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Abstract 

The radiative transfer model of vegetation leaves simulates the transmission mechanism of light inside the vegetation 
and simulates the reflectivity of blades according to the change law of different components in the process of plant 
growth. Based on the PIOSL model, this paper combines PIOSL with the structure of rice leaves to construct a radia-
tion transfer model for rice leaves. The parameters of each layer of the RPIOSL model are determined by the Non-
dominated Sorting Genetic Algorithm-III. (NSGA-III.) algorithm. The reflectance spectra of 218 rice leaf samples 
in different periods were simulated using the RPIOSL model. The results show that the mean (RMSE) between the sim-
ulated and measured spectra of the constructed RPIOSL model is 0.1074, which is 0.0191 lower than that of the PROS-
PECT model. Among them, the spectral simulation effect of RPIOSL model in yellow and red light band is the best, 
and the RMSE at tillering period, jointing period, heading period and grouting period are 0.0584, 0.0576, 0.0724 
and 0.0820, respectively. Therefore, the establishment of the RPIOSL model can accurately describe the interac-
tion mechanism between light, which is of great significance for the rapid acquisition of rice growth information 
and accurate crop management. 
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Introduction
Hyperspectral remote sensing technology is a significant 
approach to obtain large-scale crop and its change infor-
mation, and has the advantages of nondestructive, nonin-
vasive, fast and cost-effective. It has been widely used to 
monitor crop growth [16], map vegetation area [27], and 
estimate crop yield [20]. In recent years, problems such 
as environmental pollution have led to a reduction in 
grain production. Rice is an important source of grain in 
China. Accurate monitoring of rice growth is an essential 

means to ensure food security and agricultural produc-
tion. A rice nitrogen inversion model is established by 
retrieving hyperspectral reflectance data from UAV by 
Du. [4]. The rice canopy was treated under different shad-
ing conditions, and it was found that diffuse reflectance 
would lead to the enhancement of rice canopy reflectance 
spectrum by Zhang [35]. The residual block and convolu-
tion block were combined to identify rice hyperspectral 
information in order to improve the effect of rice qual-
ity detection by Men [19]. The hyperspectral inversion 
approach has been widely used for quantitative detec-
tion of rice and other vegetation’s physical and chemical 
parameters [31]. However, hyperspectral data contains a 
large amount of spectral information, and there is a high 
degree of multicollinearity in the high-dimensional band. 
Therefore, proper spectral processing methods should be 
selected in the quantitative detection of rice physical and 
chemical parameters. At present, there are mainly two 
spectral feature analysis methods for physicochemical 
component estimation, which are the empirical method 
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and the physical model inversion method. Empirical 
methods such as wavelet analysis [18] and building veg-
etation index [36] are relatively easy to achieve Inversion 
Modeling by collecting certain sample data from field 
experiments, but they lack a certain theoretical support. 
The model lacks the mechanism of interaction between 
light and the internal configuration of leaves, which lead-
ing to low generalization of the model.

By simulating the transport mechanism of light in 
vegetation, the relationship between the biochemical 
parameters of vegetation leaves and leaf reflectivity and 
transmittance is established according to the change law 
of different components and leaf spectra during plant 
growth. The traditional empirical method detects the 
spectral and biochemical parameters of leaves through a 
large number of manpower and material resources, and 
the applicability of the usually constructed model is not 
strong, while the radiation transmission model does not 
change with the study area, and it has stronger applica-
bility to vegetation remote sensing physics [12]. Radia-
tion transport models have been derived into a variety of 
types, mainly divided into PLATE model, N-Flux model, 
Compace specical model, radiation transport equation, 
stochastic model, etc. The PLATE model is applicable to 
the radiative transfer modeling of most rice leaves and 
other vegetation leaves and has been widely used since it 
was proposed in 1969 [1]. The most typical model is the 
PROSPECT model. The PROSPECT model, which was 
proposed by Jacquemoud [13] on the basis of a plate, can 
accurately calculate the spectrum of vegetation leaves. 
The PROSPECT model contains four parameters, namely 
structural parameters, chlorophyll, water, and dry mat-
ter. Later, carotenoids are separated from chlorophyll and 
constructed the PROSPECT-5 model was constructed by 
Féret [8]. Anthocyanins are added to the PROSPECT-5 
model and the proposed PROSPECT-D model, which 
realized the simulation of optical characteristics of leaves 
from vegetation by Féret [9]. Later, the PROSPECT-PRO 
model is proposed by Féret [10], which can decompose 
dry matter into proteins and carbonaceous compounds 
(CBC). PROSPECT and its improved versions have been 
widely used in spectral simulation of vegetation leaves 
and inversion of physical and chemical parameters. The 
stability of PROSPECT model was evaluated by Zhai 
[37] in the process of retrieving of leaf chlorophyll con-
tent. For all datasets in the study, the performance of 
the PROSPECT model was superior to that of the ran-
dom forest (RF) model. Copper content was added to the 
input parameters on the PROSPECT-5 model by Zhang 
[38] to simulate the spectra of leaves under copper stress, 
and the simulation error of the model at key wavelengths 
was close to zero. Although the PROSPECT model has 
been improved many times and has been verified by 

a large number of scholars in the aspects of reflectivity 
simulation and biochemical content monitoring of vari-
ous plant leaves, the PROSPECT model assumes that the 
distribution of internal tissues and absorbed substances 
in leaves is uniform, while the real vegetation leaves do 
not have a uniform distribution structure, and the mate-
rials in the real vegetation leaves, such as chlorophyll and 
carotenoids, will gather in the upper or lower layers of 
leaves with the growth of vegetation, so it is unreasonable 
to simply assume that the leaves are evenly distributed 
inside [24]. For this kind of leaves, if we study according 
to the hypothesis of the PROSPECT model, there will be 
some errors.

Some scholars have also studied differences in optical 
properties caused by the layered structure of the blade. 
The FASPECT model proposed by Jiang [14] views the 
blade as a four-layer structure. The upper and lower sur-
faces of the blade are symmetrically treated to describe 
the different optical properties of the upper and lower 
surfaces. Additionally, a simpler radiative transfer model 
ISPECT proposed by Shi [21] based on the FASPECT 
model, which accounted for the difference in optical 
properties observed from the upper and lower parts of 
the blade. The model had fewer parameters and accu-
rately estimated the LMA. The internal structure of 
leaves was stratified by Yu [33] adopted the same idea as 
FASPECT model to construct PIOSL model. Bald eagle 
optimization algorithm (BE) was used to determine the 
structural parameters of two layers of leaves, the pro-
portion of chlorophyll, water and dry matter in PIOSL 
model. It can be seen that the construction of radiation 
transport model in line with the real structure of leaves 
is of great significance for the simulation of optical char-
acteristics and biochemical parameter inversion of veg-
etation leaves. Since the internal tissue distribution of 
vegetation leaves changes with photosynthesis or living 
environment, there are also certain differences in the 
distribution of internal substances of leaves for different 
vegetation types.

