shape 
of a circle with a defined radius and assembled with a 
node module with insertion angle α (see Fig.  8c). Each 
of the resulting six different models was imaged four 
times. The stereo cameras were set up in the same way 
as in the planar leaf experiment. Angle α was fixed and 
manually measured with a protractor (Leitz). An over-
view of all models (bending radii rb and insertion angle 
α ) in this experiment is given in Table 2. To evaluate our 
processing pipeline, the known geometry of our artificial 
leaf was used to get reference values for the LAD and leaf 
inclination angle (LIA) along the leaf axis. We calculated 
1500 evenly distributed values for LIA ic(X) and the LAD 
θc from the leaf width, leaf length, insertion angle, and 
radius of circular curvature. Parameter X denotes the 
position along the leaf axis in the range of 0 mm (at the 
leaf node) and 150 mm (at the tip). LIA ic(X) was deter-
mined in steps of �X = 0.1mm and approximated the 
leaf area for the related interval a[X ,�X].

For computation of θc , angles between 0° and 90° were 
considered and inclination angles were computed along 
the leaf axis by:

The total leaf area A is then given by:

Subsequently, the LAD was computed from the total 
leaf area and the leaf area with a given inclination angle 
as follows:

Leaf modeling process
The 3D data was computed from stereo images as 
described in the Image processing paragraph. The 3D 
data points p passed through different processing steps 
to generate leaf surface models and finally, to calculate 
the leaf inclination angle and LAD. The processing pipe-
line is depicted in Fig. 9.

(2)

ic(X) =

∣

∣

∣

∣

(

2+ acrsin
X

2 ∗ rb

)

− α

∣

∣

∣

∣

with (0 ≤ X ≤ 150)

(3)A =

90
∑

ical=0

aical

(4)θc =
aic
A

(0 ≤ ic ≤ 90)

The point cloud of each individual leaf was smoothed 
with respect to the z-value to reduce noise caused 
by pixels or 3D points that do not belong to the leaf 
(Fig.  10b)). Therefore, 3D points were projected onto 
the x–y plane and meshed via Delaunay triangulation 

Fig. 9 Flow chart of the leaf modeling process. Before leaf fitting, 
a cluster‑wise median filtering of p′ was applied
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[51] to identify the neighbors of each pixel, i.e. pixels 
that are directly connected. Afterwards, the z-value of 
this pixel was corrected by the median z-value of all 
connected neighbors (this pixel included). The sur-
face fitting process is based on the identification of 
the leaf axis and leaf edges. In contrast to Dornbusch 
et al. [28, 29], we also implemented a fitting approach 
for the estimation of the leaf axis position. For the two 
different leaf shapes, separate fitting functions were 

computed via least squares regression, one which rep-
resents the leaf axis in the flat leaf and one for the bent 
leaf. In the data points p′ of the flat leaf a line was fit-
ted and in the bent leaf a circle function was fitted. 
The resulting fitting functions (Fig. 10c) were used to 
calculate a new set of points pa (Fig. 10d) located along 
the leaf axis. p was split up into two groups associ-
ated with either the right or left side of the leaf blade 
with respect to the leaf axis. The Euclidean distance 
was determined to the closest axis points pa (Fig. 10e). 

Fig. 10 Detailed visualization of the leaf fitting process from points cloud to mathematical leaf model
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Afterwards two subsets pe were calculated which 
represented the opposite leaf edges (Fig.  10f ). In the 
next step, a leaf edge fit was determined by the leaf-
width function b(s) (Fig.  10g). Therefore, the relative 
axis positions si of the axis points pa were calculated 
according to [12, 28, 29].

b(s) is then computed with:

A least square trust region reflective algorithm imple-
mented in the scientific computing Python library scipy 
[52] was used to optimize the parameter bmax (maximum 
leaf width) as well as the leaf curvature c1, c2 . We used 
c1, c2, bmax and si to calculate a set of points along the leaf 
edges pe . The final fit was represented by two point sets, 
namely pa and pe (shown in Additional file 4). Fitted leaf 
points were used to triangulate leaf edges along the leaf 
axis and to calculate the leaf area a for each face and the 
corresponding inclination angle ir from each face normal. 
This mesh represented the final leaf model.

Field validation: quantification of leaf inclination 
in summer wheat
Summer wheat Triticum aestivum L. Matthus was sown on 
27 March 2020 in 3 × 3 m plots with a density of 150, 250, 
350 and 450 seeds/m2 at Campus Klein-Altendorf, Germany 
(50° 37′ 29″ N and 6° 59′ 06″ E). The experimental design is 
shown Additional file 5. The plots were treated with nitrogen 
80

kgN
ha

 (04/17/2020) and sprayed with herbicide (04/30/2020) 
and fungicide (05/14/2020). The stereo imaging setup was 
mounted on a hand-driven field platform “Field4Cycle” 
[53] and the distance between the ground and the imaging 
setup was fixed at 1.35 m resulting in a field of view of about 
40 cm × 30 cm (Additional file 6). Images were collected on 
25 May 2020 between 10 and 11 am. The imaged plot seg-
ment was shaded to avoid direct sunlight and used the gray 
panel calibration (see Methods, Planar Leaf Model) to adjust 
exposure time. Images were processed as described in the 
Image processing section. Cereal crop leaves are often twisted 
slightly along their own axis. This property was described by 
Dornbusch et al. [29]. For this reason, the leaf modeling pro-
cess was extended by an additional fitting step, which models 
the leaf twisting. The surface-twist function ψ(s) quantifies 
leaf twisting along the leaf axis:

