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Abstract 

Background Grapevine berries undergo asynchronous growth and ripening dynamics within the same bunch. Due 
to the lack of efficient methods to perform sequential non‑destructive measurements on a representative number 
of individual berries, the genetic and environmental origins of this heterogeneity, remain nearly unknown. To address 
these limitations, we propose a method to track the growth and coloration kinetics of individual berries on time‑lapse 
images of grapevine bunches.

Results First, a deep‑learning approach is used to detect berries with at least 50 ± 10% of visible contours, and infer 
the shape they would have in the absence of occlusions. Second, a tracking algorithm was developed to assign 
a common label to shapes representing the same berry along the time‑series. Training and validation of the methods 
were performed on challenging image datasets acquired in a robotised high‑throughput phenotyping platform. 
Berries were detected on various genotypes with a F1‑score of 91.8%, and segmented with a mean absolute error 
of 4.1% on their area. Tracking allowed to label and retrieve the temporal identity of more than half of the segmented 
berries, with an accuracy of 98.1%. This method was used to extract individual growth and colour kinetics of various 
berries from the same bunch, allowing us to propose the first statistically relevant analysis of berry ripening kinetics, 
with a time resolution lower than one day.

Conclusions We successfully developed a fully‑automated open‑source method to detect, segment and track 
overlapping berries in time‑series of grapevine bunch images acquired in laboratory conditions. This makes it pos‑
sible to quantify fine aspects of individual berry development, and to characterise the asynchrony within the bunch. 
The interest of such analysis was illustrated here for one cultivar, but the method has the potential to be applied 
in a high throughput phenotyping context. This opens the way for revisiting the genetic and environmental varia‑
tions of the ripening dynamics. Such variations could be considered both from the point of view of fruit development 
and the phenological structure of the population, which would constitute a paradigm shift.
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Background
Unlike climacteric fruits (e.g. bananas, apples or man-
goes) which accumulate sufficient starch reserve to 
achieve post-harvest ripening, the grape berry necessar-
ily ripens on the vine, at the rate of translocation of water 
and sucrose through the phloem. Ripening involves the 
sudden activation of the apoplastic pathway of phloem 
unloading [52], which leads to the second growth phase 
during which each berry accumulates about 1 M hexoses 
and becomes coloured [5, 22, 36, 42]. Then, the definitive 
stop of phloem unloading triggers a more or less pro-
nounced shrivelling period known as overripening [30, 
41]. It is widely accepted that these dynamic processes 
are under strong developmental and transcriptomic con-
trol [12, 39], and may vary according to the genotype and 
its interaction with environmental conditions (G  ×  E), 
particularly light, temperature, and water availability 
[45]. A considerable research effort is devoted to under-
standing the phenological, physiological and molecular 
origins of such processes to better anticipate the effects 
of global change on grapevine yield and quality [37].

However, due to the lack of efficient non-destructive 
phenotyping methods to study berries individually, the 
body of knowledge is mainly based on measurements of 
the average evolution in periodic samples of randomly 
selected berries. This approach overlooks the heteroge-
neity of the fruit population representative of the future 
harvest. Moreover, scarce studies on single berries 
recently revealed how chimerical these population-rele-
vant  samples are, on both the phenology and metabolic 
point of view. For example, the fact that the developmen-
tal lag between two berries can be almost as long as their 
growth duration leads to a two fold overestimation of the 
duration of the second growth period, when considering 
the average evolution among several berries [5, 42]. Fur-
thermore, mixing growing and shrivelling berries leads to 
the averaging bias that a constant volume is maintained 
during late ripening, and that excess water from the 
phloem mass flow must be released into the xylem back-
flow [25]. There is thus a clear need to develop methods 
for temporal and non-destructive monitoring of cohorts 
of individual fruits.

Non-destructive spectrometric methods such as NIR, 
fluorescence and hyperspectral imaging have received 
considerable attention for harvest date anticipation based 
on berry ripeness assessment (e.g. [13, 24, 33]). The 
major interest of these methods is that they eliminate the 
need for solute extraction and physico-chemical tests, 
and make it possible to objectivise the heterogeneity of 
maturities at plot level. However, such data acquisition 
may be practically as tedious as harvesting representa-
tive samples. It also misses the kinetics of volume growth, 
which is critically needed to predict yield and distinguish 

the sugar accumulation phase from its final concentra-
tion. Alternatively, time-lapse RGB imaging of a grape-
vine bunch could be used to monitor the evolution of 
the external aspect of individual berries over time, such 
as berry volumes or berry colour. Indeed, the dynamics 
of such external features are closely linked to internal 
physico-chemical changes occuring during berry ripe-
ness, and thus could be used as proxies to study ripening 
dynamics. While the efficiency of this non-destructive 
approach was demonstrated with manual annotation of 
the images [28], only the automation of such tasks would 
allow a large enough sampling to get a representative 
view of the ripening process and its variability.

The first task to be automated is the detection and seg-
mentation of individual berries. This task is challenging, 
due to the natural variability of the aspect of berries (e.g. 
shape, size, colour, degree of light exposure) and to the 
fact that they frequently overlap with other berries and 
plant parts. Deep-learning has shown to be an effective 
solution to this problem for a number of fruits such as 
oranges [16], blueberries [18, 34], apples [17, 23], straw-
berries [38] and grapevine berries [43]. In all these stud-
ies, an instance segmentation model (e.g. Mask R-CNN 
[20]) was trained on manual annotations of visible fruit 
parts to retrieve the apparent contour of each fruit. This 
strategy is suitable for measuring their colour [43], count-
ing them to estimate yield [51], or locating them for auto-
matic fruit picking [47]. However, it misses the occluded 
parts of berries that are partially covered by neighbouring 
fruits, which frequently occurs in ordinary bunches, thus 
preventing the deduction of statistics related to their real 
shape such as volume. To cope with this, [31] used ellipse 
fitting as a post-processing of the segmented contours 
to infer a plausible intrinsic contour of individual ber-
ries. Alternatively, deep-learning models can be trained 
on annotations guessing the shape each fruit would have 
in the absence of occlusions, so that predictions of the 
segmentation model directly infer complete fruit shapes, 
including their hidden parts [1, 9, 27]. The annotation 
protocol and the extent to which the hidden parts can be 
deduced from the visible ones are crucial in such cases, as 
annotation errors will be learned by the models and will 
directly alter predictions. Higher level of occlusions can 
be addressed by training the model with synthetic images 
for which various levels of occlusion can be generated, by 
artificially superposing images of isolated fruit and other 
plant elements [21] or by rendering plant models in a 3D 
graphics software [2].