Rice, an significant food crop, is taken into consid-
eration in this paper. The PIOSL model is modified by 
adjusting its parameters, resulting in the establishment 
of RPIOSL, a radiation transfer model for rice leaves. The 
construction of RPIOSL model is helpful to master the 
reflection, scattering and transmission process of light 
in rice leaves, and it is of great significance to establish 
a more accurate hyperspectral detection method for rice 
physical and chemical parameters.

Materials and methods
Experimental design
The experiment was implemented at the Shenyang 
Agricultural University precision agricultural aviation 
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research base (40° 58 ′45.39’n, 122° 43′ 47.0064’E), Geng-
zhuang Town, Haicheng City, Anshan City, Liaoning 
Province from June to September 2023. Due to the limi-
tation of the conditions in the test area, the rice variety 
planted in the experimental area is Shennong 9816. It 
is divided into two experimental areas, experimental 
area 1 is divided into 11 areas, each area of 660 m2 , and 
experimental area 2 is divided into 15 areas, each area of 
5 × 8 = 40 m2 , as shown in Fig. 1. The field management 
of the two communities is consistent. Field sampling was 
carried out from tillering period to heading period, with 
a sampling interval of 4  days. 15 plots were randomly 
selected in experimental areas 1 and 2 for each sampling, 
and a representative hole rice was selected to obtain leaf 
reflectance spectra and biochemical parameters. 218 
groups of samples were collected in the experiment.

Acquisition of the experimental area
The model of the AOPUTIANCHENG ground object 
spectrometer is the ATP9110 ground object spectrom-
eter V2.2. The reflectance spectrum band range is 400–
1000  nm, the resolution is 1  nm, and the number of 
effective bands is 601. In the process of calculating the 
model error in this paper, only the band of 400–1000 nm 
is calculated. Before measurement, the spectrometer was 
corrected with a white board and then a plant was ran-
domly selected from each hole to measure the reflectance 
spectrum of the rice leaf. The whiteboard must be cor-
rected every 10 min. Finally, the reflectance spectrum is 
resampled with the MATLAB r2023a software, and the 
spectral resolution is reduced to 1  nm. After that, the 
resampled spectrum is SG smoothed, and the smoothed 
spectrum curve is shown in Fig. 2.

Measurement of biochemical parameters
The biochemical parameters measured in this experiment 
include chlorophyll, equivalent water thickness, and dry 
matter content. The chlorophyll content is determined by 
spectrophotometry. The absorbance value of chlorophyll 
extract at the maximum absorption wavelength is deter-
mined by a spectrophotometer, and then the chlorophyll 
content in the extract is calculated by the Lambert–Beer 
law. The experimental steps are as follows:

1. Take a rice leaf, measure the maximum length and width 
of the leaf, use formula (1) to calculate the leaf area of 
each leaf, and get the average leaf area of the sample.

Among them, a is the maximum length of leaves, B 
is the maximum width of leaves, and 0.7746 is the leaf 
area correction coefficient of rice leaves [22].

(1)A = a ∗ b ∗ 0.7746

Fig. 1 Distribution of the experimental area

Fig. 2 Reflectance spectrum curve after SG smoothing
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2. Weigh around 0.1 g of fresh cut sample, place it in the 
grinding container, add a bit of quartz sand, grind it 
into a uniform paste, continue to grind until the tis-
sue is obviously white, and put it on the table to stand 
still.

3. Put a piece of filter paper in the funnel, wet the filter 
paper with a small amount of ethanol solution, slowly 
inject the extract into the funnel with a glass rod, fil-
ter it into a 50 ml test tube, rinse the filtered research 
body, research rod and glass rod with a small amount 
of ethanol solution, and finally pour them into the 
funnel together.

4. Add a proper amount of ethanol solution into the 
50 ml test tube by pouring in a beaker. When reach-
ing the 50 ml scale line, use a rubber dropper to fix 
the volume to 50 ml and shake it evenly.

5. A small amount of chlorophyll extract was sucked by 
a rubber dropper and dripped into a colorimetric cup 
with a light diameter of 1  cm. After dark treatment 
and standing for 24  h, take 95% ethanol blank, use 
the uv1800pc ultraviolet visible spectrophotometer 
to quantify the absorbance of the liquid fraction con-
taining chlorophyll at a wavelength of 665  nm and 
649 nm, calculate the concentration leves of chloro-
phyll a and chlorophyll b using formulas (2) and (3), 
and then convert it µg · cm−2 is the unit.

6. Weigh the fresh weight of the remaining blades, 
Mfresh , and then dry them at 70° C to constant weight 
after 30  min at 105° C. reweigh the dried disc to 
obtain Mdry and calculate the equivalent water thick-
ness of the blades using formula (4).

(2)Ca = 13.95 ∗ A665 − 6.88 ∗ A649

(3)Cb = 24.96 ∗ A649 − 7.32 ∗ A665

(4)Cw =
(

Mdry − Mfresh

)

/Aleaf

7. Use formula (5) to calculate the dry matter content of 
leaves.

Table  1 gives the measurement results of biochemical 
parameters of rice samples collected in different periods.

RPIOSL model optimization algorithm
In this paper, NSGA-III is used to find the optimal 
parameters in RPIOSL model. Four parameters are opti-
mized, including the structural parameters N1 and N2 
of each layers, the proportion of chlorophyll content 
and dry matter Cab12、Cm12 . The principle of optimiz-
ing RPIOSL model by NSGA-III algorithm is to add new 
reference points to NSGA-II to maintain the diversity 
of population, and retain the nearest and non-dominant 
population individuals.

The following are the t-generation steps of NSGA- III:
Pt is the parent of generation t and its size is N. Its off-

spring isQt , and its size is N.
Step 1: combine the offspring and parents together: 

Rt = Rt ∪ Rt with a size of 2N, and select N individuals 
from them. In order to achieve this selection process, first 
divide Rt into multiple non- dominated layers ( F1, F2, · · · ) 
through non-dominated sorting, and then construct 
a new population St from F1 until its size reaches n or 
exceeds n for the first time. The last layer is designated 
as the first layer. Solutions above level l + 1 will be elimi-
nated. In most cases, the last accepted layer (layer III) is 
only partially accepted.

Step 2: Populations are divided into multiple nondomi-
nating layers in order of nondominance. Construct St 
starting from F1 . If |St | = N , the following operation is 
not required, that is, Pt+1 = St . If |St | > N , part of the 
next generation is generated from Pt+1 = Ul−1

i=1 Fi , and 
the rest K = N− |Pt+1| is selected from Fl.

