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Abstract 

Background  Protein–protein interactions (PPIs) are heavily involved in many biological processes. Consequently, 
the identification of PPIs in the model plant Arabidopsis is of great significance to deeply understand plant growth 
and development, and then to promote the basic research of crop improvement. Although many experimental Arabi-
dopsis PPIs have been determined currently, the known interactomic data of Arabidopsis is far from complete. In this 
context, developing effective machine learning models from existing PPI data to predict unknown Arabidopsis PPIs 
conveniently and rapidly is still urgently needed.

Results  We used a large-scale pre-trained protein language model (pLM) called ESM-1b to convert protein 
sequences into high-dimensional vectors and then used them as the input of multilayer perceptron (MLP). To avoid 
the performance overestimation frequently occurring in PPI prediction, we employed stringent datasets to train 
and evaluate the predictive model. The results showed that the combination of ESM-1b and MLP (i.e., ESMAraPPI) 
achieved more accurate performance than the predictive models inferred from other pLMs or baseline sequence 
encoding schemes. In particular, the proposed ESMAraPPI yielded an AUPR value of 0.810 when tested on an inde-
pendent test set where both proteins in each protein pair are unseen in the training dataset, suggesting its strong 
generalization and extrapolating ability. Moreover, the proposed ESMAraPPI model performed better than several 
state-of-the-art generic or plant-specific PPI predictors.

Conclusion  Protein sequence embeddings from the pre-trained model ESM-1b contain rich protein semantic 
information. By combining with the MLP algorithm, ESM-1b revealed excellent performance in predicting Arabidopsis 
PPIs. We anticipate that the proposed predictive model (ESMAraPPI) can serve as a very competitive tool to accelerate 
the identification of Arabidopsis interactome.

Keywords  Arabidopsis, Protein–protein interactions, Machine learning, Pre-trained language model, Natural 
language processing

Background
Protein–protein interactions (PPIs) are heavily involved 
in cellular biological processes, including signal trans-
duction, transcriptional activation, and regulations of 
expression and metabolism [1]. Thus, it is critical to iden-
tify whether two proteins interact or not to help under-
stand protein functions. Traditional experiments [e.g., 
isothermal titration calorimetry [2], pull-down assay [3], 
and surface plasmon resonance [4]] are low-throughput 

*Correspondence:
Ziding Zhang
zidingzhang@cau.edu.cn
1 State Key Laboratory of Animal Biotech Breeding, College of Biological 
Sciences, China Agricultural University, Beijing 100193, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-01119-6&domain=pdf


Page 2 of 10Zhou et al. Plant Methods          (2023) 19:141 

and time-consuming. With the development of high-
throughput techniques, such as in vitro yeast two-hybrid 
screening [5] and affinity purification coupled with mass 
spectrometry [6], the identification of PPI data has been 
significantly accelerated, and the bioinformatics applica-
tions of PPI data have also been widely explored [7]. On 
the one hand, the experimental PPI data are often com-
piled as PPI interaction networks [8–10], and function-
ally unknown proteins in the networks can be annotated 
through network clustering and analysis [11–13]. On the 
other hand, the experimental PPI data can also be used 
to train PPI prediction models [14–16]. In this regard, 
machine learning is an increasingly popular computa-
tional method to learn data features deposited in known 
PPIs and build predictive models to predict unknown 
interactions.

Since protein interactions are mainly determined by 
their primary sequences, many efforts have focused on 
developing sequence-based PPI predictors. To build a 
machine learning model for PPI prediction, the key step 
is conducting feature engineering, which converts pro-
tein sequences into fixed-dimensional vectors. The fre-
quently used sequence encoding schemes include amino 
acid composition (AAC), dipeptide composition (DPC), 
conjoint triad (CT), and composition of k-spaced amino 
acid pairs (CKSAAP). These descriptive representations 
are often combined with traditional machine learning 
methods, such as support vector machine (SVM) [17] 
and random forest (RF) [18], to develop effective PPI 
predictors. Regarding deep learning methods, primitive 
information without feature engineering can be used 
to extract more abstract representations. For instance, 
one-hot encoding and position-specific scoring matrix 
(PSSM) representation have been integrated with the 
framework of convolutional neural network (CNN) to 
achieve higher performance [19, 20].