The second task to be automated is the tracking of 
segmented berries over successive time steps, to deduce 
individual volume and colour kinetics. The majority of 
fruit tracking algorithms addressed the issue of match-
ing segmented instances between different viewpoints, or 
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over time on short videos (seconds to minutes) of several 
frames per second [27, 50, 53]. Hondo et al. [21] managed 
to track apples over periods of several weeks, but for a 
very limited number of instances (two well separated 
apples), which is far from the issue of tracking dozens to 
hundreds of overlapping instances over a long period of 
time, as needed for following berry ripening.

In this paper, we introduce a fully automated method 
to measure and track the size and colour of individual 
berries on time-lapse images of grapevine bunches. The 
method starts with a detection model to recognize ber-
ries that are sufficiently visible to reasonably infer their 
size. Second, a segmentation model was trained to infer 
both the visible and hidden contours of individual ber-
ries, using a training dataset derived from a fast and 
original annotation method. Ellipses are further fitted on 
the segmented contours to compute position and shape 
parameters for each berry. Finally, we adapted a tracking 
algorithm to assign time-consistent labels to the detected 
berries while handling global deformations of the bunch. 
This method was tested on image time-series acquired 
at the PhenoArch platform [8], to assess the quality and 
the limits of the method at quantifying individual berry 
growth kinetics. We finally showed how this unprece-
dented data analysis can provide new insights on the rip-
ening dynamics of grape berries.

Materials and methods
Plant material, image acquisition and dataset composition
The complete pipeline (segmentation and tracking) 
was tested on an image dataset from two independent 
experiments conducted in 2020 and 2021, spanning 51 
and 32  days respectively, each containing 9 grapevine 
(Vitis vinifera L.) plants. For each plant, RGB images 
(2048 × 2448  px) of a selected grapevine bunch were 
taken every 8  h. An additional dataset including bunch 
images of 78 grapevine genotypes from a diversity panel 
maximising genetic diversity [35] was used to robustify 
the training and evaluation of the berry segmentation 
pipeline (without tracking). All experiments were con-
ducted in the PhenoArch phenotyping platform (https:// 
www6. montp ellier. inrae. fr/ lepse_ eng/ Pheno typing- platf 
orms- M3P/ Montp ellier- Plant- Pheno typing- Platf orms- 
M3P/ Pheno Arch), hosted at the M3P (Montpellier Plant 
Phenotyping Platforms) [8].

Images were shot using an imaging cabin of Pheno-
Arch, which involves an RGB camera (Grasshopper3, 
Point Grey Research, Richmond, BC, mounted in a 
robotized XYZ arm and LED illumination (5050–6500 K 
colour temperature). For each plant, the bunch position 
was manually recorded at the beginning of the experi-
ment, and a robotic arm (see  [7] for details) was then 
used to automatically position the camera to a fixed 

time-consistent position along the experiment allowing 
to get a detailed shot of the bunch.

Detection, segmentation and features extraction 
of individual berries
The objective of this step is to (i) detect berries suitable 
for shape inference, defined  as berries with more than 
half of their contours visible in a grapevine bunch image, 
(ii) infer their complete shape, and (iii) extract features 
that allow quantifying their size and colour. The first two 
sub-steps rely on deep-learning models which have to be 
trained on annotations of complete berry contours infer-
ring their hidden part.

a) Construction of the annotation dataset

The annotated dataset contains 159 images, sampled 
from the three experiments (Table 1). The sampling was 
done to best cover all stages of growth, and maximise the 
visual diversity of the berries in the dataset in terms of 
size, shape, colour, texture, blurring and shading. It also 
includes various levels of occlusions between berries or 
with other plant organs and objects.

A total of 6134 berries were manually annotated as pol-
ygons using Labelme [49]. Similarly to [31], only berries 
with at least half of their contours visible were annotated. 
Berries that did not reach pea size stage were rejected 
based on the assessment of their morphological char-
acteristics, as they are not relevant for studying ripen-
ing. For each berry, an average of only 8 points (at least 
5) were placed along the uncovered parts of its contours 
(Fig. 1A). Then, least-square ellipse fitting [14] was used 
to fit 5 ellipse parameters (xe, ye,we,we, ae) to the set of 
points (Fig. 1B; blue lines), with (xe, ye) the centre coor-
dinates of the ellipse, we and he the respective length of 
minor and major ellipse axis, and ae the ellipse rotation. 
wb and hb were further deduced as the width and height 
of the smallest box enclosing the ellipse.

This dataset (Table 1) was then split into training (129 
images; 4447 labels), validation (10 images; 814 labels) 
and test (20 images; 873 labels) subsets. Each subset 
includes different plants, to better assess the generalis-
ability of the detection and segmentation models.  We 

Table 1 Annotated dataset

Experiment 
year

n. of images n. of plants n. of 
genotypes

n. of 
annotated 
berries

2020 8 8 1 536

2021 33 22 3 1670

2022 118 109 78 3928

https://www6.montpellier.inrae.fr/lepse_eng/Phenotyping-platforms-M3P/Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch
https://www6.montpellier.inrae.fr/lepse_eng/Phenotyping-platforms-M3P/Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch
https://www6.montpellier.inrae.fr/lepse_eng/Phenotyping-platforms-M3P/Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch
https://www6.montpellier.inrae.fr/lepse_eng/Phenotyping-platforms-M3P/Montpellier-Plant-Phenotyping-Platforms-M3P/PhenoArch
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also restricted the test subset to genotypes not present in 
the training subset, to ensure that our method generalises 
to a wide range of genetic diversity. The test subset was 
therefore only based on images from the 2022 experi-
ment, whose batches contained fewer berries on average.

b) Detection of measurable berries

To detect measurable berries on an image of a grape-
vine bunch, a Yolov4 deep-learning object detection 

model [6] was trained to find bounding boxes around 
berries with at least 50% visible contour in 416 × 416 px 
sub-parts of the image (Fig. 2A, B).