Step 3: Determine the position of the reference point on 
the hyperplane. In NSGA-III, the reference point is pre-
defined to increase the comprehensiveness of the solu-
tion. In this paper, the reference points are predefined by 

(5)Cm = Mdry/Aleaf

Table 1 Statistical results of the biochemical parameters of rice leaves

Number of 
samples

Chlorophyll ( µg · cm−2) Equivalent water thickness 
( g · cm−2)

Dry matter ( µg · cm−2)

Max Min Mean Max Min Mean Max Min Mean

Tillering period 38 110.6944 6.1493 29.3668 0.0596 0.0024 0.0231 0.0131 0.0013 0.0068

Jointing period 60 57.9034 6.2138 28.4896 0.1498 0.0038 0.0107 0.0130 0.0022 0.0040

Heading period 60 61.8711 8.6600 26.5721 0.0203 0.0042 0.0103 0.0129 0.0026 0.0055

Grouting period 60 57.6898 7.5908 31.1441 0.0169 0.0036 0.0078 0.0073 0.0023 0.0045
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the boundary crossing construction method which sets 
the reference points on the same hyperplane [5].

Step 4: adaptive normalization of the individ-
ual population. First, calculate the minimum value 
of each objective function Ut

τ=0Sτ in each dimen-
sion, zmin

i , i = 1, 2, 3, 4, . . .M to establish the ideal 
point of the current population in the target space 
z = (zmin

1 , zmin
2 , . . . zmin

M ) . Subtract the coordinate origin, 
the objective function value fi of each individual from 
zmin
i  transform the ideal point to the origin of coordi-

nates and obtain the converted objective function value 
f
′

i = fi(x)− zmin
i  . Determine the pole of each coordinate 

dimension after the transformation and record the inter-
section of the i-th dimension on the target axis as ai , then 
the i-dimensional objective function can be normalized 
to Eq. (6):

At this time, the intercept of the normalized target axis 
is f ni = 1 , and the hyperplane established by using these 
intercept points meets 

∑M
i=1f

n
i = 1 . The set of structured 

reference points established by the system method will be 
uniformly distributed in the normalized hyperplane. In 
each generation of the algorithm process, the calculated 
poles will be used to complete the normalization step and 
establish the hyperplane. Therefore, NSGA-III can adap-
tively maintain the diversity of the population.

When optimizing the RPIOSL model, the fitness func-
tion is modified to Eq. (7):

where, l is the number of bands, ranging from 400 to 
1000 nm, Rmod,l and Rmeas,′ are the simulated and meas-
ured reflectivity apectra at band l, respectively.

Accuracy evaluation of the model
In order to evaluate the accuracy of the RPIOSL model, 
this paper uses the (RMSE) to calculate the differ-
ence between the simulated reflectance and the meas-
ured reflectance between 400 nm and 1000 nm for each 
sample:

where, Rmeas,j and Rmod,j are the measured reflectivity 
and simulated reflectivity of a blade j, and n is the num-
ber of samples.

(6)f ni = fi′(x)
/

aii = 1, 2, 3, 4 . . .M

(7)y =

1000
∑

l=400

∣

∣Rmod,l − Rmeas,′
∣

∣/Rmeas,l

(8)RMSE =
1

Rmeas

√

√

√

√

n
∑

j=1

(

Rmeas,j − Rmod,j

)2

Construction principle of the RPIOSL model
Each version of the PROSPECT model considers that the 
leaves are evenly distributed plates inside, while the dif-
ferent tissues and absorbent substances inside the real 
vegetation leaves have a certain stratification phenom-
enon, which changes with the different growth environ-
ments or growth cycles of the vegetation. We scanned 
the electron microscopic images of rice leaves at differ-
ent stages of growth and development, including tiller-
ing period, jointing period, heading period and grouting 
period, and found that there was obvious stratification on 
the longitudinal cutting surface of rice leaves, as shown 
in Fig. 3. The stratification phenomenon of rice leaves at 
tillering period and heading period is more obvious.

This paper adopts the concept of established the PIOSL 
model to presume rice leaves as two layers. The param-
eters of the model are defined using the NSGA -III algo-
rithm, and the RPIOSL radiation transfer model for rice 
leaves is constructed. Figure  4 is the interface diagram 
of the RPIOSL model. The RPIOSL model has four input 
parameters, which involve N, Cab, Cw, and Cm. The opti-
mized parameters include N1、N2 of each layer, Cab12 
and Cm12 of chlorophyll content. The construction prin-
ciple of the rice radiative transfer model based on RPI-
OSL is introduced below.

Effect of light on blade surface
A beam of natural light with a light intensity of 1 is emit-
ted from the surface of the blade to the blade. Assuming 
that the surface of rice leaves is uniform and rough, Lam-
bert reflection occurs on the surface of the leaves, and 
some light passes through the upper surface of the leaves 
and enters the inside of the leaves. Ignoring the absorp-
tion of light on the blade surface, and the expressions of 
transmissivity and reflectivity are obtained:

In the same way, the reflected light and transmitted 
light on the lower surface of the blade have the same 
relationship.

The values of T1 and T2 were derived by stern et  al. 
according to the Fresnel equations Frank [11].

When the light passes through the surface of the blade, 
it will hit the 2π space outside the lower surface of the 
blade. The average transmittance tαv(α, 1, n) was calcu-
lated by Allen [2] when the incident angle is any angle.

Stern gives tαv(α, 1, n) and tαv(α, n, 1) relationship 
between:tαv(α, n, 1) = n−2tαv(α, 1, n)

When the incident angleαWhen the same, tαv(90, n, 1)
= n−2tαv(90, 1, n) is substituted into formula (8)

(9)t1 = 1 − r1

(10)t2 = 1 − r2
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t1 = tαv(α, 1, n),thus,r1 = 1− tαv(α, 1, n)

Stratification of the optical properties of rice leaves
In this paper, rice leaves are assumed to be two opti-
cal characteristic layers with structural parameter 

Ni(i = 1, 2) and transmission coefficient τi(i = 1, 2) , and 
the specific absorption coefficient of absorbed substances 
in each layer is ki(i = 1, 2) respectively.

The transmissivity of light passing through two layers is

a(upper surface at tillering period) b(longitudinal section at tillering period)

c(upper surface at jointing period) d(longitudinal section at jointing period)

e upper surface at heading period f longitudinal section at heading period

g upper surface during grouting h longitudinal section during grouting

Fig. 3 Scanning electron microscope of rice leaves
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where,ki(�) =
∑

Ki(�)Ci/Ni

Ci and Ki are the content of light-absorbing material 
and the corresponding specific absorption coefficient in 
the leaves, respectively In this paper, the PIOSL model 
is used to simulate the radiation transfer of rice leaves. 
The proportion of equivalent water thickness is close 
to 1 when the RPIOSL parameters are optimized by the 
NSGA—III algorithm. We simulated the reflectivity of 
rice leaves by stratifying the structural parameters, chlo-
rophyll and dry matter of rice leaves and used the Cw as 
the input parameter of the upper layer of the leaves, this 
makes the optimization parameters of the model less and 
less time-consuming.

The light absorption coefficients of the two layers 
inside the blade are determined by Eqs.  (11) and (12), 
respectively:

The absorption coefficient k1(�) and k2(�) is of each 
layer vary depending on the material content. Ki(�) is the 
specific absorption coefficient of the material in the blade 
that absorbs light in each band.

