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Abstract 

Background Plant defense activators offer advantages over pesticides by avoiding the emergence of drug-resistant 
pathogens. However, only a limited number of compounds have been reported. Reactive oxygen species (ROS) act 
as not only antimicrobial agents but also signaling molecules that trigger immune responses. They also affect various 
cellular processes, highlighting the potential ROS modulators as plant defense activators. Establishing a high-through-
put screening system for ROS modulators holds great promise for identifying lead chemical compounds with novel 
modes of action (MoAs).

Results We established a novel in silico screening system for plant defense activators using deep learning-based 
predictions of ROS accumulation combined with the chemical properties of the compounds as explanatory vari-
ables. Our screening strategy comprised four phases: (1) development of a ROS inference system based on a deep 
neural network that combines ROS production data in plant cells and multidimensional chemical features of chemical 
compounds; (2) in silico extensive-scale screening of seven million commercially available compounds using the ROS 
inference model; (3) secondary screening by visualization of the chemical space of compounds using the generative 
topographic mapping; and (4) confirmation and validation of the identified compounds as potential ROS modula-
tors within plant cells. We further characterized the effects of selected chemical compounds on plant cells using 
molecular biology methods, including pathogenic signal-triggered enzymatic ROS induction and programmed cell 
death as immune responses. Our results indicate that deep learning-based screening systems can rapidly and effec-
tively identify potential immune signal-inducible ROS modulators with distinct chemical characteristics compared 
with the actual ROS measurement system in plant cells.

Conclusions We developed a model system capable of inferring a diverse range of ROS activity control agents 
that activate immune responses through the assimilation of chemical features of candidate pesticide compounds. By 
employing this system in the prescreening phase of actual ROS measurement in plant cells, we anticipate enhanced 

*Correspondence:
Masayuki Kogoshi
gh21701@ed.sus.ac.jp
Takamitsu Kurusu
kurusu@rs.sus.ac.jp
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-01118-7&domain=pdf


Page 2 of 14Kogoshi et al. Plant Methods          (2023) 19:142 

efficiency and reduced pesticide discovery costs. The in-silico screening methods for identifying plant ROS modulators 
hold the potential to facilitate the development of diverse plant defense activators with novel MoAs.

Keywords Reactive oxygen species (ROS), Chemical property, Deep neural network (DNN), In silico screening, 
Pesticides, Plant defense activators

Background
Development of pesticides, such as herbicides, fun-
gicides, and plant defense activators, has been drasti-
cally decreasing because conventional visual selection 
methods to explore useful pesticide candidates from 
compounds are experimentally time-consuming and 
expensive [1]. Additionally, in recent years, pesticide-
resistant organisms have emerged worldwide, increas-
ing the need to develop pesticides with novel modes of 
action (MoAs).

Reactive oxygen species (ROS; e.g.,  O2
˗•,  H2O2,  OH•, 

and 1O2) are partially reduced or excited forms of atmos-
pheric oxygen that are thought to play crucial roles in 
plant cells [2]. ROS play multiple beneficial roles as sign-
aling products capable of regulating stress responses 
and development [3] including diverse metabolic path-
ways [4, 5] and gene expression [6–8]. The reduction in 
excessive ROS accumulation under environmental stress 
conditions confer tolerance to a variety of biotic and abi-
otic stresses [9–12]. In contrast, pathogen recognition 
induces ROS production by enzymes such as NADPH 
oxidases in both plant and animal cells [3, 13, 14]. ROS 
are antimicrobial products but also serve as signaling 
molecules that activate immune responses [15–18], indi-
cating that ROS modulators have the potential to func-
tion as a variety of agricultural chemicals, such as plant 
defense activators [19–21]. As ROS have multiple physi-
ological action points in cells [2], the ROS screening 
system is a typical multi-target screening system and is 
expected to create lead chemical compounds with novel 
MoAs. However, no system has been reported to predict 
compound-derived ROS production triggered by biotic/
abiotic stress elicitation in plant cells.