By analogy to natural language, a protein sequence 
can be deemed a sentence, in which residue segments 
are regarded as words. Based on this hypothesis, natu-
ral language processing (NLP) methods have been used 
in protein representation. For instance, the typical word/
sentence embedding techniques in NLP (e.g., word2vec 
and doc2vec) have been applied to protein sequence rep-
resentations [21–23]. Although the word2vec/doc2vec 
models are either too shallow or trained with the corpus 
containing a limited number of existing proteins, they 
have revealed very promising results in many protein bio-
informatics tasks. As one of the self-supervised language 
models, Transformer, released in 2017 by Google [24], 
solved the problem of memory capacity and process-
ing speed. A typical Transformer is comprised of Atten-
tion modules focusing on vital information from global 
to local, and it often showed significant performance 

improvement when trained on large datasets [25]. Con-
sidering the advantages of Transformer in NLP, Rives 
et  al. used this technique to generate a protein lan-
guage model (pLM) for the purpose of protein sequence 
embeddings [26]. ESM is a deep Transformer language 
model trained on UniRef50, which can learn multi-
scale representations, including biochemical properties, 
remote homology, and alignment within a protein family. 
Researchers have applied similar representation in differ-
ent prediction tasks [27–31].

Large-scale identification of PPIs in the model plant 
Arabidopsis is of significance to decipher plant gene reg-
ulatory relationships, deeply understand plants’ growth 
and development, and promote the basic research of 
crop improvement and breeding. Although many known 
Arabidopsis PPIs have been stored in public databases, 
the Arabidopsis interactome remains incomplete. Thus, 
developing effective machine learning methods trained 
on existing PPI data to promptly predict unknown PPIs 
will accelerate the determination of Arabidopsis interac-
tome data, reduce the experimental cost and provide new 
hints for plant functional genomics. To our best knowl-
edge, however, the pLM-based embeddings have not 
been employed for predicting Arabidopsis PPIs. Here, 
we further explored the application of ESM representa-
tion in predicting Arabidopsis PPIs. Through a series of 
computational experiments, we observed that the com-
bination of ESM-1b representation (one representative 
ESM model) with multilayer perceptron (MLP), termed 
ESMAraPPI, yielded more powerful performance than 
the predictive models inferred from other pLMs or con-
ventional sequence features. In the meantime, the pro-
posed model also revealed better performance than 
several generic or plant-specific PPI predictors.

Results and discussion
The computational framework and benchmarking datasets 
of ESMAraPPI
The flowchart of the proposed prediction method is illus-
trated in Fig.  1. To train and assess the performance of 
different PPI prediction models, we collected high-qual-
ity experimental Arabidopsis PPIs as positive samples. 
Additionally, we compiled negative training data by ran-
domly selecting Arabidopsis protein pairs, and the ratio 
of positive to negative samples was set as 1:10. To train 
and evaluate model performance, we followed Park and 
Marcotte’s advice [32] to construct one training dataset 
(i.e., C1) and two independent test sets (i.e., C2 and C3) 
(Fig. 1). Specifically, only one protein in each pair from C2 
is allowed to be appeared in C1, whereas both proteins in 
each pair from C3 are unseen in C1. The representation 
of a protein was extracted from ESM-1b directly, which 
resulted in a feature vector of 1280 dimensionality. Since 
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the PPI prediction is a pair-input problem, Hadamard 
product was applied before inputting representations of 
protein pairs to a 4-layer MLP for model training. More 
details about the dataset preparation, pLM feature vec-
tor construction, and machine learning algorithm imple-
mentation are available in the Methods section.

ESM‑1b coupled with MLP performed best in predicting 
Arabidopsis PPIs
Nine different pLMs from ESM embed each protein 
sequence to a vector of 1280 dimensionality. We com-
bined these pLMs with three machine learning algo-
rithms (MLP, RF and SVM) to seek the best combination. 
The 4-layer MLP computational framework, which 
contains 1024, 512, 128, and 16 nodes, was optimally 
selected. Concerning RF and SVM, the correspond-
ing parameters were optimized through grid search. 
Considering that positives and negative samples are 
highly imbalanced in this work, we mainly quantified 

the performance by plotting the precision–recall (PR) 
curve and calculating the corresponding area under the 
PR curve (AUPR). As shown in Fig. 2, MLP-based mod-
els yielded the highest AUPR values, followed by RF- 
and SVM-based models. In particular, the combination 
of MLP and ESM-1b (i.e., esm1b_t33_650M_UR50S) 
achieved the best performance (AUPR = 0.834 on C2 and 
0.810 on C3). To supplement the AUPR-based assess-
ment, we also plotted the receiver operating character-
istic (ROC) curve and calculated the corresponding area 
under the ROC curve (AUROC) for each combination. 
Again, the MLP and ESM-1b combination resulted in the 
largest AUROC value (Additional file 1: Fig. S1).