The parameter pairs of RPIOSL and PIOSL are shown 
in Table 2:

(11)

τi(i=1,2) = Total transmitted energy/Total incident energy

= (1 − ki)exp(−ki) + k2i
∞

∫

ki
t−1exp−1dt

(12)
k1 (�) =

∑

Ki (�) (Cab12 ∗ Cab + Cw + Cm12 ∗ Cm)/N1

(13)
k2 (�) =

∑

Ki (�) ((1 − Cab12) ∗ Cab

+ (1 − Cm12) ∗ Cm)/N2

RPIOSL reflectivity calculation
Figure  5 shows the radiation transmission process of 
a beam of natural light inside a rice leaf in the RPIOSL 
model. It is assumed that the upper surface of the blade 
receives a beam of natural light with energy of 1. Because 
the surface of the blade does not absorb the light, some 
of the light incident on the upper surface of the blade is 
reflected and the rest is transmitted. Let the reflected 
energy be r10 and the transmitted energy be t01,and the 
light passing through the blade surface enters the blade 
to participate in transmission. First, it will be absorbed 
by elements or other substances in the first layer of the 
blade, and the rest will be reflected to the first layer of the 
blade or transmitted to the second layer of the blade. Let 
the reflected energy of this part be R1 and the transmit-
ted energy be T1. T1 enters the second layer of the blade 
to participate in transmission, and is absorbed by ele-
ments or other substances in the second layer. The rest 
will be reflected to the first layer of the blade or transmit-
ted to the lower surface of the blade. Let the reflectivity 
be R2 and the transmittance be T2. The reflectivity inter-
acts with the upper layer of the blade until the energy of 
light decreases to 0.

The reflectivity of the upper surface of the blade is

The transmissivity of light after absorption by the first 
layer is

(14)R1 = r10 + t01τ1r21τ1t10

(15)

T1 =
t12

(

a − a−1)

abN1−1 − a−1b1−N1 −
(

bN1−1 − b1−N1
)

R90(1)

Fig. 4 Interface diagram of the RPIOSL model
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where,

δ =

√

(R2
90(1)− T 2

90(1)− 1)
2
− 4T 2

90(1) or 
√

(T 2
90(1)− R2

90(1)− 1)
2
− 4R2

90(1)

Part of the energy reflected by T1 after absorption by the 
second layer is

The transmittance of T1 in the lower layer of the blade is

a = (1+ R2
90(1)− r290(1)+ δ)/2R90(1)

b = (1+ R2
90(1)− r290(1)− δ)/2R90(1)

(16)R2 = t12 · τ2r02τ2

Therefore, the total reflectivity can be expressed as 
follows:

The total transmittance can be rewritten as:

Substitute R1, R2, T1 and T2 into R and t to get

(17)T2 = t12 · τ2t20

(18)
R = R1 + R2t21τ1t10 + R2t21τ1t10τ1t12τ2r02τ2t21τ1t‘10

(19)

T =T2 + t12τ2r02τ2t21τ1r01τ1t12τ2t20

+ T1τ2r02τ2t21τ1r01τ1t12τ2r02τ2t21τ1r01τ1t12τ2t20 + . . .

Table 2 Comparison of the parameters of the PIOSL and RPIOSL model

Mode; Input parameter Optimization parameter Parameter interpretation Function

PIOSL N、Cab、Cw、Cm N1、N2、Cab12、Cw12

、Cm12、
N1 , N2 are the structural parameters 
of the first and second layers of leaves. The 
proportion of chlorophyll, water and dry 
matter content in the first and second layers 
of leaves are represented by Cab12、Cw12

、Cm12,respectively. Cab、Cw、Cm repre-
sent the total content of chlorophyll, water 
and dry matter in leaves, respectively

The biochemical parameters of various 
crops were output, and the Cab, Cw and Cm 
in the two layers of leaves were stratified, 
and the reflectivity of leaves was accurately 
simulated

RPIOSL N、Cab、Cw、Cm N1、N2、Cab12、Cm12 N1、N2 are the structural parameters 
of the first and second layers of leaves,Cab12
、Cm12 are the proportion of Cab 
and Cm in the each layers of leaves, 
and Cab、Cw、Cm are the total content 
of chlorophyll, water and dry matter in leaves

The chlorophyll, water and dry matter con-
tents of rice leaves were input, and the simu-
lated reflectance of rice leaves was calculated 
by layering the Cab and Cm in the leaves. 
Compared with the PIOSL model, the param-
eters of Cw12 were reduced, the calcula-
tion amount of the model was reduced, 
and the running time of the model was saved

Fig. 5 Light transmission process of the RPIOSL model
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τ1 and τ2 are the transmittance produced by the absorp-
tion of light in the upper and lower layers of the blade 
when it passes through the upper and lower layers of the 
blade. rij、tij(i,j) represent the reflectivity and transmit-
tance from medium i to medium j.

Result
Optimization of the RPIOSL parameter
In order to stratify the contents of the absorbent sub-
stances in each layers after internal stratification of rice 
leaves, the NSGA-III. algorithm was used to define N1 
and N2, Cab12 and Cm12 of RPIOSL model. In order to 
distinguish the hierarchical structure of rice leaves with 
different growth cycles, we optimized the parameters 
at different stages of growth and development. Figure  6 
shows the parameter optimization results of rice at the 
tillering period, jointing period, heading period and 
grouting period.

From Fig. 6, it can be seen that the optimization results 
of rice leaf parameters are consistent at tillering period, 
jointing period, heading period, and grouting period. 
Among them, the consistency of the structural param-
eters of the first floor is good, and most of the sample 
points are around 2. The value of the structural param-
eter N2 was close to 0–0.5, the proportion of chlorophyll 
content was distributed mainly in 0.7–1, and the consist-
ency of Cab12 in rice tillering period was good. Table  3 
shows the calculated data of the structural parameters 
and the classification of rice material content in each 
period. The average proportion of Cab12 in the four 
growth periods of rice can be found in Table  3, which 
are 0.9130, 0.9245, 0.9346 and 0.9124. Therefore, the Cab 
of rice leaves tends to concentrate in the first layer. Fig-
ure 6a-4, b-4, c-4 and d-4 reveal that Cm12 is mainly dis-
tributed between 0.5 and 1. Therefore, the dry matter of 
rice leaves is mainly distributed in the first layer at each 
stage of rice. It can be observed that the average Cm12 
of rice leaves in four different periods is 0.8813, 0.9869, 
0.9422, and 0.8841, respectively. The parameter optimiza-
tion results for the entire period are displayed in Table 3, 

(20)

R = r10 + t01τ1r21τ1t10
+ t12τ2r02τ2t21τ1t10
+ t12τ2r02τ2t21τ1r01τ1t12τ2r02τ2t21τ1t‘10

= r10 + t01τ1r21τ1t10

+
t12τ2r02τ2t21τ1t10

1 − r01τ1t12τ2r02τ2t21τ1

(21)

T = t12τ2t20 + t12τ2r02τ2t21τ1r01τ1t12τ2t20

+ t12τ2r02τ2t21τ1r01τ1t12τ2r02τ2t21τ1r01τ1t12τ2t20 + . . .