Plant defense activators have advantages over pesti-
cides, such as avoiding the appearance of drug-resist-
ant pathogen; however, only a few such compounds 
have been reported [22–25]. A wide variety of chemi-
cal compounds have been screened to identify effective 
plant activators that may be applicable to a broad range 
of crops. Notably, when cultured tobacco BY-2 cells are 
treated with the elicitor protein cryptogein from oomy-
cetes, immune responses, such as persistent NADPH 
oxidase-mediated ROS production and programmed cell 
death (PCD), are induced [26–28]. Recently, a monitoring 
system utilizing a 96-well plate and a luminometer based 
on the quantification of ROS production derived from 

the luminescence of luminol in cultured tobacco BY-2 
cells was constructed [29]. ROS production in tobacco 
BY-2 cultured cells triggered by a pathogenic signal mol-
ecule have been shown to be useful to screen microbe 
that boost plant immune responses [28]. Furthermore, 
a screening method was developed to identify chemi-
cal compounds that regulate ROS production and trig-
ger immune responses in plant cells [29], suggesting the 
value of ROS activity as an indicative factor and under-
scoring the necessity for extensive-scale screening in the 
future. However, in silico high-throughput screening sys-
tem for plant defense activators using the prediction of 
ROS accumulation in plant cells has not been reported.

In conventional in silico screening, the search and iden-
tification of interactors targeting specific proteins (points 
of action) have been conducted, but their commerciali-
zation as pesticides has not been achieved. In addition, 
compounds exhibiting selectable phenotypes have been 
extensively isolated for visual selection by direct appli-
cation to crops. Conversely, in the realm of deep learn-
ing, diverse applications are being pursued across various 
domains, such as drug discovery and virtual screening, 
owing to advancements in technology [30]. Recently, 
quantitative structure–activity relationship-based virtual 
screening was developed using a machine learning-based 
prediction model created by analyzing the relation-
ship between chemical structures [31]. This method can 
be applied even if the target protein is unknown and 
predicts activity based on the characteristics of active 
unknown compounds.

In this study, we constructed a model system capable 
of inferring a diverse range of ROS activity control agents 
by learning the chemical features of candidate pesticide 
compounds. Our screening strategy comprised four 
phases: (1) development of an ROS inference system 
based on a deep neural network (DNN) that combines 
ROS production data in planta and multidimensional 
chemical features of compounds; (2) in silico screening of 
seven million commercially available compounds using 
the ROS inference model; (3) secondary screening by 
visualization of the chemical space using the generative 
topographic mapping (GTM) method; and (4) confirma-
tion and validation of the identified compounds as ROS 
modulators in plant cells. We present a robust and valu-
able system for identifying compounds that modulate 
ROS production in plant cells and that function as plant 
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defense activators. Further, the efficacy of our system as 
a primary screening tool for ROS modulators with plant 
defense activator properties is also discussed.

Materials and methods
Data set and construction of ROS inference model
When cultured tobacco BY-2 cells are treated with the 
oomycete-derived elicitor cryptogein, persistent ROS 
production mediated by NADPH oxidase is induced as 
an immune response [26, 27]. For this analysis, we used 
a dataset comprising chemiluminescence-dependent 
ROS production obtained from tobacco BY-2 cultured 
cells treated with 9991 chemical compounds in combi-
nation with cryptogein. A chemical library of 9991 small 
molecules (DIVERSet NovaCore NQ612) from May-
Bridge was used in this study. We constructed a library 
of 219-dimensional chemical features based on factors, 
such as the number of atoms, hydrophobicity, and other 
numerical values, using the structural analysis software 
Discovery Studio (BIOVIA). The ROS production data in 
tobacco BY-2 cultured cells triggered by cryptogein was 
subjected to logarithmic transformation  (log10[ROS]) due 
to the wide range of chemiluminescence values, span-
ning approximately 9.5–540,000. ROS modulators were 
selected by converting the ROS production of each com-
pound to a logarithmic scale and sorting the changes in 
ascending order. As shown in Fig. 1, 351 compounds dis-
playing an ROS production change of ≥  log10[4.67] that 
showed a sharp change in activity among all compounds 
were identified as ROS modulators. The ROS production 
data used in this study are presented in Supplementary 
Information (Additional file 1).