We further compared ESM-1b with three pLMs, Prot-
Trans, UniRep, and TAPE. Note that these three pLMs 
were trained using different training strategies from ESM-
1b. Trained on data from UniRef and BFD covering up to 
393 billion amino acids, an auto-encoder model (ProtT5-
XL-U50) from ProtTrans for the first time outperformed 

Fig. 1  The schematic diagram of ESMAraPPI. Arabidopsis PPIs from the IntAct database with MIscore ≥ 0.45 were collected as positive samples. 
We also compiled 10 times negative samples to construct an original dataset. Then, we divided the original dataset into three datasets (i.e., C1, 
C2 and C3). C1 was the training dataset, while C2 and C3 were two independent test datasets. The representations of protein pair were extracted 
from ESM-1b, and Hadamard product was applied before inputting to a 4-layer MLP. The final output was an interaction score between 0 and 1 (a 
prediction score ≥ 0.5 corresponded to a positive interaction)
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existing methods without the need of multiple sequence 
alignments (MSAs) or evolutionary information in sec-
ondary structure prediction [33]. UniRep was based 
on multiplicative LSTM (mLSTM) and was trained on 
UniRef50 [34]. It was found that the amino-acid embed-
dings learned by UniRep contained physiochemically 
meaningful clusters. TAPE was a small Transformer 
trained on UniRef50 [35], which embedded each pro-
tein sequence to a vector of 768 and achieved compara-
ble performance with UniRep on protein fluorescence 
and stability prediction. Of the three machine learning 
algorithms under investigation, the MLP algorithm again 
achieved the best performance in combination with these 
three pLMs judged by AUPRC or AUROC values. Inter-
estingly, ESM-1b also outperformed three other pLMs 
in the computational framework of MLP (Fig.  3). We 
further compared ESM-1b with two baseline sequence 
encoding schemes (i.e., AAC and DPC). AAC stands for 
the compositions of each amino acid in the whole protein 
sequence, which transforms a protein into a vector of 20 
dimensionality. DPC represents the compositions of two 
continuous amino acids in the whole protein sequence, 
which was used to convert a protein into a vector of 400 

dimensionality. As shown in Additional file  1: Table  S1, 
the combination of AAC and SVM seems to be optimal 
(AUPR = 0.519 on C2 and 0.481 on C3; AUROC = 0.852 
on C2 and 0.824 on C3), while the combination of DPC 
and RF achieves the best performance (AUPR = 0.646 on 
C2 and 0.564 on C3; AUROC = 0.884 on C2 and 0.845 on 
C3). Comparatively, the optimal performance of these 
two traditional encoding schemes is much inferior to that 
of ESM-1b.

Comparison to existing generic PPI prediction methods
We compared our method with four generic PPI predic-
tion methods, including three sequence-based methods 
[i.e., D-SCRIPT [16], RAPPPID [36], and PIPR [37]] 
and one structure-based method [i.e., TAGPPI [38]]. 
D-SCRIPT first applied a pre-trained model to gener-
ate structurally informative feature representations of 
proteins, and then estimates an interaction probabil-
ity of protein pairs based on these features. RAPPPID 
is a deep learning-based PPI predictor implemented 
through a twin averaged weight-dropped LSTM net-
work employing multiple regularization methods in 
the training step to learn generalized weights. When 

Fig. 2  AUPR values of combinations between nine pLMs from ESM and three machine learning algorithms. Of the different ESM models, ESM-1v 
was fine-tuned for predicting variant effects and contained five models with different random seeds. ESM-1b differs from ESM-1 mainly in higher 
learning rate, dropout after word embedding, learned positional embeddings, final layer norm before the output, and tied input/output word 
embedding. A The results from the independent dataset C2 where only one protein in each pair appeared in the training dataset (i.e., C1), while B 
corresponds to the results from the independent dataset C3 where no protein in each pair appeared in the training dataset (i.e., C1)
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tested on stringent PPI datasets containing proteins 
unseen in the training dataset, it reveals excellent per-
formance. PIPR is a sequence-based PPI predictor 
combining pre-trained amino acid embeddings with 
a Siamese recurrent convolutional neural network 
(RCNN) architecture. TAGPPI is an end-to-end com-
putational framework for PPI prediction, in which 
multi-dimensional features by employing 1D convolu-
tion operation on protein sequences and graph learning 

method on contact maps constructed from AlphaFold2 
are considered.