=
t12τ2t20

1 − r02τ2t21τ1r01τ1t12τ2

with average values of N1, N2, Cab12 , and Cm12 equal to 
2.0002, 0.2233, 0.9220, and 0.9582, respectively. Overall, 
although there are some differences in the stratification 
of rice leaves at different periods of growth and devel-
opment, the proportion of stratification of structural 
parameters and rice leaves’ material content remains 
consistent.

As the input parameters of RPIOSL model include the 
measured parameters including chlorophyll content, 
equivalent water thickness and dry matter content, the 
simulation parameters include the structural parameters 
of the first and second layers of leaves, the ratio of chlo-
rophyll content in the first and second layers of leaves 
and the ratio of dry matter content in the first and second 
layers of leaves. Therefore, we have carried out correla-
tion analysis on the measured parameters and simulated 
parameters of RPIOSL model. Figure  7 is the Pearson 
correlation analysis result. From the results of correlation 
analysis, it can be seen that the structural parameters of 
the second layer are negatively correlated with the pro-
portion of chlorophyll in leaves, and the correlation coef-
ficient is −0.4652; There is a negative correlation between 
dry matter content and the proportion of dry matter con-
tent, and the correlation coefficient is −0. 4984; There is 
a positive correlation between equivalent water thickness 
and dry matter content, and the correlation coefficient is 
0.4598.

Simulated spectral comparison
In this paper, we simulated the reflectance spectra of 218 
samples using the RPIOSL and PROSPECT models with 
input of measured Cab, Cw, and Cm. The proportion of 
material content in each layer was optimized using the 
NSGA—III optimization algorithm. Figure  8 shows the 
comparison of simulated spectra of rice at tillering stage, 
jointing stage, heading stage and filling stage by RPIOSL 
model and PROSPECT model.

Figure 8 demonstrates that the simulation effectiveness 
of leaf reflectivity using the RPIOSL model outperforms 
that of the PROSPECT model. Across the four samples 
visualized in Fig. 8, the RMSE of the simulated spectrum 
and the measured spectrum through the RPIOSL model 
were 0.0644, 0.1250, 0.1155 and 0.0515, respectively, 
which were 0.0394, 0.0436, 0.0437 and 0.0471 lower than 
those of the PROSPECT. The simulated spectrum of the 
RPIOSL model is closer to the real spectrum in shape, 
particularly in the visible light band of 480–650  nm. 
The simulated spectrum of the RPIOSL model in the 
750–1000  nm band is lower than the actual value, but 
it is higher than that of the PROSPECT. The simulation 
effect of the strong absorption peak at 690  nm is poor, 
which may be due to the lack of calibration of the specific 
absorption coefficient curve of chlorophyll. From the four 
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growth cycles of rice, the simulation effect of RPIOSL on 
the tillering and grouting periods of rice is better. At the 
jointing period and heading period, the simulation value 
of RPIOSL model in the near-infrared band is lower, but 
it is better than that of the PROSPECT model.

It can be seen from the Fig.  8 that the simulation 
effect of RPIOSL model for 650–1000 nm spectrum is 
really not ideal. I think the following reasons limit the 
simulation effect of RPIOSL model for 650–1000  nm 
reflectivity spectrum. First, the reflectivity of 650–
1000 nm is mainly affected by water and dry matter. It 
may be that the measurement results of water or dry 
matter in experimental data are not accurate enough, 
which leads to the decline of simulation accuracy of 
RPIOSL model. Secondly, the specific absorption coef-
ficients of water and dry matter were not calibrated 
when constructing the RPIOSL model. In fact, there 
may be some differences between the internal struc-
ture of rice leaves and other leaves, so it is impossible to 
simply use the absorption coefficient curves of various 

crops instead of the absorption coefficient curves of rice 
leaves, which is also one of the reasons for the decline 
of simulation accuracy of RPIOSL model. Thirdly, the 
measured spectra may be affected by the light source, 
resulting in some noise fluctuations, which causes the 
measured spectra of 650–1000  nm to be on the high 
side. There are many reasons for the degradation of the 
simulation accuracy of 650–1000 nm spectra, and fur-
ther research is needed to improve the simulation accu-
racy of this band.

Segmented comparison of spectra
In this paper, the RPIOSL and PROSPECT models were 
used to input N, Cab, Cw, and Cm of leaves, obtaining 
reflectance spectra of leaves at 400–1000 nm. This study 
utilized the RPIOSL and PROSPECT models to input 
N, Cab, Cw, and Cm of leaves, obtaining reflectance 
spectra of leaves at 400–1000  nm. As shown in Fig.  8, 
the RPIOSL model displays a superior spectral simula-
tion effect on rice leaf reflectivity. The RMSE at the four 

Fig. 6 Optimization results of parameters in each period
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growth periods in Fig. 8 were 0.0644, 0.1250, 0.1155, and 
0.0515, respectively, which were 0.0394, 0.0436, 0.0437, 
and 0.0471 lower than PROSPECT model. This indicates 
that the hypothesis of blade division into two layers with 
distinct optical properties is valid. By optimizing the ele-
ment content ratio of each layer, an accurate simulation 
of leaf reflectance spectra can be achieved.

To compare the differences between the simulated 
spectra of the RPIOSL and PROSPECT models with 
respect to stratification of substances inside leaves in dif-
ferent bands, the RPIOSL simulated spectra were mapped 
in the blue-green light band (400–560  nm), yellow–red 
light band (560–780 nm), and near-infrared band (780–
1000 nm). The difference between the predicted spectra 
and the measured spectra is displayed in Fig. 9. Accord-
ing to the RMSE results of statistical simulation of the 
RPIOSL and PROSPECT models presented in Table  4, 
in the blue-green light band, the RPIOSL model has the 
highest accuracy during the grouting period, with an 
average RMSE of 0.1099, but the RMSE for all four peri-
ods are all relatively high, exceeding PROSPECT model. 
Figure  10 shows the distribution of RMSE values for 
measured simulated spectral differences between the 
RPIOSL and PROSPECT models during different growth 
periods and bands of rice. It can be observed from Fig. 10 

Table 3 Optimization results of RPIOSL model parameters

Parameter N1 N2 Cab12 Cm12

Tillering period Min 2 0.1 0.1158 0

Max 2.0373 3 1 1

Mean 2.0010 0.3342 0.9130 0.8813

Variance 0.00004 0.6258 0.0362 0.0476

Jointing period Min 2 0.1 0.1780 0.5080

Max 2.00001 0.4312 1 1

Mean 2.0000001 0.1351 0.9245 0.9869

Variance 1.2944E-12 0.0037 0.0130 0.0044

Heading period Min 2 0.1 0.7115 0.5477

Max 2.0068 3 1 1

Mean 2.0001 0.1858 0.9346 0.9422

Variance 7.67106E-07 0.1466 0.0044 0.0134

Grouting period Min 2 0.1 0.1157 0.7927

Max 2.0052 3 1 1

Mean 2.0001 0.2788 0.9124 0.8841

Variance 4.50976E-07 0.3352 0.0261 0.0010

All periods Min 2 0.1 0.1157 0

Max 2.0373 3 1 1

Mean 2.0002 0.2233 0.9220 0.9582

Variance 6.70453E0-06 0.2443 0.0181 0.0148

Fig. 7 Pearson correlation analysis results
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that the RMSE of the RPIOSL model is lower than that of 
the PROSPECT model in the yellow red band and near-
infrared band, except for the RMSE in the blue-green 
band, which is higher than PROSPECT. The simulation 
performance of the RPIOSL model is best in the yellow–
red light band, with mean RMSE values of 0.0584, 0.0576, 
0.0724, and 0.0820 at the tillering, jointing, heading, and 
grouting periods, which are 0.0545, 0.0467, 0.0589, and 
0.0603 lower than PROSPECT, respectively.