Thereafter, we conducted data augmentation using 
the SMOTE method, which is a pseudo-data augmen-
tation technique introduced by Chawla et  al. [32] for 
this particular library. The SMOTE hyperparameters 
used in this study are listed in Table 1. Specifically, the 
number of ROS modulators increased 27-fold from 
351 to the same number as the other 9640 compounds, 
bringing the amount of data to 19,280. The chemi-
cal features of the compounds within the library were 
used as explanatory variables, and 47-chemical features 
that showed a sharp change in importance of all chemi-
cal features yielded by the random forest algorithm 
were selected (Fig.  2). The ROS production data and 
47-chemical features of the library compounds used 
in this study are presented in Supplementary Informa-
tion (Additional file  1). Subsequently, DNN training 
was performed to predict the extent of ROS production 
[33]. We randomly divided the training data into 90% 
and the test data into 10% and verified the accuracy of 
each data. For comparative verification purposes, a ran-
dom forest algorithm was used. The hyper-parameters 
of DNN and random forest used in this study are listed 
in Tables 2, 3, respectively. Using DNN ROS inference 
model, we developed an  in silico screening system to 
identify ROS modulators. The root mean square error 
(RMSE) was used as an evaluation index to evaluate 
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Fig. 1 Distribution of ROS production in tobacco BY-2 cultured cells 
under low concentration of cryptogein-elicitor treatment. A total 
of 351 chemical compounds defined as ROS modulators ranked 
higher than the red line  (log10[4.67]). The vertical axis represents 
the logarithmic conversion of ROS-dependent chemiluminescence 
levels in tobacco BY-2 cultured cells triggered by cryptogein (25 nM), 
and the horizontal axis shows the chemical compounds arranged 
in ascending order of their ROS-dependent chemiluminescence 
levels

Table 1 SMOTE hyperparameters

Parameter Setting value

Sampling strategy Minority data

Random state 42

The number of nearest neighbors 5
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Fig. 2 Importance of each chemical feature calculated by random 
forest method. The intersection with the red line indicates the point 
at which the change in importance slowed down. The vertical axis 
represents the index of importance, and the horizontal axis depicts 
the chemical features arranged in descending order of importance
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this method. The RMSE was calculated using the fol-
lowing equation:

(yi ; actual value, ŷi ; predicted value, N  ; Number of 
samples)

In silico screening of seven million commercially available 
compounds using a ROS inference model
We gathered SDF (Structure-Data File) data on a vast 
collection of approximately seven million commercially 
accessible compounds with diverse synthesizable frame-
works from the Namiki Shoji Chemical Cupid database. 
Next, we performed in silico screening of these com-
pound datasets to explore ROS modulator candidates by 
inferring the magnitude of ROS production.

Secondary screening through the visualization of chemical 
space using the GTM method
A GTM is a highly utilized and powerful technique 
employed for the visualization and reduction of dimen-
sionality in data [34]. It employs a probabilistic nonlinear 
approach wherein a manifold is trained to accurately rep-
resent the data in its original space, which is subsequently 
transformed into a two-dimensional latent space. In this 
study, we selected 47-dimensional chemical features of 
the compounds used in the DNN [35] and employed the 
GTM method [36] to visually represent their chemical 
characteristics. The GTM hyperparameters used in this 

RMSE =

√
1

N

∑N

i = 1
(yi − ŷi)2

study are listed in Table 4. The resulting map was divided 
into 64 compartments, and compounds were selected 
based on their proximity to 351 ROS modulators (Fig. 1) 
within each compartment and their high ROS inference 
values.

Measurement of ROS production in tobacco BY‑2 cultured 
cells
The tobacco BY-2 (Nicotiana tabacum L. ‘Bright Yellow 
2’) cultured cells were maintained through weekly dilu-
tions (1/100) of cells in modified Linsmaier and Skoog 
medium, as described previously [37]. The cell suspen-
sion was agitated on a rotary shaker at 95 rpm at 25 °C in 
the dark.

