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Abstract 

Crop pests reduce productivity, so managing them through early detection and prevention is essential. Data from var-
ious modalities are being used to predict crop diseases by applying machine learning methodology. In particular, 
because growth environment data is relatively easy to obtain, many attempts are made to predict pests and diseases 
using it. In this paper, we propose a model that predicts diseases through previous growth environment informa-
tion of crops, including air temperature, relative humidity, dew point, and  CO2 concentration, using deep learning 
techniques. Using large-scale public data on crops of strawberry, pepper, grape, tomato, and paprika, we showed 
the model can predict the risk score of crop pests and diseases. It showed high predictive performance with an aver-
age AUROC of 0.917, and based on the predicted results, it can help prevent pests or post-processing. This environ-
mental data-based crop disease prediction model and learning framework are expected to be universally applicable 
to various facilities and crops for disease/pest prevention.
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Background
Crop diseases and pests increase the cost of production 
by reducing the yield and the quality of crops and increase 
the required labor, also cause environmental damage due 
to the overuse of chemicals to treat pests [1]. They are 
one of the major factors threatening food security, which 
causes about 15–40% of global grain yield loss [2–4]. In 
particular, powdery mildew, a significant pest and disease 
of strawberries covered in this paper, results in up to 70% 
yield loss [5, 6]. Also, gray mold, another major condition, 
generally damages 15–20% of strawberries and more than 

50% in severe cases [7]. Pesticides used to prevent this are 
also used in trillions of US dollars, of which only 0.1% 
kills the target, and the rest is absorbed and distributed 
into the environment and causes pollution [8, 9]. In order 
to minimize the economic and environmental damages 
caused by these pests, several attempts have been made 
to predict pests [1, 10]. These disease modeling attempts 
create several mathematical models that explain the 
occurrence and development of pests by various factors 
and use it to predict the occurrence and severity of pests 
[11, 12], understand eases and pests reduce the yield and 
quality of crops, increase costs due to increased labor for 
pest treatment, the development of disease [13–15], It is 
used for assisting tactical decision making [16–18].

The major factors of pest modeling include the growth 
environment of crops, such as temperature, humidity, 
and precipitation. Among various factors that affect the 
occurrence of pests and diseases, the growing environ-
ment of crops is known to have a significant influence [1, 

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Plant Methods

*Correspondence:
Choa Mun Yun
sangyeonlee230@gmail.com
1 Department of Bio and Brain Engineering, Korea Advanced Institute 
of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 
Daejeon 34141, Republic of Korea
2 Sherpa Space Inc., Daejeon 34028, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-01122-x&domain=pdf


Page 2 of 8Lee and Yun  Plant Methods          (2023) 19:145 

10, 19], and is often used for modeling because it is easier 
to collect and manage than other factors, such as host 
genomics [20], host nutrients [21], and microbial patho-
gen [22]. For example, A-scab [11], a model that predicts 
Venturia inaequalis infection in apples, calculates sev-
eral intermediate variables using environmental variables 
of air temperature, rainfall, relative humidity, and leaf 
wetness and builds the criteria in the flow diagram. The 
presence or absence of pests is predicted corresponding 
to the flow diagram. INDIGOBLAST, a late blight pre-
diction model of potatoes, also predicts pest occurrence 
by calculating the overall late blight severity index using 
thermal suitability and humidity suitability index calcu-
lated by temperature and humidity recordings [23].

These conceptual modeling methods have the advan-
tage of being able to interpret predictions such as the 
underlying biological mechanism through [10] model. 
However, these models use many variables to predict 
pests and diseases, and a deep understanding of both 
target pests and crops is essential in integrating the vari-
ables. As a result, a new model must be built or adjust 
existing models heavily if the target crop or pest and dis-
ease for the model application are changed. However, 
creating models for an extensive range of crops and pests 
is impossible. The data-driven method has been actively 
studied because it can use large-scale and large-capacity 
complex data thanks to the recent development of big 
data and deep learning technology [24, 25]. Environment 
data [24, 26, 27] and image data [25, 28–30] are expand-
ing to multi-modal [31]. Among various types of data, 
growing environment data is easy to collect on a large 
scale because the hardware for data collection is rela-
tively easy to obtain and can be easily collected through 
devices installed in facility farms. To our best knowledge, 
there is still no model that predicts or forecasts the pest 
infestations of crops only with the growth environment 
information of crops in a universal situation by applying 
deep learning methodology.

In this paper, we propose a deep learning-based predic-
tive modeling method applicable for preventing disease 
and pest infestation by predicting them through crop 
growth environmental data and calculating a linear risk 
score leading to a normal-infestation state. A prediction 
model was built with growth environment data collected 
from multiple facilities to show that the methodology is 
universally applicable regardless of the diversity of facility 
farm facilities, the diversity of crops, and target pests.