20,000 training instances were generated by cropping 
416 × 416 px sub-parts of the training images, each being 
labelled by the list of parameters of the boxes entirely 
included in it. This dataset was further augmented with 
random adjustments of vignettes hue, saturation and 
brightness, and random flips of image-label pairs. It 
was then used to train the model, using the yolov4-tiny 

Fig. 1 Berry annotation procedure. A Raw labels, consisting of simple polygons (5 to 10 points) drawn manually along the edges of berries 
with at least 50% of their contour visible. B Guessed actual contour of berries, obtained by an automatic ellipse fitting (blue) on the annotated 
points. C Instances generated from the annotations dataset, used to train the segmentation model. Each instance corresponds to one berry, 
for which we show the fitted ellipse parameters, the image input and the targeted binary segmentation mask

Fig. 2 Berry detection and segmentation pipeline. A RGB image of a grapevine bunch acquired in the PhenoArch platform [8]. B Bounding 
boxes (red rectangles) detected by a Yolov4 deep‑learning model trained to identify berries with at least 50% visible contour. C Vignettes 
cropped around the centre coordinates of detected boxes, and resized to 128 × 128 px. The resizing ensures that berries occupy a similar space 
in the vignette regardless of their size. D Binary segmentation masks predicted by a U‑Net deep‑learning model on berry vignettes. The model 
was trained to infer the shape of berries in the absence of occlusions. E Ellipse fitting of the contour points extracted from a segmentation mask, 
and projection of the ellipse (red) on the original image
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architecture and default hyperparameters [6]. Model 
weights were stored every 500 iterations for a total of 
65,000 iterations. The weights leading to the highest 
Average Precision (AP) on the validation dataset were 
saved.

For predictions, the 2048 × 2448  px source image is 
split into image sub-parts cropped over the entire pixel 
range with a maximum spacing of 270 px, which are then 
fed to the detection model, resulting in a set of predicted 
parameters of the box dimensions ( ̂wb , ĥb ) and centre 
coordinates ( x̂b , ŷb ). Because of sub-image overlaps, the 
same berry can be detected more than once. To remove 
these redundancies, non-maximum suppression is used 
to avoid having box pairs with an intersection over union 
above 70%. Berries detected with a confidence score 
below a threshold s = 0.89 are filtered out. This value of 
s was chosen to maximise the F1-score on the validation 
subset.

c) Segmentation of berries

For each detected berry, a square vignette of size 
s = max

(
ŵb, ĥb

)
/z is cropped around its box centre 

coordinate 
(
x̂b, ŷb

)
 . A constant value z = 0.75 is used to 

ensure that all berries are entirely contained within their 
respective vignette, and occupy a similar space regardless 
of their size (Fig.  2C). Each vignette is then resized to 
128 × 128 px by bilinear interpolation, and fed to a U-Net 
[40] deep-learning model with a VGG16 [44] backbone. 
The model was trained to output a binary mask repre-
senting the shape of the berry as if it were not occluded 
by any other element present in the image (Fig. 2D).

To train the segmentation model, 40,000 vignettes were 
extracted from the annotation dataset using the crop-
ping method described above. Elliptic mask labels were 
directly generated using the annotated ellipse param-
eters (Fig. 1C). Random noise was applied to the centre 
coordinate and value of z during cropping, to help the 
model handle detection inaccuracies. This was supple-
mented by the augmentation scheme explained earlier in 
the detection section. Therefore, all the masks generated 
had ellipse shapes of similar sizes, in order to restrict the 
learning domain of the model. These vignettes and mask 
labels were then used as inputs and output to train the 
model, using categorical cross-entropy loss, Adam opti-
mizer, and a learning-rate of 0.0001. The number of itera-
tions was automatically chosen with early stopping, and 
the model weights leading to the minimal validation loss 
were saved.

d) Extraction of berry morphology and colour features

Assuming that the resulting mask has an elliptic shape, 
its contour points are extracted as in [46], to fit (
x̂e, ŷe, ŵe, ĥe, âe

)
 ellipse parameters [14]. These parame-

ters are then rescaled to the original image coordinate 
space (Fig. 2E). For each berry the following features are 
computed:

Colour: the raw hue hraw of a berry is computed as the 
circular mean of the hue angle of the pixels contained 
inside the ellipse, after removing the pixels that are 
less than dp = max(3,we/4) px away from the ellipse’s 
edges, and removing the pixels shared by other ellipses. 
Given h50 = 100◦ the mean value of hraw for grape ber-
ries that  are halfway through their colour change from 
green to black in our dataset, the centred berry hue H is 
defined as:

Volume: Berry volume V  is estimated as the volume 
of the sphere that has the same projection area A as the 
ellipse fitting the individual berry shape, as in [11]:

It should be noticed that V  is only a geometric trans-
form of the measured projected area that we found con-
venient for comparing our result with other studies. We 
do not further investigate the accuracy of such an esti-
mate as our study focuses on relative variations in V .

The camera height was individually adjusted to the 
height of each bunch. Assuming that the distance 
between a bunch and the camera was uniform across 
plants, and relatively large compared to the differences in 
distance to the camera across berries, a constant calibra-
tion factor of 3.94 × 10−6mLpx−3 was used to express V  
in mL. This ratio was calculated by capturing an image of 
a chessboard with known dimensions and comparing its 
pixel representation with its actual size.

Time‑lapse tracking of individual berries
This step aims to track individual berries over successive 
segmented images of a grapevine bunch, that is to associ-
ate a unique label to each berry over time (Fig. 3A, E). To 
that end, three independent methods were combined (i.e. 