We downloaded the source codes of PIPR, 
D-SCRIPT, RAPPPID, and TAGPPI and retrained the 
corresponding predictive models using the C1 data-
set. Moreover, we tested their performance on our 
two independent datasets (C2 and C3). As shown in 
Fig. 4, the proposed ESMAraPPI considerably outper-
formed the four existing PPI predictors in terms of 

Fig. 3  PR and ROC curves of the predictive models from four pLMs in combination with MLP. A plots the PR curves on the independent test set C2, 
while B plots the PR curves on the independent test set C3. Parameters in the legends of A and B denote the corresponding AUPR values. C plots 
the ROC curves on the independent test set C2, while D plots the ROC curves on the independent test set C3. Parameters in the legends of C and D 
denote the corresponding AUROC values
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AUPRC or AUROC values. In particular, the proposed 
ESMAraPPI reveals robust performance on the C3 
test set. For the three existing sequence-based meth-
ods, the performance of PIPR is ranked as the best, 
followed by RAPPPID and D-SCRIPT. When tested 
on the C3 test set, the performance ranking remains 
the same, but the performance of PIPR and RAPPPID 
dropped rapidly. Considering the predicted protein 

structural information used in PPI prediction, TAGPPI 
considerably surpassed these three pure sequence-
based models on both C2 and C3, although it also 
dropped sharply on C3.

In addition to the better performance of ESM-1b 
embedding with simple MLP, its computational effi-
ciency is also high. In either the model training or 
prediction steps, ESMAraPPI showed more rapid com-
putational speed (Table 1).

Fig. 4  PR and ROC curves of ESMAraPPI and four existing generic PPI predictors in predicting Arabidopsis PPIs. A plots the PR curves 
on the independent test set C2, while B plots the PR curves on the independent test set C3. Parameters in the legends of A and B denote 
the corresponding AUPR values. C plots the ROC curves on the independent test set C2, while D plots the ROC curves on the independent test set 
C3. Parameters in the legends of C and D denote the corresponding AUROC values
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Comparison to existing Arabidopsis PPI prediction 
methods
We compared the proposed ESMAraPPI with two exist-
ing Arabidopsis PPI prediction methods [i.e., AraPPINet 
[39] and DeepAraPPI [40]]. AraPPINet was inferred 
from three-dimensional structures and functional evi-
dence, encompassing 316,747 high-confidence interac-
tions among 12,574 proteins. It exhibited high predictive 
power for discovering protein interactions at a 50% true 
positive rate. To allow for a fair comparison between 
our model and AraPPINet, we submitted our test data-
sets (C2 and C3) directly to their web server, and the 
default threshold (0.5) reported by AraPPINet was also 
used to distinguish interactions and non-interactions. 
Since AraPPINet did not release the predictions at dif-
ferent threshold values, we were not able to compare 
ESMAraPPI and AraPPINet through AUPRC or AUROC 
values. Thus, the routine measurements, such as Accu-
racy, Matthews correlation coefficient (MCC), Recall [i.e., 
true positive rate (TPR)], Specificity [i.e., 1-false positive 
rate (FPR)] and Precision, were employed for perfor-
mance comparison (Table 2). Judged by the MCC value, 
which is a more comprehensive measurement than the 
other parameters, ESMAraPPI outperforms AraPPINet 
in both C2 and C3 datasets (Table 2).

We finally compared ESMAraPPI with DeepAraPPI, 
which was recently developed in our team. As an inte-
grative Arabidopsis PPI prediction method, Deep-
AraPPI comprises three individual predictors, (i) a 
word2vec encoding-based Siamese RCNN model, (ii) 
a Domain2vec encoding-based MLP model, and (iii) 

a GO2vec encoding-based MLP model [40]. The final 
DeepAraPPI model combined the prediction results 
of the three individual predictors through a Logistic 
regression model. We also tested DeepAraPPI on our 
datasets. As shown in Table  3, ESMAraPPI outper-
formed the individual predictors of DeepAraPPI (i.e., 
RCNN, Domain2vec, and Go2vec) in both test sets (C2 
and C3). With respect to C3, ESMAraPPI surpassed the 
final DeepAraPPI model, which means our new method 
was more competitive and will be more reliable in prac-
tical applications.