Cells cultured for 3 d after sub-culturing were used in 
this experiment. Twenty five milliliters of cells were col-
lected using centrifugation and resuspended in 120  mL 
of ROS assay buffer (pH 7.0) containing 5  mM MES, 
0.5  mM  CaCl2, 0.5  mM  K2SO4 and (175  mM mannitol. 
The cells (100  μL) were dispensed into each well of a 
96-well white plate (Thermo Fischer scientific, Denmark; 
No. 236107) using a multichannel pipette with truncated 
tips. A total of 1  μL of each chemical compound (final 
concentration 100  μM) was added to the wells. DMSO 
(1%) was added to the wells of the plate as a solvent con-
trol. After 1.5 h of shaking, cryptogein elicitor (final con-
centration 25 or 50 nM) was added to the wells to induce 
ROS production. After culturing for 3 h, 1 μL of 20 mM 
L-012 (FUJIFILM Wako Pure Chemical, Japan) dissolved 
in ROS assay buffer [38] was added to the wells, and 
ROS-dependent chemiluminescence was recorded for 1 s 
using a luminometer (Berthold, Germany).

Measurement of ROS production in Arabidopsis seedlings
Arabidopsis seedlings (Col-0) grown on 1/2 Murashige 
and Skoog liquid medium [39] on the 96-well plate for 
7  d in continuous light conditions (22  °C) were used in 
this experiment. Seedlings were placed into each well of 
a 96-well white plate (Thermo Fischer scientific, Den-
mark; No. 236107) containing 100  μL ROS assay buffer 
(pH 7.0; 5  mM MES, 0.5  mM  CaCl2, 0.5  mM  K2SO4, 
and 175  mM mannitol). A total of 1  μL of each chemi-
cal compound (final concentration 100  μM) was added 

Table 2 Hyperparameters of DNN

Parameter Setting value

Optimizer Adam

Activation function relu

Epochs 100

Hidden layers 4

First layer nodes 128

Second layer nodes 64

Third layer nodes 32

Loss function mse

Table 3 Hyperparameters of Random Forest

Parameter Setting value

The number of trees 100

The maximum depth None

Random state 0

Table 4 Hyperparameters of GTM

Parameter Setting value

Map size 15, 15

Number of RBFs (basis functions) 5, 5

Standard deviation of RBF 5

λ in the EM algorithm 0.01

Number of iterations 100
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to the wells. DMSO (1%) was added to the wells of the 
plate as a solvent control. After chemical treatment for 
1 d, 10 μL of 1 mM L-012 dissolved in ROS assay buffer 
[38] was added to the wells. Subsequently, the flg22 elici-
tor (final concentration 1 µM) was added to the wells to 
induce ROS production. ROS-dependent chemilumines-
cence was recorded every minute for 0.25 s for a duration 
of 40 min using a luminometer (Berthold, Germany).

Cell death assay using Evans blue in tobacco BY‑2 cultured 
cells
Cells cultured for 3  d after sub-culturing were used in 
this experiment. An aliquot of tobacco BY-2 cells was 
incubated with 0.05% Evans blue (Merck, Germany) for 
10 min and washed four times with water to remove any 
unabsorbed dye. Selective staining of dead cells with 
Evans blue depends on the extrusion of the dye from 
living cells via an intact plasma membrane [40]. In this 
study, > 200 cells in each examination under the bright-
field microscope were counted.

Chemicals
Candidate compounds for ROS modulation were 
obtained from Namiki Shoji (Tokyo, Japan). L-012, a ROS 
indicator, was purchased from FUJIFILM Wako Pure 
Chemical Co. (Osaka, Japan). The flg22-peptide as an 
elicitor [41], was synthesized and purchased from Euro-
fins Genomics (Tokyo, Japan).

Expression and purification of cryptogein elicitor
Pichia pastoris (strain GS115) carrying plasmid pLEP3 
was used for cryptogein production [26]. Cryptogein 
was produced as described by O’Donohue et al. [42] and 
dissolved in distilled water. Cryptogenin concentrations 
were measured using UV spectroscopy with an extinc-
tion coefficient of 8306  M˗1  cm˗1 at 277 nm [43].

Statistical analysis
The significance of differences was assessed using the 
unpaired Student’s t-test, with (a) p < 0.05, (b) p < 0.01, 
and (c) p < 0.005 considered significant.

Results and discussion
Construction of ROS inference model
The results of ROS inference using the training data are 
presented in Fig. 3 and Table 5. After training, the accu-
racy was verified using the RMSE. DNN showed a higher 
F-measure compared to random forest, with a precision 
of over 90%. In contrast, compared to DNN, random for-
est exhibits a reduced recall rate, indicating that random 
forest is more likely to overlook candidate compounds. 