(1)H = (180− hraw − h50)%180

(2)A =
ŵe

2
×

ĥe

2
× π

(3)V =
4π

3
×

3

√
A

π
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Baseline, Registration and Matching Tree). First, an origi-
nal algorithm (Matching tree) was used to both find the 
best starting point troot  to initialise the labels, and opti-
mally reorder the way these labels are propagated to other 
time-steps (Fig. 3D). This algorithm is based on the con-
struction of a distance matrix that quantifies the dissimi-
larity between all possible pairs of time steps (Fig.  3C). 
The tracking itself is based on an iterative matching of 
the central coordinates of the ellipses between two time 
steps (Baseline), and includes a pre-processing step to 

better manage the global movements of the bunch (Reg-
istration, Fig. 3B).

a) Baseline: matchings of berry centre coordinates 
between two time steps

For any time-point t , the segmentation provides 
a point set St = {ck} containing the ellipse centre-
point coordinates ck = (x̂e, ŷe)k of each berry detected. 
Assuming all berries remain in the image frame with 

Fig. 3 Berry time‑lapse tracking pipeline. A 10 segmented RGB images sampled from a 68 images time series representing the evolution of one 
bunch over time. Raw images were captured with a median interval of 8 h. B Scatter plots of the coordinates of the berry ellipses centres detected 
at two time steps ( t15 ; blue circles, t46 ; red crosses), before (left) and after (right) registration. The distance metrics D between the two point sets 
is given below each plot. C Heat map of the distance matrix, storing the distance between all pairs of time‑points after registration. Red points 
correspond to matrix values below the threshold θ = 8px . D Matching tree, determining the order in which labels are propagated during tracking. 
Each rectangle represents a time‑step. The highest one corresponds to troot , used to initialise tracking labels. E Labelled segmented images 
after tracking. Each colour corresponds to one tracking label. Segmented berries without label (no match found with troot ) are drawn as red empty 
ellipses
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approximately constant relative positions, the tracking 
of berries from time steps i to j is treated as a bipartite 
matching of point sets Si and Sj . The correspondence 
between two point sets is done by associating to each 
centre ci in Si its nearest neighbour cj in Sj in euclidean 
distance.

Each point can only be paired once, the closest pairs are 
matched first, and pairs with a distance above a thresh-
old δ = 16px are discarded. The value of δ was chosen as 
the quarter of the median value of we in our annotation 
dataset, with the idea that such a low value strongly limits 
mismatches, even in dense areas of the bunch. This algo-
rithm can be applied successively to pairs of sets ( St , St+1 ) 
along a time-series of N  images, to propagate the corre-
spondence of the initial set of labels.

b) Registration: estimating global bunch deformations 
prior to matching

Even if the berries in a bunch maintain the same rela-
tive arrangement, their absolute positions may change 
between two time steps i and j due to relative move-
ments of the bunch and the camera, or due to internal 
deformations and movements of the bunch. Assuming 
that the resulting deformation of the point cloud in the 
image coordinate system is affine, the Coherent-Point 
Drift algorithm [32] was used to realign the two sets prior 
to matching, by finding the affine transformation S̃j of Sj 
that minimises the distance to Si (Fig. 3B).

c) Matching tree: processing the time steps in an opti-
mal order

The matching algorithm can be applied to any pair of 
sets ( Si, Sj ) from the time-series. Propagating the match-
ing to successive pairs ( St , St+1 ) in chronological order is 
a common choice in multiple object tracking [29]. How-
ever, this option may not always be optimal, as in our 
case where the camera may for example move unexpect-
edly at a time step and then return to its original position 
(see video in Additional file 1 for examples). Here we pro-
pose to match the most similar pairs of sets in priority, to 
avoid errors that could occur and propagate from a pair 
of sets that are too dissimilar. To do so, we define a met-
ric d quantifying the distance from Si to Sj , based on the 
euclidean distance function e:

Since d is not commutative (e.g. one point in a set could 
be the closest neighbour of many points in the other 
set), we define the distance D between two sets Si and 

(4)d
(
Si, Sj

)
= median

c∈Si
(min
ck∈Sj

e(c, ck))

Sj as the average of d(Si , Sj) and d(Sj , Si) . Unlike during 
the matching (Baseline), the computation of D does not 
involve a bipartite pairing of points, which is time con-
suming because of the iterative nature of the algorithm. It 
therefore allows for a fast quantification of the dissimilar-
ity mij = D(Si, S̃j) between all pairs of time-steps, which 
are stored in a distance matrix M = (mij) (Fig. 3C). This 
matrix is used to arrange the order of the successive 
matchings through a layered tree (Fig. 3D). Unlike a lin-
ear ordering of the successive time-steps, arranging them 
through a tree structure reduces the average number of 
intermediate steps between troot and other time-steps, 
thus limiting the risk of propagation of matching errors.

The matching tree contains a root node Sroot , and each 
node has a depth k equal to the length of its path to the 
root. To select the nodes of depth k , we iteratively con-
nect the candidate set Si to another set Sj of depth less 
than k , such that dmin = min

(
Mij ,Mji

)
 is minimised. This 

is repeated as long as dmin < θ , with θ = 8px a threshold 
controlling the ratio between the width and depth of the 
tree. If no candidate set meets this criterion for depth k , 
a single long-distance edge is built between layers k − 1 
and k with the minimum possible distance. This process 
is iterated for successive depths until the tree contains all 
sets of S . troot is selected exhaustively as the value allow-
ing to place the most nodes in the tree before reaching 
a long-distance edge, and secondarily by maximising the 
number of points in Sroot.

Evaluation of the method
To evaluate the berry detection on a given image, the 
predicted ellipses whose Intersection over Union (IoU) 
are greater than 0.5 with a labelled ellipse are classified 
as True Positives (TP), indicating correct identifications. 
Predicted ellipses falling below this IoU threshold are 
False Positives (FP), representing incorrect identifica-
tions, while labelled ellipses without a corresponding 
predicted ellipse above this threshold are False Negatives 
(FN), signifying missed detections.

Precision, Recall and F1-score metrics are then 
deduced as follow:

For segmentation evaluation, the area of the segmented 
ellipses was compared with ground-truth observations 

(5)Precision = TP/(TP + FP)

(6)Recall = TP/(TP + FN )

(7)
F1− score = (2× Precision× Recall)/(Precision+ Recall)
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using the following metrics: bias, root mean-square error 
(RMSE), mean absolute percentage error (MAPE) and 
coefficient of determination (R2).

Berry tracking was evaluated by two metrics, namely 
the coverage Tc and the precision Tp . Tc is defined as the 
percentage, over the full time-series, of segmented ber-
ries that could be matched by the tracking algorithm to a 
berry segmented at troot (coloured ellipses in Fig. 3E). Tp is 
the percentage of labels that point to the same berry over 
time, and was estimated by manually checking random 
samples of 10 time-steps per bunch in each time-series.