(5)si =
i − 1

nPa − 1

(

1 ≤ i ≤ nPa
)

(6)

b(s) = bmax ∗

c2 ∗ (c1 + s) ∗ (1− s)c2

[

(1+ c1) ∗

(

c2
c2+1

)]c2+1

(0 ≤ s ≤ 1; bmax, c1, c2 ≥ 0; c1 ∗ c2 ≤ 1)

It is defined by the relative axis position of leaf axis 
point s , the rotation angle ψ0 at the node and the dif-
ference between the distal angle and the rotation angle 
at the node �ψ [28]. The parameter c3 describes the 
curvature of leaf twisting. Optimal values for the func-
tional parameters of ψ(s) were calculated by minimiz-
ing the distance between the reconstructed 3D points 
and the fitted surface points via the least squares 
method. While the position of the leaf axis pa remains 
unchanged, the position of the leaf edges pe is changed 
by ψ(s) . The final leaf fit is meshed as described in the 
Leaf modeling process section. Based on the leaf model 
the LAD was reconstructed. A common way to describe 
the LAD in a parameterized way is the Beta function, 
which was fit into the calculated LAD [14].

Abbreviations
A  Total leaf area
ai  Leaf area with a given inclination angle
ai, αm  Insertion angle 
b(s)  Leaf width function
bmax  Maximum leaf width
c1,  c2  Leaf curvature parameter
c3  Curvature parameter of leaf twisting
cf  Sphere center position in reconstructed 3D space cf (x, 

y, z)
cg  Initial sphere center position cg (x, y, z)
d(p, s)  Euclidian distance between p and sf
er(ic)  Difference between ic(X) and ir(X)
ic(X)  Calculated inclination angle along the leaf axis
ir, ic  Reconstructed, calculated inclination angle
LAD  Leaf angle distribution
ME   Mean error. Accuracy
nPa  Number of leaf axis points
nss  Number of points in a spherical segment
Oss  Visual area of a spherical segment
θc, θr  Leaf angle distribution, calculated and reconstructed
pʹ  Point cloud
p  Point in reconstructed 3D space p(x, y, z)
pa  Leaf axis points pa(x, y, z)
pe  Leaf edge points pe(x, y, z)
pss  Spherical segment
ρss  Point cloud density of a spherical segment
rb  Bending radius artificial leaf
Rec1/Rec2/Rec3/Rec4  Different leaf reconstructions
Ref  Reference / calculated leaf reconstruction
rg  Initial sphere radius
rm  Hand measured sphere radius
S  Leaf axis length
si  Relative axis position
sf  Final sphere fit cf (x, y, z)
sg  Initial sphere fit cg (x, y, z)
σ   Standard deviation, precision
tL, tH  Inclination angle of lower and upper boundaries of 

spherical segments
X  Leaf axis
ψ(s)  Surface‑twist function
ψ0  Axial rotation angle
�ψ  Difference between basal and axial rotation angle

(7)ψ(s) = ψ0 +�ψ ∗ s
(1+ c3 ∗ s)

1+ c3
.
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Additional file 1.  Reconstruction results of bended leaf. Reconstructed 
values for insertion angle, leaf width, leaf area and mean inclination angle 
for bent leaf model 1 are given in the table. The plot figure below shows 
the reconstructed 3D point cloud (green) and the fitted leaf model (leaf 
axis and leaf edges in black).

Additional file 2.  Reconstructed inclination angle along the leaf axis, 
leaf angle distribution and mean Error of reconstructed leaf angles. Plot 
a) Model 2, b) Model 3, c) Model 4, d) Model 5 and e) Model 6: show the 
inclination angle ic (Ref ) and ir (Rec) along the leaf axis X  (top). The 
mean error (black) and standard deviation (grey area) between the calcu‑
lated leaf angle distribution θc and reconstructed distribution θr (middle). 
The Calculated leaf angle distribution θc (red) versus reconstructed leaf 
angle distribution θr (black) (bottom).

Additional file 3. Reconstructed values for insertion angle, and mean 
inclination angle for bent leaf model 2–6.

Additional file 4.  Illustration of the leaf fitting method. Red dots are the 

initial points p
(

x, y, z
)

 . Black line consists of individual dots, represent‑

ing leaf axis points pa
(

x, y, z
)

 and leaf edges pe
(

x, y, z
)

.

Additional file 5.  Color‑coded plot design for field experiment. Three dif‑
ferent varieties were sown with four sowing densities. The left Table shows 
the corresponding varieties and sowing densities.

Additional file 6.  Stereo imaging setup mounted on the hand‑driven 
“Field4Cycle”.

Additional file 7. Point cloud density ρss for the projected area. The bar 
chart shows the point cloud density ρss for the projected (visual) area of 
different spherical segments. Segments were defined by ir , segments 
ranged between tL‑tH  . 3D points were reconstructed for all spherical 
segments. It is apparent that the number of points per projected area 
decreases for surfaces with an inclination angle above 60°. The boxplots 
in the upper part of the figure depicts the reconstruction error d(p, s) 
for all points grouped by the inclination angle. A stronger deviation of 
d(p, s) values indicates less precision in the 3D reconstruction, while a 
mean value for d(p, s) (red dotted line) close to 0 is an indicator for high 
reconstruction accuracy.

Additional file 8.  Process to approximate the real sphere center. A sphere 
sg is fitted to the data points p . The sphere is defined by cg and rg . 
Following this cg is used as a starting point to fit a sphere sf  with the real 
radius rm to the p.

Additional file 9. Sphere reconstruction.
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