Case study
To explore the real application of ESMAraPPI, we pro-
vided a case study related to the interaction prediction 
of two proteins (BIN2 and SOS2) involved in the salt 
overly sensitive (SOS) pathway. In 2020, Li et al. showed 
that BIN2 functions as a negative regulator of primary 
root growth under salt stress by phosphorylating and 
inhibiting SOS2 [41]. It should be emphasized that the 
interaction between BIN2 and SOS2 was consistently 
determined by the yeast two-hybrid assay, the split-
LUC assay and the BiFC assay in Li et al.’s work, which 
has not been included in any public database. Using the 
ESMAraPPI model, BIN2 and SOS2 were predicted to 
interact (prediction score = 0.592), indicating the pro-
posed method has practical application in predicting 
Arabidopsis PPIs.

Table 1  Computational time required in different methodsa

a All the training and prediction procedures were processed on a high-
performance computer with 20 cores CPU, 256G RAM, and Tesla V100 GPU
b  Total predicting time means the computational time required for processing 
the C3 test dataset

ESM-1b + MLP TAGPPI RAPPPID PIPR D-SCRIPT

Training 
epoch

40 10 20 20 10

Total training 
time

56 s 9.29 h 1.12 h 700 s 7.22 h

Total predict-
ing timeb

0.1 s 583 s 18 s 5 s 82 s

Table 2  Comparison of ESMAraPPI and AraPPINet on the C2 and C3 test sets

Methods C2 C3

Accuracy Specificity MCC Recall Precision Accuracy Specificity MCC Recall Precision

ESMAraPPI 0.957 0.994 0.708 0.589 0.901 0.954 0.994 0.688 0.557 0.902

AraPPINet 0.939 0.999 0.551 0.337 0.966 0.937 0.999 0.534 0.318 0.966

Table 3  AUPR and AUROC values of DeepAraPPI and ESMAraPPI 
on the C2 and C3 test setsa

a  Figure in bold font indicates the corresponding model achieved the maximal 
AUPR and AUROC value

Method AUPR AUROC

C2 C3 C2 C3

DeepAraPPI_RCNN 0.541 0.331 0.852 0.778

DeepAraPPI_Domain2vec 0.706 0.639 0.884 0.845

DeepAraPPI_Go2vec 0.771 0.709 0.942 0.917

DeepAraPPI 0.871 0.785 0.978 0.944

ESMAraPPI 0.824 0.810 0.966 0.960
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Conclusion
In this work, we found that sequence representations 
directly generated by large-scale pre-trained pLMs 
without any further feature engineering can be success-
fully used to develop machine learning-based Arabidop-
sis PPI predictors. We have shown that the proposed 
ESMAraPPI (i.e., ESM-1b + MLP) model yielded a highly 
accurate performance in predicting Arabidopsis PPIs. 
On the one hand, it achieved dramatic performance 
improvement in comparison to the models inferred from 
baseline sequence encoding schemes. On the other hand, 
it also revealed better performance than several state-of-
the-art generic or plant-specific PPI predictors. The suc-
cess of ESMAraPPI should be ascribed to the fact that the 
large-scale pre-trained pLMs can capture rich semantic 
information regarding protein sequence-structure-evolu-
tion relationships. To facilitate the research community, 
we have made all our codes and datasets freely available 
at https://​github.​com/​keiwo/​ESMAr​aPPI. We believe 
that the application of pLMs in protein sequence repre-
sentation is providing a very promising way to deal with 
feature engineering in PPI prediction.

Methods
Data collection and preprocessing
Experimental Arabidopsis PPIs were first downloaded 
from IntAct (https://​www.​ebi.​ac.​uk/​intact/​home), and 
only PPIs with the type of direct interaction or physical 
association were further retained. Moreover, PPIs with 
MIscore < 0.45 were removed. Finally, we obtained 7729 
PPIs, which are regarded as positive samples in this work. 
To construct negative samples, we first removed pro-
teins in positive samples from the complete Arabidop-
sis protein list, and the remaining Arabidopsis proteins 
sharing ≥ 40% sequence identity with proteins in posi-
tive samples were further filtered out. Then, we removed 
redundant proteins by applying a sequence identity cut-
off of 40%, and 8382 proteins were retained. After that, 
we obtained a protein list by mixing these 8382 proteins 
and proteins in positive samples, which were used to 
construct negative samples through random pairing. By 
controlling the ratio of positive and negative samples as 
1:10, 77,290 random protein pairs that were not experi-
mentally identified as PPIs were selected as negative 
samples. Finally, an original dataset containing 7729 posi-
tive samples (i.e., PPIs) and 77,290 negative samples (i.e., 
non-PPIs) was compiled in this work. To conduct model 
training and evaluation, we followed Park and Marcotte’s 
advice to divide the original dataset into three datasets 
(i.e., C1, C2, and C3). C1 was the train dataset, while C2 
and C3 were two independent test datasets. More details 
about the sizes of the three datasets are listed in Table 4.