One bunch of the 2020 experiment was further ana-
lysed to assess the potential of the method at capturing 
and quantifying berry development and its asynchrony 
(demonstration dataset). 81 berries were measured by 
applying the full image analysis pipeline on 3 time-series 
of 138 images from 3 different camera views (120° dif-
ference) of the same grapevine bunch. The use of image 
time-series with different views was facilitated by the 
PhenoArch platform’s capacity to rotate a plant’s pot 
while images are being taken. (see [7] for details). We 
further selected berries tracked over at least 90% of the 
experiment duration. For each berry, an 8-days mov-
ing median was used to smooth the raw volume meas-
urements over time (Fig. 7A and Additional file 2A; red 
curves), and a MAPE value was computed between the 
raw and smoothed volume data. The 10% berries with the 
highest MAPE were excluded from the analysis to reduce 
the noise, resulting in a final dataset of 73 berries. For 
each variable X observed (either V  or H ), a relative value 
Xr and a scaled value Xs were computed as:

(8)Xr = (X − X0)/X0

where X0 is the median of X over the first 8 days. Xmax 
is the maximum of the smoothed X values over the last 
8 days for V  , and the median of X over the last 8 days for 
H .

With these statistics, we compute the following 
descriptors of the ripening dynamics:

Ripening duration (RD) was estimated from the time 
interval ( �t ) between Vs=0.15 and Vs=0.85:

Ripening relative speed (RS) was defined as the varia-
tion of the relative volume ( �Vr ) during �t:

Finally, growth resumption time and coloration start 
time were defined as the time when Vs=  0.15 and Hs

=  0.15 respectively. All these statistics were also com-
puted for the “mean berry”, using daily average of indi-
vidual berries volume or colour as input.

All the method conception and the data analysis were 
performed in Python.

Results
Deep‑learning segmentation allows accurate and robust 
shape inference of partly hidden berries
Berry segmentation was performed on the 2020 and 2021 
datasets (21,744 images), resulting in an average detec-
tion of 64 berries per image. Figure  4 provides some 
examples of detection on the test subset, showing that 

(9)Xs = (X − X0)/(Xmax − X0)

(10)RD =
�t

0.85− 0.15

(11)RS =
�Vr

�t

Fig. 4 Examples of segmented grapevine bunch images. Output of the berry detection and segmentation pipeline on bunch images from 12 
grapevine genotypes. Images come from the test subset, and none of these genotypes were used to train the model. Only a 500 × 500 px subpart 
of each image is shown
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the model was able to infer the full contour of overlap-
ping berries from different genotypes varying in size, 
shape and aspect, even when these contours were not 
fully visible. Predictions on the full test subset were com-
pared with ground-truth annotations to quantify both 
detection and segmentation accuracies.

The detection of measurable berries had a Precision 
of 92.3% and a Recall of 87.5% on the test subset, result-
ing in a F1-score of 89.8%. The remaining errors (64 FPs, 
109 FNs) were further investigated (e.g. Fig.  5) through 
a manual classification (Additional file 3A). This revealed 
that most errors (59% of FPs and 52% of FNs) correspond 
either to berries with a visible contour fraction within 
a 50 ± 10% range, or to small underdeveloped berries 
(around pea size stage). Both situations are close to the 
selection criteria used when annotating berries, and the 
assessment of whether or not these criteria have been 
crossed may be ambiguous for both the annotator and the 
model. For FPs (i.e. detected but not annotated berries), 
errors were evenly distributed across berry sizes (Addi-
tional File 3B). 56% of them correspond to berries within 
the 50 ± 10% visible contours range, sometimes due to an 
error by the annotator detected a posteriori. Considering 
that berries within this 10% error range are still good can-
didates to shape inference, the precision of the method 
at detecting measurable (even if not annotated) berries 
can thus be re-estimated to 96.0% (F1-score = 91.8%). 
Concerning FNs (i.e. missed detections), pea sized ber-
ries alone account for 27% of the cases, which result in a 

slight under-representation of this class in the histogram 
of the size of berries detected. (Additional File 3B).

The area of the ellipses segmented by the model closely 
matched those of the manual annotations on the test sub-
set (Fig.  6; MAPE = 4.1%, R2 = 0.976), with a low bias of 
− 32  px2. This demonstrates that the segmentation model 
was able to accurately infer the size of berries with up to 
50% of their contours hidden. A similar MAPE around 
4% was obtained on genotypes either present (n = 440) or 
absent (n = 363) from the training subset, suggesting that 
the segmentation generalised well to the genetic diversity 
in our dataset.

An almost error‑free tracking of 50 to 80% 
of the segmented berries
Berry tracking was performed on 9 grapevine bunches 
from different plants in each of the 2020 and 2021 experi-
ments, observed over an average of 65 and 136 time-
steps respectively, with the same median interval of 8 h 
between images. The video from Additional file 1 shows 
examples of tracking outputs for three different bunches. 
It was observed that image time-series exhibit periods 
during which the relative position of the camera and the 
plant remain stable, resulting in a fixed positioning of the 
bunch in the image, but also include irregular movement 
of the plant and of the camera despite the robotisation 
of the image acquisition, combined with irregular move-
ments of both the bunch and the leaves.

Fig. 5 Example of mismatches between the berry detections 
and annotations. False positives (FP, red) and false negatives (FN, 
green) found when comparing berries detected by the pipeline 
to manually annotated berries, on a grapevine bunch image 
from the test subset. Only a subpart of the full image is shown

Fig. 6 Accuracy of berry area measurement. Comparison 
of the area of manually annotated berries (observation) with those 
from the detection and segmentation pipeline (prediction). n 
number of points, RMSE root‑mean square error, MAPE mean absolute 
percentage error
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The coverage Tc of the berry tracking method was 
assessed for each of the 18 bunches (M4, Table  2). The 
individual effects of the method components (Registra-
tion, Matching tree) were evaluated by re-running the 
tracking without them (M1 to M3, Table  2). Two sub-
sampling scenarios were also used to assess the effect of 
increasing the time step from 8 to 80 h (S1, Table 2) and 
restricting the time-series to periods of stable shooting 
conditions (S2, Table  2). These periods were manually 
identified by careful examination of the stability of the 
image acquisition over time.