These results suggest that DNN is suitable as a learning 
model for our screening system.

In this validation, ROS modulators, which are poten-
tial plant defense activators, were accurately predicted 
with a high level of precision, exceeding 90% (Fig. 3 and 
Table 5). The reason for the high accuracy is thought to 
be that the candidate compounds are amplified by the 
SMOTE method before training and verification, it is 
likely that chemical features similar to the candidates will 
be included in the training data. The high level of accu-
racy can be attributed to the amplification of candidate 
compounds through the SMOTE method prior to the 
training and validation processes, thereby increasing 
the likelihood of incorporating chemical characteristics 
similar to the candidate into the training dataset. These 
results indicate that accurate prediction is possible for a 
group of compounds with a certain degree of similarity 
in chemical characteristics to the candidate compounds 
used for training.

In order to verify the accuracy of compounds with 
unknown properties, we changed the training data 
and conducted experiments. Specifically, before the 
SMOTE work, 10% of the compounds from each of the 
351 ROS modulators and 9640 other compounds were 
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Fig. 3 Results of ROS inference and measured values in tobacco BY-2 
cultured cells. The vertical axis represents the logarithmic scale of ROS 
production levels, and the horizontal axis represents the arrangement 
of compounds in ascending order of ROS production levels

Table 5 Comparison of learning accuracy between the DNN 
and random forest

Random forest DNN

Training data Test data Training data Test data

RMSE 0.27 0.73 0.47 0.73

Precision 1 1 0.95 0.93

Recall 0.94 0.86 0.99 0.99

F-measure 0.97 0.92 0.97 0.96
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randomly removed as verification data, and the DNN 
model was trained using the rest of data to evaluate the 
prediction accuracy of the validation data. The predic-
tion precision for compound groups with unknown 
characteristics that were not part of the training set 
was approximately 10%, indicating that ROS for com-
pound groups with definitely unknown characteristics 
that were not part of the training set is hard to predict. 
Therefore, additional data obtained by expanding the 
number of compound groups included in the training 
set may be necessary to accurately predict ROS produc-
tion for unknown compounds and to effectively search 
for pesticide compounds.

The model developed in this study demonstrated a 
remarkably high predictive accuracy for the trained com-
pound group, indicating its efficacy in identifying com-
pounds with specific chemical characteristics (Fig. 3 and 
Table  5). Recently, a systematic analysis of structure–
activity relationships has reported that small structural 
changes in active compounds, called activity cliffs (ACs), 
lead to considerable improvements in activity [44]. The 
ROS screening system is a typical multi-target screen-
ing technique because ROS have multiple physiological 
action points in cells [2], indicating that the discovery of 
ACs may produce lead compounds with novel MoAs.

Overall, it is inferred that the proposed model enables 
the selection of a diverse lead compound group with a 
foundational framework resembling plant defense acti-
vators but with distinct MoAs compared to existing 
chemicals. Consequently, large compound libraries with 
the potential for structural expansion can be effectively 

screened using this model, thereby facilitating the identi-
fication of novel compound candidates.

In silico screening of seven million commercially available 
compounds using the ROS inference model
Using a ROS inference model, we established an in silico 
screening system for ROS modulators. A flowchart illus-
trating the in silico screening system based on the ROS 
inference model developed in this study is presented 
in Fig.  4. The system processing steps were as follows: 
(1) Chemical feature values for each compound were 
obtained using Discovery Studio, and the collected data 
were aggregated at intervals of 5000 points. (2) The ROS 
inference model was used to determine the ROS produc-
tion level for each compound. Compounds that exceeded 
the threshold value  (log10[4.67]) were selected and con-
solidated as candidate compounds. This system enabled 
the analysis of one million compounds per day, resulting 
in 2500 times faster screening speed than that of our pre-
vious method [29].

Overall, 8476 compounds were selected from a vast 
pool of seven million compounds as potential candidates 
for ROS modulators based on in silico screening using 
the ROS inference model (Table 6).