It can be seen from (a-1), (b-1), (c-1) and (d-1) in Fig. 9 
that in the blue light band of 400-490 nm, the simulation 
effect of the RPIOSL model at tillering and heading peri-
ods of rice is better than that of the PROSPECT model, 
and the simulated spectrum at jointing and grouting 
periods is much lower than the measured value. In the 
490–560 green light band, the simulation effect of the 
RPIOSL and the PROSPECT is general. The simulation 

value of the former is higher for the reflectance peak 
near 540  nm, while that of the latter is lower. Research 
has shown that in the visible light band, various pigments 
are the main factors controlling the spectral response of 
plants, with chlorophyll playing the most important role. 
Chlorophyll absorbs most of the incident energy in two 
spectral bands with central wavelengths of 450 nm (blue) 
and 650 nm (red), respectively. In between the two chlo-
rophyll absorption bands, a reflection peak is formed at 
540 nm due to the small absorption effect [25]. Because 
the RPIOSL model includes carotenoids and anthocya-
nins in chlorophyll as an input parameter, it affects the 
simulation of the chlorophyll strong absorption peak to 
some extent.

In the yellow and red light band, the simulation effect of 
the RPIOSL model on the tillering period and the jointing 
period was better, and the mean RMSE was 0.0584 and 

Fig. 8 RPIOSL model simulation spectral effect diagram ( RMSE1 and RMSE2 are the RMSE of the simulated and measured spectra of the RPIOSL 
model and PROSPECT model at 400–1000 nm respectively)
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0.0576, respectively. However, it can be observed from 
Fig. 9a-2, b-2, c-2 and d-2 that the simulation effect of the 
RPIOSL model on the strong absorption peak at 650 nm 
is not ideal. This may be due to the fact that the chloro-
phyll of the RPIOSL model parameter contains carote-
noids, anthocyanins, and other elements with absorption 
characteristics. Therefore, in future research, introduc-
ing new input parameters such as carotenoids or antho-
cyanins and optimizing the chlorophyll characteristic 
absorption coefficient of the RPIOSL model can increase 
the simulation effect of the RPIOSL model in the visible 
light band. In the near-infrared band, both the simulated 

spectra of the RPIOSL and PROSPECT models under-
estimate the measured values, but the RPIOSL model’s 
performance is superior to that of the PROSPECT model. 
The RMSE at the tillering, jointing, heading, and booting 
periods are 0.1400, 0.1037, 0.1982, and 0.0063, respec-
tively, which are 0.0605, 0.0606, 0.0607, and 0.0481 lower 
than the PROSPECT model at the same periods, respec-
tively. Spectral characteristics in the near-infrared band 
are mainly affected by water and dry matter [23, 26]. 
Therefore, the key to improving the near-infrared spec-
tral simulation effect is to calibrate the absorption coef-
ficient of water and dry matter in the RPIOSL model.

Fig. 9 Comparison of the simulated spectrum and the measured spectrum at different bands in RPIOSL model and the PROSPECT
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Comparison of the RMSE
In this paper, the efficiency of RPIOSL model and 
PRSPECT model is evaluated by calculating the sum of 
errors between simulated spectra and measured spec-
tra in each band. Figure  11 demonstrates the change of 
RMSE between the simulated and measured spectra of 
the RPIOSL model and the PROSPECT model with rice 
samples from each growth period. It can be seen from 
Fig.  11 that the RMSE of the RPIOSL model at each 
growth period of rice is lower than that of PROSPECT. 
Table 5 displays the RMSE results of the RPIOSL model 
and PROSPECT model in each growth period. It can be 
observed from Table 5 that the mean RMSE of the RPI-
OSL model in the tillering stage, jointing stage, head-
ing stage, and grain grouting stage were 0.1124, 0.1001, 
0.1094 and 0.1094 respectively, which were 0.0144, 
0.0155, 0.02 and 0.0248 lower than those of the PROS-
PECT model. Over the entire rice growth cycle, the 
RMSE of the RPIOSL model was 0.0191 lower than that 
of PROSPECT. Figure 12 compares the RMSE of the RPI-
OSL model and the PROSPECT model during the entire 
rice growth period. It can be seen that the RMSE of the 

RPIOSL model at all rice growth stages is lower than that 
of the PROSPECT model.

Discussion
Layered idea of the RPIOSL model
After years of development, the input parameters and 
assumptions of the PROSPECT model have undergone 
significant changes. Beginning with the original PROS-
PECT-3 model with only three input parameters, it has 
evolved into the PROSPECT-PRO model that includes 
carotenoids, anthocyanins, nitrogen-containing proteins, 
and CBC parameters. From the initial model of a blade 
as a superposition of n-layer flat plates with the same 
properties, we have the PIOSL model of assuming the 
blade as a multilayer optical property of different layers. 
The leaf layering assumption is consistent with the actual 
physiological characteristics of leafy vegetation. The 
structural differences in rice leaves and the heterogene-
ity of biochemical parameters impact the photosynthetic 
efficiency of rice leaves. The relationship between gas 
exchange probability in leaves and leaf tissue structure 
of two rice varieties was studied by Xiong [30], indicat-
ing that changes in leaf function are related to changes 
in structure and chemistry, and that photosynthetic het-
erogeneity in leaves should be taken into account. In this 
paper, the energy transmission calculation of light in 
the layered structure of rice leaves was realized through 
the layered optical characteristics of rice leaves, and the 
material content of each layer after layered rice leaves 
was determined.