Tc had an average value of 53.4% and 74.2% for 2020 
and 2021 experiments respectively. The precision was 
very high in both 2020 ( Tp=96.7%, 623 labels) and 2021 
( Tp=99.2%, 793 labels) experiments. This indicates that 
the tracking method is more accurate than exhaustive, 
which is appropriate for studying berry growth kinetics, 
since an accurate monitoring of a representative sub-
sample of berries is sufficient to reflect the whole bunch 
dynamics. Such a high precision might be ensured by the 
low value chosen for the distance threshold which deter-
mines whether two segmented berries can be matched. 
Using point-set registration (Fig. 3B) and a matching tree 
(Fig. 3D) during tracking both contribute to maintain suf-
ficiently high coverage, as it increases Tc by a factor of 
10.4 and 1.8 for 2020 and 2021 experiments respectively, 
compared to a regular succession of point-sets matchings 
(Table 2; M2-4 vs M1).

However, a significant amount of segmented ber-
ries (2020: 46.6%, 2021: 24.8%) remained unmatched to 
troot . The time interval between images was not likely 
to explain these losses, since a tenfold decrease in the 
image frequency did not significantly modify Tc for the 
same duration (Table  2; S1). Instead, further examina-
tion of the distance matrices computed during tracking 
highlighted periods with a strong temporal consistency 
(i.e. low distance between point sets of ellipse centres), 
separated by abrupt transitions which were often associ-
ated with a drop in Tc (Additional file  4). 30 transitions 
were empirically annotated using these matrices, to iden-
tify their cause on their corresponding images (Addi-
tional file 4A; red lines). Most transitions coincided with 
a bunch rotation (70%), a strong shift in camera position 
causing berry apparitions or disappearances (13%), or a 
deformation within the bunch (10%). These situations 
correspond to the actual limitations of our registration 
method, but most of them could have been avoided by 
a better management of the experimental conditions. 
Performing tracking independently in each time con-
sistent period increased Tc to 77.1% and 82.0% for 2020 
and 2021 experiments respectively (Table  2; S2). These 
metrics probably reflect the performance of our method 
under experimental conditions where the instability of 
the image acquisition is better managed.

Robust measurement of single berry dynamics, differing 
from the usual “mean berry” approach
Combining the tracking labels with the features extracted 
from the segmented berries allowed to monitor the 
growth of a single berry over time with high accuracy and 
temporal resolution, both in terms of volume and col-
our (Fig. 7). While volume measurements can be noisier 
due to variations of just a few pixels in the image, colour 
measurements are more reliable because they are derived 

Table 2 Coverage index ( Tc ) of the tracking method (M4) for two 
experiments

Lines correspond to different combinations of the tracking algorithm elements 
(M1 to M3) and two sub-sampling strategies of the data (S1, S2)

Tracking method Mean coverage ( Tc)

2020 (n = 9) 2021 (n = 9)

M1: Baseline 5.1% 40.8%

M2: M1 + Registration 32.3% 62.8%

M3: M1 + Matching tree 35.6% 63.2%

M4: M1 + Matching tree + Registration 53.4% 74.2%

S1: M4 on an increased time‑step (8 
to 80 h)

54.1% 70.4%

S2: M4 (and M1) restricted to k stable 
periods
(k: mean value of k)

77.1% (24.1%)
(k = 3.4)

82.0% (52.2%)
(k = 1.8)

Fig. 7 Growth and coloration kinetics of an individual grapevine 
berry. Volume (A) and Centred hue (B) measured over time 
on an individual berry of the demonstration dataset. All points are 
coloured using the corresponding average hue values. In A, the red 
curve corresponds to an 8‑days moving median smoothing. In B, 
the grey area corresponds to the standard deviation of the centred 
hue value observed within the berry segmentation mask
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from averaging a larger number of pixels. These kinetics 
exhibit smooth patterns over time, using high frequency 
measurements of a large number of berries in several 
bunches (Additional file  2), which supports the suit-
ability of this method to high-throughput phenotyping 
conditions.

The potential of the method to reveal new char-
acteristics of berry ripening and bunch population 
structure was further assessed on 73 individual ber-
ries tracked on a bunch from the 2020 experiment, on 
the Vitis vinifera cv Alexandroouli, a black hermaph-
rodite cultivar of Georgian origin used for wine mak-
ing (https:// www. vivc. de/?r= passp ort% 2Fvie w& id= 

263). The bunch was observed for a period of 50  days, 
corresponding to the second growth period of ber-
ries, which goes from the end of the green phase to 
over-ripening (Figs.  8, 9). To our knowledge, this is the 
first report on the growth and colouring dynamics of a 
statistically relevant number of individual fruits. We 
confirm here that, at similar developmental stages, the 
individual berry volume exhibits 2–threefold varia-
tions with considerable deviations from Gaussian dis-
tribution inside a single bunch (Fig.  8A). On average in 
this bunch, an individual berry increased its volume 
by 60% (Fig.  8A) in 18  days before reaching its maxi-
mal volume (Fig.  8C; grey dotted line), and underwent 

Fig. 8 Individual growth kinetics and ripening statistics of berries within a grapevine bunch. A Smoothed relative volume ( Vr ) as a function 
of time for the n = 73 berries of the demonstration dataset (grey lines), and for the daily averaged ‘mean berry’ (red dotted line). Inset: histogram 
of initial ( V0 ) and maximum ( Vmax ) volumes of individual berries. B, C and D respectively show the growth resumption time, ripening duration 
and ripening relative speed, as a function of the maximum relative volume ( Vmax ‑ V0)/V0 . The grey dotted horizontal line represents the mean value 
for the considered statistics. The red stars indicate the values for the daily averaged “mean berry”. In D, the blue dotted line corresponds to the linear 
regression between x and y axis

https://www.vivc.de/?r=passport%2Fview&id=263
https://www.vivc.de/?r=passport%2Fview&id=263