Secondary screening via visualization of chemical space 
using the GTM method
To effectively and systematically select a diverse group 
of compounds with distinct chemical characteristics 
[45], 2D maps of the chemical features of the com-
pounds were generated using the GTM for the sec-
ondary selection of candidate compounds [46]. The 

Fig. 4 In silico prediction of ROS inference system. In silico prediction of ROS inference system was performed based on deep learning-based 
prediction of ROS accumulation combined with the chemical properties of the compounds as explanatory variables. The system processing steps 
were as follows: (1) Chemical feature values for each compound were obtained using Discovery Studio, and the collected data were aggregated 
at intervals of 5000 points. (2) The ROS inference model was used to determine the ROS production level for each compound. Compounds 
that exceeded the threshold value  (log10[4.67]) were identified and consolidated as candidate compounds



Page 7 of 14Kogoshi et al. Plant Methods          (2023) 19:142  

resulting map was then partitioned into 64 compart-
ments and the compounds were carefully chosen based 
on their proximity to ROS modulators within the 
closest distance and their high inference ROS values 
(Fig. 5). Compounds exhibiting deleterious effects were 
eliminated from consideration, whereas others iden-
tified as potential ROS modulators were subjected to 
biological assays to evaluate their ROS activity in plant 
cells. As a result, we screened 578 chemical compounds 
out of 8476 potential ROS modulators (Table 6).

A screening overview and the number of compounds 
isolated from our chemical screening system based on 
the ROS inference model, in combination with the visu-
alization of the chemical space of the compounds, are 
shown in Fig. 6 and Table 6.

Verification of potential ROS modulators selected using 
the in silico screening system on the cryptogein‑inducible 
ROS production in tobacco BY‑2 cultured cells
To verify whether the potential ROS modulators pre-
dicted using the in silico screening system exhibited high 
ROS activity, we evaluated the effects of the selected 
compounds on cryptogein-induced ROS production 
mediated by NADPH oxidase in tobacco BY-2 cultured 
cells (Fig. 7a). The evaluated compounds were randomly 
extracted using a random-number generator (https:// 
docs. python. org/3/ libra ry/ random. html# random. ran-
dom), and 16 and 21 chemicals were selected from the 
selected compound groups at each screening stage, 
respectively. Five control compounds (random com-
pounds) were also randomly selected from 7 million 
commercially available compounds using a random-
number generator. Approximately 56.3% of the poten-
tial ROS modulators (9 out of 16 compounds) selected 
in the first screening stage based on the ROS inference 
model induced high ROS production triggered by cryp-
togein in tobacco BY-2 cultured cells compared to that 
of the DMSO control (Fig. 7b). Moreover, approximately 
33.3% of the potential ROS modulators (7 out of 21 com-
pounds) selected in the second screening stage based on 
the visualization of the chemical space of compounds 
also induced high ROS production in tobacco BY-2 cul-
tured cells (Fig. 7b). In contrast, most randomly-selected 
control compounds showed comparable ROS production 
to that of the DMSO control in tobacco BY-2 cells (Fig. 7), 
indicating that the compounds selected by the screening 
system based on the DNN were ROS modulators, with 
an accuracy of ≥ 43.2% (16 out of 37 compounds). Nota-
bly, 351 ROS modulators were selected from the ROS 
production data out of 9991 chemical compounds of 
the library (Fig. 1), indicating approximately 3.5% of the 
hit rate of the ROS modulators obtained from the ROS-
measuring system using tobacco BY-2 cultured cells [29].

Overall, our data suggest that DNN-based screen-
ing systems can be used to rapidly and effectively iden-
tify potential immune signal-inducible ROS modulators 
with distinct chemical characteristics compared with the 
actual ROS measurement system.

Effects of the selected ROS modulators 
on the flg22‑inducible ROS production in planta
Plant defense activators are analogs of the defense hor-
mone salicylic acid, which protects plants from patho-
gens by activating the plant immune system [47–51]. 
Compared with commonly used pesticides that directly 
target pathogens, plant defense activators are not path-
ogen-specific, are not overcome by microbes, and are 
durable in the field [52]. Several chemical screening 

Table 6 The result of in silico screening system using the ROS 
inference model combined with the visualization of chemical 
space of compounds