Protein representation
The ESM models are available at https://​github.​com/​
faceb​ookre​search/​esm/​tree/​v1.0.2. There are 13 mod-
els in the ESM version we used. Of them, esm_msa1_
t12_100M_UR50S and esm_msa1b_t12_100M_UR50S 
require extra MSAs as input, which were not further con-
sidered. In the remaining 11 models, nine models encode 
each protein sequence into a vector of 1280 dimension-
ality, which were chosen for further investigation. We 
downloaded these nine pre-trained ESM models and fol-
lowed the ESM authors’ instructions to run them locally. 
After extracting the final layer’s hidden parameters, the 
matrix was averaged on the first dimension to generate 
1280 features for each sequence. The ProtTrans model is 
available at https://​github.​com/​agema​gician/​ProtT​rans. 
We downloaded prot_t5_xl_uniref50 (ProtT5), which 
converted each protein sequence to a vector of 1024 
dimensionality. The TAPE and UniRep models are avail-
able at https://​github.​com/​songl​ab-​cal/​tape. Similarly, 
we downloaded TAPE and UniRep that embed each pro-
tein sequence to a vector of 1900 and 768 dimensionality, 
respectively.

Machine learning algorithms
Multilayer perceptron (MLP)
Through the PyTorch machine learning framework, we 
implemented a 4-layer MLP, which contains 1024, 512, 
128, and 16 nodes. To avoid the order bias from protein 
pairs, the Hadamard product of two protein features, 
rather than their concatenation, was used as model input. 
The sigmoid function was applied to the final output 
to yield a prediction score between 0 and 1 (a predic-
tion score ≥ 0.5 corresponded to a positive interaction). 
Then, the binary cross entropy (BCE) loss function was 
implemented.

Support vector machine (SVM)
We implemented SVM based on the sklearn package 
in Python, and the parameters were optimized by grid 
search. The kernel function was set as ’rbf ’, the regu-
larization parameter was set to 1, and the kernel coeffi-
cient was set as ’scale’. The other parameters were set as 
default. The model input was Hadamard product of two 

Table 4  Statistics of the C1, C2 and C3 datasets

Dataset #positive 
samples

#proteins 
involved 
in positive 
samples

#negative 
samples

#proteins 
involved in 
negative samples

C1 3519 1415 35,190 7068

C2 3404 1781 34,040 10,586

C3 806 551 8060 3534

https://github.com/keiwo/ESMAraPPI
https://www.ebi.ac.uk/intact/home
https://github.com/facebookresearch/esm/tree/v1.0.2
https://github.com/facebookresearch/esm/tree/v1.0.2
https://github.com/agemagician/ProtTrans
https://github.com/songlab-cal/tape
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protein features. A prediction score ≥ 0.5 was thought to 
be interaction.

Random forest (RF)
We implemented RF based on the sklearn package in 
Python. The parameters were optimized by grid search. 
The n_estimators was set as ’100’, and max_depth was set 
as ’None’. The model input was Hadamard product of two 
protein features. A prediction score ≥ 0.5 was thought to 
be interaction.

Performance evaluations
Accuracy, Specificity, Precision, Recall, and MCC were 
used to evaluate the prediction performance. These 
parameters are defined as follows:

where TP, TN, FP, and FN represent the numbers of true 
positives, true negatives, false positives, and false nega-
tives, respectively. To provide a comprehensive perfor-
mance assessment for each predictive model, the PR 
curve was plotted, and the AUPRC value was also cal-
culated to quantify the performance. In the meantime, 
the ROC curve, which plots the TPR value against the 
FPR value at different thresholds, and the correspond-
ing AUROC value were also employed for performance 
assessment.
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