Page 12 of 16Daviet et al. Plant Methods          (2023) 19:146 

a more or less intense shrivelling period once phloem 
unloading in berries definitively stopped [41]. Such a 
relative expansion rate is in line with the approximate 
doubling of berry volume during the ripening of most 
V. vinifera cultivars [4, 5, 22], which took three weeks 
to complete on individual fruits of Meunier, Syrah, Zin-
fandel or ML1 [42], Cabernet Sauvignon and Pinot [15].  
Further studies are needed to establish if the slightly 
shorter growth duration and expansion of Alexandroou-
li’s berry is truely of genetic origin, or is the result from 
tests on fairly young own rooted potted plants in green-
house conditions. In any case, we confirm here that the 
duration of ripening of an individual berry, when meas-
ured directly, is at least 30–50% shorter than the consen-
sual duration of ripening reported in textbooks [12, 26, 
45]. To us, such a discrepancy occurs because ripening 
duration is routinely inferred upon calculating the aver-
age weight and composition on hundreds of asynchro-
nous berries representing fruit diversity at the plot scale, 
before checking its time evolution. Indeed, present data 
even shows that for a single bunch, which undoubt-
edly underestimates asynchrony at plot scale, the global 
growth curve recalculated for all detected berries notice-
ably overestimates the average duration of the second 
growth period (Fig. 8C; red star) and underestimates the 
maximum growth rate (Fig. 8D; red star). These statisti-
cal biases clearly result from adding the asynchrony to 
the real, but previously unknown, duration of the second 
growth period in average representative samples. More-
over, the fact that asynchrony and growth duration last 
approximately as long in a single bunch (Similar ranges 
for the y-axis of Fig.  8B, C) means that conventional 

random samples combine berries of very different phe-
nological stages, which is a major drawback for tackling 
fruit development biology. Real time monitoring of berry 
growth allows to constitute synchronised berry samples, 
and more conveniently than marking each berry fecun-
dation or softening dates. In this respect, coloration has 
been proposed as a proxy for the induction of ripening 
[48]. Our data suggested that growth resumption is a 
more pertinent indicator of the onset of ripening, as it 
precedes coloration by more than four days on average, 
and the delay can vary from one day up to two weeks 
(Fig. 9). Thus, this variability clearly limits the use of col-
oration alone in building an effective sampling strategy. 
Finally, present original data allow us to test hypothe-
ses and give first insights on the drivers of the dynamic 
structure of berry cohorts within a bunch. First, our data 
do not suggest that the acceleration of the ripening pro-
gram in the late berries [19] is accompanied by an accel-
eration of the berry growth rate, as no correlation was 
found between berry relative expansion and the growth 
resumption time (Fig.  8B;  R2 = 0.02). Our observations 
does not support either the idea that ripening berries 
compete for water or photoassimilates, as their relative 
growth rate does not vary consistently with the number 
of berries growing simultaneously. Nevertheless, indi-
vidual berries largely differed in their maximum relative 
expansion, which was clearly related to their maximal 
growth rate (Fig. 8D;  R2 = 0.59), not by growth duration 
(Fig. 8C;  R2 = 0.002). This first approach on the dynamic 
structure of berry population based on the discretisation 
of single berry dynamics clearly constitutes a paradigm 
shift from modelling the future crop as an average ideal 
fruit [54].

Fig. 9 Individual coloration kinetics of berries within a grapevine bunch. Centred hue ( H ) kinetics were automatically computed for the n = 73 
berries of the demonstration dataset. A Scaled coloration kinetics ( Hs ) of each measured berry (grey lines), computed using their initial ( H0 ) and final 
( Hmax ) centred hue. B Relation between growth resumption time t(Vs=0.15) and coloration start time t(Hs=0.15). The grey line is the x = y diagonal, 
and the blue dotted line shows the linear regression between growth resumption time and coloration start time
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Discussion
A method to quantify the variability of ripening kinetics 
within an asynchronous cohort of growing berries
The automated tracking of the asynchronous ripen-
ing of individual berries within one grapevine bunch 
allowed us to revisit the basic growth rates of ripening 
berries, and to propose, for the first time, an analysis 
of their growth and colour kinetics for a statistically 
significant number of observations, with an unprec-
edented time resolution (less than one day). In line 
with preliminary reports on other cultivars [5, 42], we 
found that the ripening duration of individual berry 
does not exceed three weeks, which differs from the 
32 to 56  days duration of sugar loading reported in a 
panel of 36 international cultivars, following random 
sampling and averaging 50 berries over time [45]. 
This confirms that by neglecting berry asynchrony as 
a confounding variable, the ripening duration of daily 
averaged ‘mean berry’ could be up to two fold overesti-
mated compared to individual fruit kinetics. Such a gap 
could have strong impacts on deconvolving the effects 
of annual variations in light, temperature and rainfalls 
on growth and sugar loading intensities. It should be 
noted that the intra-bunch variability documented 
here far exceeds the phenological and compositional 
drifts observed over the last half-century, as conse-
quences of climate change [3]. It is therefore likely that 
minor phenological changes affecting the population 
age pyramid may have been previously misinterpreted 
as kinetic or metabolic changes intrinsic to the ripen-
ing process. Hopefully, the method presented here will 
help in future investigations to better document which 
part of the GxE interaction is mediated by the temporal 
structure of the population and the fundamentally dif-
ferent part linked to metabolic variation during berry 
ripening.

A generic method to infer the shape of partially hidden 
fruits on an image
While numerous computer vision approaches have 
been developed to identify and measure fruits using 
deep-learning [16–18, 23, 34, 38, 43], they mostly 
aim at inferring their occlusion boundaries (i.e. vis-
ible edges), which differs from the true contours of 
the object of interest in the case of overlapping fruits, 
thus preventing to access their actual size. Instead, our 
segmentation method was designed to infer the non-
visible part of overlapping fruit shapes, directly in the 
deep-learning process. The original and fast annotation 
strategy we introduced allowed to implicitly constrain 
the model during training to produce elliptical masks, 

without the need to pass by a long annotation of image 
edges, or to make this constrain explicit in the model 
architecture, as in Ellipse R-CNN [10]. The counterpart 
of this strategy is to restrict the inference to sufficiently 
visible berries, which we managed to do by training a 
model at detecting only berries with more than 50% 
visible contours. Using such a binary criterion can lead 
to ambiguities during both annotation and prediction, 
but our results suggest that it does not degrade the bio-
logical outputs. Still, including this filter in the detec-
tion step does not allow to detect all visible berries, 
which would be a limit for counting. An alternative 
would be to first use a more exhaustive fruit detector, 
and delegate the task of filtering measurable berries to a 
classifier. This would allow for classical counting strate-
gies (e.g. [51]) to be combined with our physiological 
measurements in a single pipeline. Although this study 
focuses on grapevines, we think that our method could 
be applied to any other fruit that can be approximated 
to have an ellipsoidal shape.