Screening phase Number of 
compounds

Total number of in silico screening 7,003,667

ROS modulator candidates (1st screening) 8476

ROS modulator candidates (2nd screening) 578

Fig. 5 Visualization of chemical space of selected compounds 
for putative ROS modulators using the GTM method. A chemical 
feature-based 2D map depicting chemical space visualization 
was generated using the GTM method for selected compounds 
from the initial screening. The results obtained from the GTM 
analysis were divided into 64 categories. The vertical axis 
represents the chemical spaces ranging from a minimum of − 1.00 
to a maximum of 1.00, and the horizontal axis depicts the chemical 
space spanning from a minimum of − 1.00 to a maximum of 1.00

https://docs.python.org/3/library/random.html#random.random
https://docs.python.org/3/library/random.html#random.random
https://docs.python.org/3/library/random.html#random.random
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Fig. 6 Schematic diagram of the established in silico screening system of ROS modulators. The screening comprised three interconnected 
phases that allowed the identification of a variety of ROS modulators. The first phase developed a ROS inference system based on DNN learning 
that combines ROS production data in plant cells and multidimensional chemical features of compounds (a). The second phase was in silico first 
screening of seven million commercially available compounds using the ROS inference model (b). The third phase was in silico second screening 
of selected compounds by visualizing the chemical space using the GTM method (b). This system is based on in silico analysis and has advantages 
in terms of both selection time and cost compared to actual measurements in plant cells

(See figure on next page.)
Fig. 7 Verification of potential ROS modulators on cryptogein-inducible ROS production in tobacco BY-2 cultured cells. a The effect of potential 
ROS modulators on cryptogein-inducible ROS production in tobacco BY-2 cultured cells. Cultured cells were dispensed into each well of a 96-well 
white plate, and each compound (final concentration 100 or 50 µM) was added to the indicated wells for 1.5 h. Next, cryptogein (final concentration 
25 or 50 nM) was added to the wells and incubated for 3 h. After cryptogein treatment, L-012 was added directly to the wells and ROS-dependent 
chemiluminescence was recorded using a multi-luminometer. DMSO (1%) was used as a solvent control. Error bars represent SE (n = 3). a < 0.05, 
b < 0.01, c < 0.005; significantly different from the DMSO control. b The vertical axis represents the logarithmic conversion of ROS-dependent 
chemiluminescence levels in tobacco BY-2 cultured cells triggered by cryptogein (25 nM), and the horizontal axis represents the chemical 
compounds arranged in ascending order based on their ROS-dependent chemiluminescence levels. Selected criteria  (log10[4.67]) are shown in red 
line
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procedures have been reported using Arabidopsis seed-
lings in combination with a promoter reporter system 
for defense genes as activity markers [53, 54]. However, 

the compounds identified in these screening studies 
constitutively activated defense responses and were 
often associated with arrested growth and reduced 

Fig. 7 (See legend on previous page.)
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Fig. 8 Verification of potential ROS modulators selected on flg22 peptide-inducible ROS production in Arabidopsis seedlings. a The effect 
of potential ROS modulators on flg22 peptide-inducible ROS production in Arabidopsis seedlings. A seedling was placed into each well of a 96-well 
white plate, and each compound (final concentration 100 or 50 µM) was added to the indicated wells for 24 h. ROS indicator L-012 was added 
to the wells and then flg22-peptide elicitor (final concentration 1 µM) was added to the wells to induce ROS production. ROS-dependent 
chemiluminescence was recorded using a multi-luminometer. Selected criteria are shown in red line. b The vertical axis represents the peak height 
of ROS-dependent chemiluminescence levels in Arabidopsis seedlings triggered by flg22 peptide (1 µM), and the horizontal axis represents 
the chemical compounds arranged in ascending order of their ROS-dependent chemiluminescence levels
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Fig. 9 Effects of potential ROS modulators on cryptogein-inducible programmed cell death in tobacco BY-2 cultured cells. Effects of potential ROS 
modulators on cryptogein-inducible PCD in tobacco BY-2 cultured cells. Cultured cells were dispensed into each well of a 96-well plate, and each 
compound (final concentration 100 or 50 µM) was added to the indicated wells for 1.5 h. Next, the cryptogein elicitor (final concentration 100 
or 1000 nM) was added to the wells and incubated for 24 h. The cells were stained with 1% Evans blue dye (final concentration, 0.05%) for 10 min 
and washed four times with water. Stained cells were observed under a light microscope. Error bars represent SE (n = 3). a < 0.05, c < 0.005; 
significantly different from the DMSO control
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yields [55]. Therefore, developing screening systems 
for novel plant defense activators with novel MoAs is 
urgently needed.