Whether it is at the tillering, jointing, heading, or 
booting period, it can be observed from Fig.  6a, b, the 
parameter optimization results for rice that the struc-
tural parameters of the first layer of the RPIOSL model’s 
are generally greater than those of its second layer. N1 
approaches 2, and only individual sample points of till-
ers have slight deviation.N2 tends to be 0–0.5, but the 
abnormal value of N2 in individual sample points at each 
period of rice reaches 3, which is inconsistent with the 
theoretical distribution law. The parameter settings when 
using NSGA—III optimization are as follows:

where, x(1), x(2) ∈ (0, 1)。
Therefore, the abnormal value of the optimization of 

the structural parameter N2 may be the local optimal 
solution when using the NSGA—III algorithm. Here N1 
and N2 characterize the structural complexity of leaves, 
indicating that after layering the optical properties of rice 
leaves, the structural complexity of the first layer of leaves 

(22)N1 = N ∗ (2 + 0.01 ∗ x (1))

(23)N2 = N ∗ (0.1 + 2.9 ∗ x (2))

Table 4 RMSE statistical results of rice spectral simulation 
at different periods and bands by the RPIOSL model and the 
PROSPECT model

Min Max Mean

Tillering period Blue-green 
band

RPIOSL 0.0148 0.4526 0.1497

PROSPECT 0.0159 0.2925 0.0942

Yellow–red 
band

RPIOSL 0.0035 0.1894 0.0584

PROSPECT 0.0149 0.2907 0.1129

Near infrared 
band

RPIOSL 0.0130 0.2691 0.1553

PROSPECT 0.0804 0.3591 0.2204

Jointing period Blue-green 
band

RPIOSL 0.0449 0.3658 0.1369

PROSPECT 0.0044 0.2106 0.0793

Yellow–red 
band

RPIOSL 0.0006 0.1386 0.0576

PROSPECT 0.0030 0.1993 0.1043

Near infrared 
band

RPIOSL 0.0340 0.1859 0.1341

PROSPECT 0.0946 0.2464 0.1953

Heading period Blue-green 
band

RPIOSL 0.0222 0.2566 0.1444

PROSPECT 0.0105 0.1943 0.0889

Yellow–red 
band

RPIOSL 0.0124 0.2041 0.0724

PROSPECT 0.0080 0.2648 0.1313

Near infrared 
band

RPIOSL 0.0392 0.2096 0.1564

PROSPECT 0.1032 0.2793 0.2193

Grouting period Blue-green 
band

RPIOSL 0.0154 0.3568 0.1099

PROSPECT 0.0055 0.1866 0.0604

Yellow–red 
band

RPIOSL 0.1041 0.2578 0.0820

PROSPECT 0.0402 0.3204 0.1423

Near infrared 
band

RPIOSL 0.0063 0.2435 0.1620

PROSPECT 0.0494 0.3041 0.2222
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is higher than that of the second layer. In fact, the physical 
quantity of structural parameters has no actual physical 
meaning. She can only calibrate its value by optimiz-
ing the parameters. It is based on conceptual quantities 
rather than measurable physiological traits. Theoreti-
cally, the structural parameters of leaves are related to 
the structural characteristics of leaves, such as the thick-
ness of leaves, the distance between cells, including the 
number of airspace and the size of mesophyll cells. The 
structural parameters of leaves will also affect the photo-
synthetic efficiency of plants. Wider leaves can increase 
the chlorophyll content of leaves and improve the photo-
synthetic efficiency of plants; Longer leaves can increase 
the surface area of leaves and improve the absorption 
and utilization rate of light energy by plants. Therefore, 
the structural parameters of leaves are closely related to 
photosynthesis, and then affect the growth and develop-
ment of plants. These structural characteristics of leaves 
are concentrated in structural parameter N, which was 
previously associated with physical properties of leaves, 
such as specific leaf area, which was obtained based on 
empirical relationship. The RPIOSL model constructed 

in this paper layered the structural parameters, and 
explored the role of structural parameters in each layer of 
the blade in more detail. In the RPIOSL model, N is used 
as a parameter to describe the structural characteristics 
of the blade as input to the model, and the simulation of 
the reflectivity of the blade is performed. As a parameter 
without practical physical meaning, the existence of N in 
the model leads to the instability of the model. Therefore, 
during the development of the RPIOSL model, we should 
focus on the relationship between structural param-
eters and actual blade parameters and look for physical 
quantities that can replace structural parameters. At the 
same time, the epidermal structure of rice leaves also 
has a certain impact on the transmission process of light 
radiation. The effect of 24-Epibrassinolide (EBR) effect 
of rice plants under simulated acid rain treatment(SAR) 
studied by Da Fonseca [6], and found that SAR increased 
the density of the trichomes, epidermal wax and the sto-
matal area, and improved the tolerance of rice plants. As 
shown in Fig. 3, the scanning electron microscope of the 
upper surface of rice leaves at various periods shows that 
the pores and bulges on the upper surface of rice leaves 

Fig. 10 Comparison of RMSE of RPIOSL model and the PROSPECT model at different wave bands at different periods of rice
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affect the surface roughness, which is inconsistent with 
the assumption of wave reflection on the leaf surface of 
the RPIOSL model. Therefore, in future research, it is 
also crucial to take into account the impact of epidermal 
structure features on the optical properties of rice leaves. 
I believe that the RPIOSL rice radiation transfer model 
with skin structure can accurately simulate the optical 
properties of rice leaves and further enhance the optimi-
zation results of the structural parameters.

When the chlorophyll and dry matter of the leaves 
were stratified, it was found that both chlorophyll and 
dry matter had a trend of more in the first layer. Due to 
the Cw proportion being close to 1 in the optimization 
process, this article does not present the stratification 
of the equivalent water thickness. To reduce the opti-
mization time, we set Cw12 of RPIOSL at 1, which has 
no significant impact on the accuracy of the model. It 
can be observed from Fig.  6c, d that the distribution of 
chlorophyll and dry matter content in rice is consistent 

at various growth periods. Among them, the proportion 
of chlorophyll to Cab12 is more consistent in the tiller-
ing period of rice. According to Table 3, the average value 
of Cab12 at the tillering period, jointing period, head-
ing period and grouting period of rice is 0.9130, 0.9245, 
0.9346 and 0.9124 respectively. This indicates that the 
Cab of rice leaves during the heading period is concen-
trated more in the first layer. The heading period is the 
alternate period of reproductive growth and vegetative 
growth of rice, and rice leaves need to improve photo-
synthetic efficiency obtain more nutrients in the heading 
period. For the proportion of dry matter content, Cw12 
also has the same trend of focusing on the first layer, and 
the consistency of Cw12 is better than Cab12 . The mean 
values of Cw12 in the tillering period, jointing period, 
heading period and grouting period were 0.8813, 0.9869, 
0.9422 and 0.8841, respectively, and the variance was 
lower than 0.0476. In general, the chlorophyll and dry 

Fig. 11 Variation of the RMSE of RPIOSL and PROSPECT with samples
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matter of the rice leaves tended to concentrate in the first 
layer, with an average of 0.9220 and 0.9582, respectively.