The performance of berry tracking relies on the stability 
of the image acquisition setup
This work was carried out on images from a high-
throughput phenotyping platform, where controlled 
conditions and standardised image acquisition facilitated 
the temporal tracking of individual berries. While we 
adapted the tracking algorithm to better tolerate slight 
movements of the bunch and camera, our results still 
showed that the tracking performance can be improved 
by almost 50% by stabilising the image acquisition. In 
particular, tracking performance may greatly improve 
by avoiding non-linear relative movements (e.g. rota-
tions) of the bunch and the camera, preventing deforma-
tions inside the bunch, and keeping the entire bunch in 
the camera’s field of view. While more advanced image 
analysis methods may address these issues in the future, 
we argue that it is more effective to avoid such situations 
during image acquisition. Still, our method allows to vis-
ualize the aforementioned discontinuities in the image 
time-series via the computation of a distance matrix 
(Fig. 3C). This could allow to improve the tracking per-
formance in a semi-automatic way, by re-running the 
automatic tracking for all periods delineated by discon-
tinuities, and then manually mapping berry labels at each 
discontinuity. Lastly, choosing the right image acquisi-
tion timings is essential for subsequent analysis. Indeed, 
quantifying rapid dynamics such as berry colour changes 
needs a sufficiently high frequency of image capture, and 
the standardisation of ripening dynamics requires includ-
ing both their initial and final plateaus during the obser-
vation period.
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Can the method be adapted outside the controlled 
conditions of an indoor phenotyping platform?
While our method was only evaluated in controlled con-
ditions within the PhenoArch platform, it could probably 
be adapted to other environments such as field condi-
tions, with a few adaptations.

For the berry detection and segmentation, the perfor-
mance of the models used might decrease for images 
where the appearance of the berries differs from those in 
the training dataset. For instance, preliminary tests on a 
field image (Additional file 5) showed that berries illumi-
nated by the sun were rarely detected, while performance 
was better for berries in the shade, whose appearance 
resembled the berries observed on a platform. This drop 
in performance might be corrected by re-training the 
models, which would be facilitated by our open-source 
implementation that allows re-use, and by our fast and 
robust annotation strategy (about 100–150 berries per 
hour), compared to traditional approaches that rely on 
annotating visible edges.

For berry tracking, we showed in the previous section 
that the stabilisation of the image acquisition setup is 
essential for good performance. This might be harder to 
achieve outside the controlled conditions of the green-
house, for example in windy conditions, and might 
require adaptations specific to the experimental setup 
used.

Finally, sufficient berries need to be detected in the 
images to correctly quantify their ripening heteroge-
neity. This could be a limit in experimental conditions 
closer to real conditions, for example with more compact 
bunches and leaves hiding the berries. Especially as it is 
more complicated to rotate the plant as in our platform 
to capture more berries. Image acquisition should there-
fore be carefully considered so as to prioritise the larg-
est bunches, remove any leaves obscuring the bunches, or 
capture several bunches with the same image.

Conclusion
We introduce a fully-automatic open-source method to 
detect, segment and track overlapping berries in a time-
series of grapevine bunch images in laboratory condi-
tions. This non-destructive method gives direct access 
to the growth and colour kinetics of individual berries 
within a bunch. Coupled with high frequency image 
capture, this makes it possible to quantify undocu-
mented aspects of individual fruit development, and to 
characterise their asynchrony at the population level. 
Using this method in real time during future experi-
ments could allow the design of new sampling strate-
gies that will consider the bunch as a population of 
unsynchronized berries, rather than an ideal, average 

berry, and lead to a complete revisitation of the ripening 
dynamics. In particular, the GxE effects could be more 
clearly attributed not only to physiological changes 
in the ripening process, but also to changes in the age 
structure of the whole population of berries. The com-
plete automation of our method is also fully compat-
ible with high-throughput phenotyping, providing the 
opportunity to study these detailed GxE interactions on 
physiology and asynchrony of berry ripening for large 
plant panels.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007‑ 023‑ 01125‑8.

Additional file 1: Video (.mp4) of berry segmentation, detection and 
tracking outputs for 3 grapevine bunches. For each plant, the video dis‑
plays a time‑series of 62 to 66 labelled segmented RGB images, obtained 
after running the full berry segmentation, detection and tracking pipeline. 
Raw images were captured with a median interval of 8h. Each colour 
corresponds to one tracking label. Segmented berries without labels are 
drawn as white empty ellipses. t indicates the order of each image in the 
time‑series

Additional file 2: Growth and coloration kinetics of several individual 
grapevine berries. Repetition of the results shown in Fig. 7 for more ber‑
ries. Each subplot displays the Volume (mL) (A) or Centred hue (deg) (B) 
measured over time (days) on an individual berry, after running the full 
image analysis pipeline on a time‑series of 138 images, from 3 different 
camera views (120° difference) of the same grapevine bunch. All points 
are coloured using the corresponding average hue values. In A, the red 
curve corresponds to a 8‑days moving median smoothing. In B, the grey 
area corresponds to the standard deviation of the centred hue value 
observed within the berry segmentation mask.

Additional file 3: Analysis of berry detection errors in the test subset. 
Analysis of the False Positive (FP) and False Negative (FN) errors found 
when comparing berries detected by the pipeline to manually annotated 
berries, on the grapevine bunch images from the test subset. A Manual 
classification of detection errors as pea‑sized berries, non‑small (i.e. 
not pea‑sized) berries, and non‑berry objects. Non‑small berries are 
further classified according to their percentage of visible contours (ct). 
B Distribution of detected berry sizes after segmentation, for all berries 
(top subplot), FP (middle subplot) and FN (bottom subplot). n: number of 
detected berries.

Additional file 4: Analysis of abrupt transitions in time‑series of grapevine 
bunch images. A Heat map of the distance matrices obtained after track‑
ing berries in time‑series of 138 grapevine bunch images, for 6 different 
plants. Vertical red lines correspond to the empiric annotation of time‑
steps exhibiting abrupt transitions in these matrices. B Tracking coverage 
( Tc ) over time obtained for these time‑series. The dashed blue vertical line 
represents the time step troot used to initialise the tracking.

Additional file 5: Detection and segmentation of berries in field condi‑
tions. Output of the berry detection and segmentation pipeline on an 
image of grapevine bunches taken in the field. This is a preliminary result.
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