We investigated whether the selected compounds 
could act as ROS modulators in whole plants and in 
other plant species. As shown in Fig. 8 and Additional 
file 2, approximately 21.6% of the selected compounds 
(8 out of 37 compounds) induced high ROS production 
mediated by NADPH oxidase triggered by the flg22-
peptide in Arabidopsis seedlings compared with the 
DMSO control [56]. In contrast, the control chemicals 
selected randomly, except for one compound, showed 
ROS production similar to that of the DMSO control 
(Fig. 8 and Additional file 2), suggesting that potential 
ROS modulators could enhance enzymatic ROS pro-
duction triggered by microbe-associated molecular pat-
terns, signal molecules from microbes, in whole plants 
and in other plant species.

Effects of the selected ROS modulators 
on the cryptogein‑inducible PCD in tobacco BY‑2 cultured 
cells
ROS have direct antimicrobial properties and also serve 
as signaling molecules that activate further immune 
responses [57]. When cultured tobacco BY-2 cells are 
treated with a proteinaceous elicitor derived from a 
pathogen, cryptogein, immune responses such as per-
sistent ROS production and PCD are induced [26–
28]. Therefore, we investigated whether the selected 
compounds that enhanced ROS production could 
also induce PCD triggered by cryptogein in tobacco 
BY-2 cells. As anticipated, almost all ROS modula-
tors selected by the in silico screening system clearly 
enhanced cryptogein-induced PCD in tobacco BY-2 
cultured cells compared with that of the DMSO control 
(Fig. 9). In contrast, the control chemicals selected ran-
domly, except for one compound, showed PCD similar 
to that of the DMSO control (Fig. 9). These results sug-
gest that many selected compounds have the potential 
to be activators of immune responses in plant cells, and 
our established screening system based on ROS pre-
diction can be used to identify potential plant defense 
activators.

Limitations of this study
Our results indicate that accurate ROS prediction by our 
inference model based on DNN learning is possible for a 
group of compounds with a certain degree of similarity 
in chemical characteristics to the candidate compounds 
used for training (Fig.  3 and Table  5). In contrast, our 
results show that ROS for compound groups with defi-
nitely unknown characteristics that were not part of the 

training set is hard to predict. Therefore, additional data 
obtained by expanding the number of compound groups 
included in the training set may be necessary to accu-
rately predict ROS production for unknown compounds 
and to effectively search for pesticide compounds. It is 
expected that efficient learning will be possible by using 
various compound groups with different chemical char-
acteristics in the dataset.

Conclusions
Conventional chemical screening of whole plants requires 
large quantities of chemicals, may be costly, and requires 
a strictly controlled growth space. ROS are antimicro-
bial products but also serve as signaling molecules that 
activate immune responses and have multiple physiologi-
cal action points in cells, indicating that ROS modulator 
have the potential to function as a plant defense activator, 
and the high-throughput screening system of ROS mod-
ulator is strongly expected to create lead chemical com-
pounds with novel MoAs. In this study, we established 
a novel in silico screening system for ROS modulators 
using deep learning-based prediction of ROS accumula-
tion combined with the chemical properties of the com-
pounds as explanatory variables. The importance of this 
strategy was demonstrated by identifying candidates for 
ROS modulators that might function as potential plant 
defense activators with novel MoAs in planta (Figs.  3, 
4, 5, 6, 7, 8, 9). This in silico system offers advantages in 
terms of both time and cost compared with experimen-
tal ROS measurements in plant cells, and the discovery 
of ACs may produce lead compounds with novel MoAs. 
By employing this system in the prescreening phase of 
ROS measurement in plant cells, we anticipate enhanced 
efficiency and reduced pesticide discovery costs. The in 
silico screening methods for the identification of plant 
ROS modulators may aid in the development of a variety 
of plant defense activators that enhance disease tolerance 
in crops. Additionally, as ROS play multiple beneficial 
roles as signaling molecules capable of regulating diverse 
metabolic pathways and gene expression in response to 
environmental stresses, these findings have the poten-
tial to contribute to the development of lead compounds 
with novel MoAs that confer multiple tolerances against 
various biotic and abiotic stresses.
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