Results
For most of the crops and pests used in this study, nor-
mal and infested crops were sorted with the status in 
the latent space using the test dataset (Fig.  1 and Addi-
tional file 1: Fig. S1). Data points tend to be classified and 

aligned from normal to infested clusters from coordi-
nates α = 0 to α = 1. Due to the loss function used in the 
model, it was trained to gather normal points near α = 0 
and the pest points near α = 1 on the latent space. The 
similarity of the cumulative environmental features is 
also represented by the distance between the points. In 
particular, there is a section in which normal and infested 
samples are mixed, representing the transition stage. It 
is the point that many samples are changing their status 
from normal to infested state. In the transition stage, the 
number of infested crops gradually increases with the 
change in the growth environment. It shows that it can 
be used as a model that predicts disease onset by increas-
ing the risk score before the outbreak because it gives a 
continuous risk score rather than a binary classification 
result.

We tested how well the condition of the crop can be 
predicted from the accumulated environmental data 
using the risk score from the latent space. In all cases, the 
result shows that the risk score was significantly higher in 
the infested samples than in the normal cases (p < 0.05), 
with some overlaps in the transition stage (Fig. 2a). Nor-
mal and infected samples are very well distinguished from 
a gray mold of strawberry and tomato and from paprika, 
while widely overlapped in some cases, such as powdery 
mildew. We evaluated the crop disease prediction model 
using the ROC curve (Fig.  2b). The risk score was used 
as a rank to classify the crop’s status and draw the ROC 
curve. The average of AUROC was 0.917, indicating that 
the model could classify the pests with high performance. 
In particular, the classification performance is consistent 
with the overlapping of risk scores. It is shown that the 
classification performance came out low in the case of 
powdery mildew because the risk scores of normal and 
infested samples overlap a lot. The low prediction per-
formance and high overlap of risk scores can be inter-
preted that there are other influential factors in addition 
to the acquired environmental variables affecting the 
outbreak of the pest infestation. From the data science 
perspective, the model finds the relationships between 
the changes in growth environments and the outbreak of 
pests and diseases on the linear axis between 0 and 1. It 
learns how environmental differences lead to differences 
in risk scores. The overlaps occur if it is hard to explain 
the outbreak with only the environmental factors we 
used. Environmental variables such as solar radiation and 
relationships between host and fungi can be considered 
in further to improve the performance of the model [32, 
33]. Experimental settings can be adequately adjusted for 
individual crops, pests, and diseases to alleviate the over-
laps. Settings like two days of time window used in this 
study may be insufficient to train the onset of some rapid 
pests like powdery mildew [34, 35]. This problem can be 
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Fig. 1 Two-dimensional embeddings of test data. Two-dimensional representations of test data and assumed transition stages of a strawberry 
gray mold data, b strawberry powdery mildew data, and c pepper anthracnose data. And a examples of strawberry leaf images of data located 
in normal, transition point, and pest-infested each

Fig. 2 Risk score distributions and prediction result. a Risk score distributions of normal and infested samples per crop and pest. b ROC curve 
and AUROC of prediction result for every crops and pests. The color of the curve represents the type of crop and the shape of the line represents 
the type of pests for each crop
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alleviated by closely monitoring the growth environment 
or adjusting the number of sampling times while generat-
ing the training data.

We further investigated the relationship between dis-
ease severity and risk score. Using AI-hub’s paprika 
damping off data, which includes the disease severity 
index, the predicted risk score is shown for each observa-
tion (Fig. 4a). The model is trained by a binary label, but it 
is shown that the risk score tends to increase as the sever-
ity of the disease increases. It shows that the prediction 
model can find a relationship between the exposed envi-
ronment of crops and the occurrence and development 
of pests and diseases. However, since the difference in 
risk scores between infestation stages is small compared 
to the difference between normal and infested samples, it 
is crucial to maintain crops in a normal state by control-
ling the facility’s environment before the transition point. 
Unlike binary classifiers, the prediction model uses risk 
scores as a surrogate measure for infestation prediction 
and can help tactical decision-making for pest preven-
tion and management as a descriptive model. In order 
to test the possibility of a decision-making assistant for 
crop growth environment management, changes in the 
latent space were observed while adjusting the environ-
mental data for one of the test data of strawberry gray 
mold and powdery mildew in the plant disease-causing 
dataset (Additional file 1: Fig. S3). The model can be used 
to prevent pests and diseases by managing the environ-
ment to the direction of maintaining a normal state by 
lowering the risk score caused by the movement of data 
point in the latent space led by the change in the growth 
environment.