In addition to the elements considered by RPIOSL, 
leaf nitrogen plays an important regulatory role in pho-
tosynthesis and respiration of vegetation leaves [29]. 
However, it is very difficult to deduce the nitrogen con-
tent from massive spectral data without damage. The 
original PROSPECT model’s chlorophyll absorption coef-
ficient was swapped out for the equivalent N absorption 

coefficient, creating n-PROSPECT, which accurately 
simulated both leaf reflectance and nitrogen concentra-
tion by Yang [32]. In the future, we will consider adding 
nitrogen as an input parameter to the RPIOSL model to 
study the effect mechanism of nitrogen on the rice leaf 
spectrum. Although the RPIOSL model constructed in 
this paper can accurately simulate leaf reflectance, it is 
improved on the basis of the PIOSL model. The existing 
PROSPECT and its improved versions, such as PROS-
PECT-5 and PROSPECT-d, have separated carotenoids 
and anthocyanins from chlorophyll. The PIOSL model 
and RPIOSL did not stratify carotenoids and anthocya-
nins in the upper and lower layers of leaves, because the 
content of carotenoids and anthocyanins in the leaves of 
vegetation was low, so it was difficult to achieve an accu-
rate division [3, 28]. In future research, the distribution of 
these low- content elements in leaves will be considered, 
including carotenoids, anthocyanins, brown pigments, 
and so on.

Construction of the RPIOSL model for rice leaves
Most existing vegetation leaf radiative transfer mod-
els, such as PROSPECT and PIOSL models, simulate 
the radiative transfer of multiple vegetation leaves. 
Accurate simulation of leaf spectra can be achieved by 
entering the structural parameters and physical and 
chemical parameters of different species of vegetation 
leaves. In fact, the distribution of leaf structure and 
biochemical parameters of different types of vegetation 
is different [7, 15]. It is necessary to establish a radia-
tion transfer model for a single vegetation leaf in order 
to understand the interaction mechanism between light 
and leaves. The traditional PROSPECT model assumes 
that the blade is homogeneous and the material inside 
is uniformly distributed. The PIOSL model proposed 
by Yu et al. [21] solves the problem of uneven distribu-
tion of absorbed substances inside the leaves. The blade 
interior is separated into two layers, and the material 
that absorbs light within the blade is organized into 
layers. When the electron microscope structure of rice 
leaves was scanned, it was found that there was a cer-
tain stratification phenomenon in rice leaves. Many 
scholars have also studied the morphology of rice leaves 
[17]. Rice leaves are composed of upper epidermis, 
mesophyll, and lower epidermis. In the cross section, 
epidermal cells are rectangular and epidermal and glan-
dular hairs can be seen on the epidermis. Mesophyll is 
a green tissue composed of palisade tissue and sponge 
tissue. Palisade tissue cells are approximately rectangu-
lar columnar in shape, next to the upper epidermis, and 
vertically arranged with the upper epidermis. The cells 
are closely arranged, and there are more chloroplasts in 
the cells. Therefore, chlorophyll is more distributed in 

Table 5 RMSE statistical results of the RPIOSL and PROSPECT 
models

RPIOSL PROSPECT

Tillering period Min 0.0566 0.0584

Max 0.3041 0.2256

Mean 0.1124 0.1268

Variance 0.0025 0.0009

Jointing period Min 0.0533 0.0713

Max 0.2756 0.1832

Mean 0.1001 0.1156

Variance 0.0010 0.0006

Heading period Min 0.0550 0.0584

Max 0.1566 0.1814

Mean 0.1094 0.1294

Variance 0.0006 0.0005

Grouting period Min 0.0403 0.0756

Max 0.2630 0.2377

Mean 0.1094 0.1342

Variance 0.0015 0.0008

All periods Min 0.0403 0.0584

Max 0.3041 0.2377

Mean 0.1074 0.1265

Variance 0.0013 0.0007

Fig. 12 RMSE in the entire growth cycle
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the upper layer of rice leaves. Sponge tissue is located 
under palisade tissue, which contains some irregu-
lar parenchyma cells, which are loosely arranged, with 
large gaps, and few cells in the chloroplast angle pali-
sade tissue [34]. At different periods of rice growth and 
development, the internal structure of the rice leaves 
also changed slightly. It can be seen from the parameter 
optimization results for each rice period in Fig. 5 that 
the Cab and Cm in the rice leaves will change with the 
growth period transition. A deep-level capture of the 
distribution of material components in rice leaves will 
help to more accurately describe the radiation trans-
mission process between light and rice leaves. There-
fore, a more suitable radiative transfer model for rice 
leaves can be built by refining the leaf stratification and 
including additional elements in the stratification.

In this paper, by adjusting the parameters of the PIOSL 
model, the RPIOSL model which accords with the char-
acteristics of rice leaf structure was constructed, which 
takes into account the internal structure of rice leaves. 
The model not only accurately simulates the reflectance 
spectrum of rice leaves but also conforms to the real 
internal structure of rice leaves, enhancing the interpret-
ability of the model. In comparison to the PIOSL model, 
the biggest advantage of the RPIOSL model is that it is 
more suitable for radiation transfer simulation of rice 
leaves, optimizing the internal structure and elements 
of rice leaves by layers. The parameters of the RPIOSL 
model optimized by NSGA-II are consistent. We fixed 
the proportion of equivalent water thickness as 1. From 
the results of parameter optimization, we found that the 
proportion of Cab and Cm in rice leaves has a certain 
consistency. We will seek to construct a fixed propor-
tion of Cab and Cm in rice leaves, which can shorten the 
training time of the model without affecting its accuracy. 
However, this paper only uses the data of one rice variety 
for verification, and in the future research, the differences 
of different rice varieties should be considered. Because 
there may be some differences in the internal structure of 
different rice varieties, such as the distribution of chloro-
phyll, water and dry matter.

Conclusion
In this paper, the hypothesis of layered optical character-
istics of rice leaf structure is put forward, and the RPI-
OSL model which can simulate the reflectivity spectrum 
of rice leaf is proposed by combining the PIOSL based on 
the hypothesis of layered optical characteristics of rice 
leaf with the structure of rice leaf.The model can simulate 
the reflectivity of rice leaves accurately by inputting the 
N of rice leaves, Cab, Cw and Cm. The structural param-
eters of RPIOSL model and the distribution ratio of 

chlorophyll and dry matter content in leaves were deter-
mined by NSGA-III algorithm.The structural parameters 
of the first layer of leaves were around 2, while those of 
the second layer were around 0–0.5. The ratio of Cab to 
Cw tended to be higher in the uppermost layer of the 
leaves. The four growth cycles of rice sample mulching 
are tillering stage jointing stage heading stage and grain 
filling stage, and the mean RMSE between the simu-
lated spectra and the measured spectra of the RPIOSL 
and PROSPECT models were calculated in the full band 
and blue-green, yellow–red, and near-infrared bands, 
respectively. The findings indicate that the average RMSE 
of the constructed RPIOSL model is 0.1074, which is 
0.0191 lower than the PROSPECT model. Among them, 
the spectral simulation effect of the RPIOSL model in 
the 560–780 nm band of yellow and red light is the best, 
and the RMSE at tillering period, jointing period, head-
ing period and grouting period are 0.0584, 0.0576, 0.0724 
and 0.0820, respectively, which are 0.0545, 0.0467, 0.0589 
and 0.0603 lower than PROSPECT model, respectively. 
In future research, parameters such as nitrogen will be 
introduced to the RPIOSL model, providing more techni-
cal support for rice nitrogen inversion and top-dressing 
decision-making.
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