Also, we tested our model with the in-house dataset, 
which contains strawberry gray mold data, to show the 
model trained with the plant disease-causing dataset can 
be applied to other datasets. The test data was embed-
ded in the latent space and showed that the normal and 
infested samples were well aligned (Fig.  3b). The risk 
score distributions of the normal and infested samples 
were also consistent with the test results of the plant dis-
ease-causing dataset. Also, the prediction performance 
was evaluated with AUROC, and shows decent perfor-
mance with AUROC of 0.8755 (Fig. 3c, d). However, the 
range of predicted risk scores was different. It may be 
caused by the difference in species of strawberry or fungi 
and environmental variety due to the facility, such as soil 
quality. This means some degree of overfitting occurs 
because input data cannot include every influential vari-
able for the pest. Alignment corresponding to the risk 
of pest infestation is possible even with the pre-trained 
model, but the scale of the risk score is hardly matched. It 
shows that the fine-tuning stage is essential before apply-
ing the model to the individual facility.

Discussion
In this paper, we created a deep learning model to pre-
dict the presence or absence of pests using crop growth 
environmental data. It was shown that it is possible to 
control the environment for early diagnosis and preven-
tion of pests and diseases through continuous environ-
mental data monitoring. To this end, public and in-house 
data regarding crops’ state and growth environment were 
collected. Moreover, to deal with large-scale heterogene-
ous data, we built an independent model for variables 
such as types of environmental variables, measurement 
intervals, and types of crops. Through this, it is possi-
ble to predict the status of a crop from its environmen-
tal data of the past two days. At the same time, the risk 
score can be extracted through the latent space. Unlike 
the binary classification, the risk score revealed a tran-
sition stage connecting the normal and disease groups. 
Early diagnosis and prediction before the outbreak will 
be possible during the transition stage. If a crop is located 
in the transition stage before the occurrence of pests and 
diseases, it is possible to prevent them by controlling the 
environment to reduce the risk score. This paper showed 
that environmental control is possible by reducing the 
risk score and moving the data close to the normal state 
by observing the pattern in the latent space that appears 
while changing the environmental variables from the 
point of interest through simulation.

Still, some challenges must be overcome to apply this 
model to existing facilities or farms. Many factors affect 
crop pests and diseases compared to the environmen-
tal variables measured in this study. There are plenty of 
factors that are not included in this study but are known 
to influence the growth of crops, such as soil compo-
nents, soil pH, microbial properties, precipitation, and 
air current. In addition, in open-farm conditions, some 
variables are hard to quantify for data collection such 
as weather events, pollinators, and weeds [36, 37]. For 
example, compared to indoor farms that can artificially 
control many environmental variables, open-field farms 
have many variables, so it is difficult to train a model 
considering all of them. It is highly required to develop 
a multimodal monitoring system that collects high-reso-
lution environmental data by quantifying individual fea-
tures, as various environmental factors listed above are 
known to affect crop growth, diseases, and pests. In addi-
tion, considering relationships between different diseases 
or pests and optimal crop growth conditions, the model 
needs to be more complex. Resilience and resistance 
against a harsh environment and optimal growth envi-
ronment are different, corresponding to the growth stage 
of crops [38]. Considering this, we can expect an increase 
in performance and practicality by adding temporal fac-
tors or the acquired growth stage data of target crops in 
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the aspect of the life cycle to the training phase. The con-
struction of a database suitable for these tasks must be 
preceded.

However, this model is highly versatile as it can be 
optimized and applied in various situations by adjusting 
parameters such as the type of environmental variable or 
the period of environmental recording. The resolution, 
performance, and usability of the model can be increased 
with additional sensors on various environmental vari-
ables. In addition to environmental data, various time-
series information that can be acquired by sensors can be 
utilized in this method. In an experimental environment 
where environmental variables can be finely controlled, 

this model can be used for physiological studies such as 
crop-pest interactions and crop reactions to environmen-
tal changes. In addition, in well-established facility farms, 
early management or prevention of pests and diseases 
can help improve crop quality, increase yield, and reduce 
required labor.

Methods
A large-scale dataset containing data on whether crops 
were infested with pests and diseases while growing and 
environmental information recorded during that period 
is needed to create a model that predicts the condition 
of crops from their growing environments. We used 

Fig. 3 Validation of the trained model. a Risk score distributions corresponding to the severity of observed infestation. Severity of paprika damping 
off increases from orange plot to brown plot. b Validation of gray mold prediction model using independent in-house dataset (latent space). c Risk 
score distributions of in-house samples; gray mold and normal. d Model evaluation of in-house gray mold prediction
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large-scale public database, ‘plant disease-causing data-
set’ for the data, reduced the dimensionality of the data, 
and built a model to predict the condition of crops using 
deep-learning methodology.

Data acquisition
Large-scale data were collected to build a model for pre-
dicting the occurrence and risk of pests and diseases with 
crop growth environment data. A public database named 
’plant disease-causing dataset’ provided by AI-hub is 
used. The dataset is data on disease and disease according 
to the environment of crops grown in several facilities. It 
provides disease outbreak data and cumulative environ-
ment data for at least 48  h before the observation time 
(Fig. 1a). Environment data includes at least temperature 
and humidity data and additionally collects  CO2, solar 
radiation, dewpoint, etc., depending on the facility equip-
ment. We acquired environment and pest infestation data 
from the database for five crops and two pest infestations 
per crop. The number of data used in this study is shown 
in Table  1. The collected data includes various environ-
mental data, temperature and humidity for all data, and 
other environmental data depending on the facility. With 
temperature and humidity recordings, grape data con-
tains dewpoint data, and strawberry, pepper, and tomato 
data contains dewpoint and  CO2 concentration, while 
paprika data contains solar radiation measures. The 
diversity of data is a problem that inevitably arises due 
to the environmental information collection facilities of 
actual farms or the diversity of crop types.

In addition, as in-house data for validating the model 
trained using AI-hub, data on strawberry gray mold 
measured from November 2020 to May 2021 were col-
lected. During the period, air temperature, solar radia-
tion, relative humidity, and dewpoint of the strawberry 
facility were collected as environmental information 
every 10 min, and the percentage of infested strawberries 

in the bed was measured. Unlike the plant disease-caus-
ing dataset that contains binary crop condition informa-
tion, the in-house data is obtained as a continuous value 
because the percentage of diseased crops out of the total 
crops is measured.

Prediction model
A deep learning-based methodology was applied to build 
a model that predicts crop conditions at a specific point 
in time through past growing environments [39]. The 
autoencoder-based model was developed to predict the 
condition of crops with environmental data measured 
for the past two days from the forecasting point (Fig. 4b). 
The model used in this study takes an input vector repre-
senting two days of observations. Two days of cumulative 
environmental data were converted into a one-dimen-
sional vector to make it an input for the model. For all 
environmental variables included in the data, the average, 
minimum, and maximum values of the measured values 
during the period are calculated, and all of these are con-
catenated to form a one-dimensional vector represent-
ing that period of observation. As a result, for a facility 
measuring n environmental variables, an input vector of 
length 3n is created (Fig. 4a).

The prediction model consists of an encoder composed 
of two layers with the same length as the input vector, a 
decoder having the same structure as the encoder, and 
a two-dimensional latent vector. The model was devel-
oped in a PyTorch environment based on modified loss 
functions suggested by the original paper [39]. Ordinary 
autoencoders are trained using the error between the 
input vector and the reconstructed vector as loss, but in 
this study, how well it predicts the label representing the 
state of the crop is added to the loss function (Additional 
file  1: Fig. S2). In the training phase, the mean squared 
error between the input and reconstructed vectors and 
the distance between the reference point on the alpha 
axis corresponding to the label was added and used as 
a loss function to make the normal and pest data points 
agglomerate respectfully. We set the reference point 
alpha = 0 for normal data and alpha = 1 for pest data. 
Since the data points are aligned along the alpha axis, we 
get the continuous value of the alpha coordinate of the 
data point, which can be considered as a risk score. So 
the prediction model can be used as an autoencoder-
based regression model, although we trained the model 
using binary-labeled data. We trained a model in AI hub 
data to classify environmental vectors based on labels 
such as the presence or absence of crop diseases or pests. 
In all cases, we used 80% of the data as training data and 
the rest as test data. In the learning process, the learning 
rate, weight decay, and epoch were optimized for crop 
and pest respectively, while batch size is fixed to 64. After 

Table 1 Data statistics acquired from the plant disease-causing 
dataset

Crop Disease # of data

Strawberry Gray mold (Botrytis cinerea) 16,000

Powdery mildew (Spharotheca humuli) 10,000

Pepper Anthracnose (Colletotrichum acutatum) 13,000

Powdery mildew (Leveillula taurica) 12,000

Grape Downy mildew (Plasmopara viticola) 8500

Anthracnose (Colletorichum fructicola) 2500

Tomato Gray mold (Botrytis solan) 12,000

Powdery mildew 10,000

Paprika Powdery mildew (Leveillula taurica) 26,000

Damping off (Rhizoctonia solini) 1000
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the hyperparameter optimization, five-fold cross valida-
tion was performed. The risk scores from each trial was 
used for further analysis.
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