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Abstract 

For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, 
provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa 
mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the pre-
sent study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. 
mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ 
the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, 
and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resist-
ant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal 
biomass), physiological  (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase 
Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resist-
ance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were 
identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate 
that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes 
and exploring their immune regulatory networks.
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Introduction
Domesticated apple (Malus domestica Borkh.) is one 
of the most widely produced and economically impor-
tant fruit crops in temperate regions [12]. It has been 
reported that wild apple Malus. sieversii (Ledeb.) Roem. 
is considered as the ancestor of domesticated apples by 
genome and chloroplast sequencing studies [6, 12, 31, 
39]. Therefore, M. sieversii becomes the best candidate 
for resistant molecular breeding since it has a greater 
genetic diversity to restore the disease resistance of 
cultivated apples [3, 66]. Despite the importance of M. 
sieversii as a gene source of disease resistance, little 
is known about the gene diversity and function. With 
the growth of omics technologies, such as transcrip-
tomics, proteomics, and metabolomics, gene function 
in M. sieversii has been investigated much faster and 
more precisely. In a transcriptomic analysis comparing 
highly resistant M. sieversii to susceptible “Royal Gala,” 
it was found that M. sieversii responded more rapidly 
and intensely to Penicillium expansum, and myelo-
blastosis oncogene (MYB) transcription factors as well 
as ethylene/jasmonate (JA)-related genes were over-
represented in the highly resistant genotype M. siever-
sii [3]. Transcriptomic analysis in M. sieversii infected 
with Valsa mali revealed a series of immune-responsive 
events mediated by 8139 different expressed transcripts 
including 264 transcription factors [34].

Valsa canker, caused by the necrotrophic patho-
gen V. mali, is one of the most destructive diseases of 
apples in China and other East Asian countries, as it 
dramatically reduces the production of apple trees by 
rotting the branches and weaking their conditions [1, 
34, 56, 69].  Up to now, a few V. mali-resistant genes 
in apples have been reported. By positively regulating 
phloridzin accumulation, MdUGT88F1, a key UDP-
glucose:phloretin 2’-O-glucosyltransferase gene, con-
trols the balance between development and resistance 
of Malus domestica. Decreased phloridzin biosynthe-
sis increases the lignin and cell wall polysaccharide-
mediated salicylic acid (SA) and reactive oxygen species 
(ROS) accumulation to enhance resistance to Valsa 
canker [78, 79]. Transcription factors MdMYB88 and 
MdMYB124 enhance the tolerance to Valsa canker per-
haps by increasing the accumulation of plant defense 
metabolites such as phenylpropanoids and flavonoids 
[14]. MdCN11 and MdCN19, cyclic nucleotide-gated 
ion channels, negatively regulate Valsa canker resist-
ance by inducing the expression of hypersensitive 
response (HR)-related genes [37]. The receptor-like 
kinase MdMRLK2 (FERONIA) compromises Valsa 
canker resistance, as it reduces resistance-related hor-
mone SA and phytoalexin polyphenol accumulation, as 

well as suppresses defence response gene activities and 
MdHIR1-mediated hypersensitive reaction [26].

The gene function identification of Malus relies on 
the development of genetic transformation technol-
ogy. The functions of a number of genes were verified in 
model species such as Arabidopsis thaliana and Popu-
lus. MsDREB2C was proved to enhance the tolerance to 
drought, heat and cold stress when transformed into A. 
thaliana [75]. According to Ji et al. [20], over-expression 
of MsERF105 in PdPap poplar increased the resistance 
to Alternaria alternata by reducing the accumulation of 
ROS and MDA. Recently, the functions of a large num-
ber of genes in Malus species have been identified in 
genetically transformed calli [50, 52, 53, 67]. The calli 
named ‘Orin’ used for genetic transformation helps to 
identify the function of several regulation factors such 
as MdMYB16, MdbHLH33, MdMYBPA1, and MdMKK9 
in anthocyanin biosynthesis [50, 52]. Due to Malus’ low 
transformation efficiency, only a few gene functions are 
verified in  situ. MdUGT88F1 has been transformed to 
apple (Malus domestica) GL-3, which has high regenera-
tion capacity, to investigate the process and function of 
phloridzin biosynthesis [79]. In order to detect resistant 
genes in apple species including their wild relatives, it is 
necessary to develop an efficient and high-throughput 
gene screening system.

In the present study, we developed an efficient sys-
tem to screen the V. mali-resistant gene in M. sieversii. 
Using this system, the function of response genes to V. 
mali was investigated in  situ. The candidate genes were 
over-expressed or silenced in M. sieversii seedlings using 
transient transformation approach. The suitable transient 
transformation protocols for M. sieversii were optimized 
in this study. Efficiency of five types of fungi inocula-
tion methods were tested, and four of them can be used 
for V. mali infection. Role of candidate genes involved 
in antifungal response were determined in transiently 
over-expressed wild apple by evaluation of range of mor-
phologic and physiologic parameters. Two transcrip-
tion factors MsEIL3 and MsbHLH41 were identified to 
enhance V. mali resistance in M. sieversii using this sys-
tem. A V. mali response gene database in M. sieversii was 
established to investigate the downstream genes of the 
transcription factors. Using this database, the immune 
regulation networks of MsbHLH41 and MsEIL3 were ini-
tially built.

Materials and methods
Plant materials and growth conditions
The seeds of M. sieversii that purchased from Nature 
and Wildlife Conservation Station of Xinyuan County 
were stored at − 18 °C for 40 days, then planted into the 
pots (diameter 15  cm) containing a mixture of soil and 
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vermiculite (3:1, v/v). Under greenhouse conditions, M. 
sieversii seedlings were grown with a constant tempera-
ture of 24  °C ± 2  °C, 16-h light/8-h dark photocycle, and 
70–75% relative humidity. The above-ground part of the 
3-month-old seedlings (about 15 ± 5 cm length) was cut 
off and washed with water twice. Then they were surface-
sterilized in 75% ethanol for 20  s followed by washing 
with sterile distilled water 3 times. The residual water on 
the surface of the seedlings were removed by airing in the 
bechtop before the transformation step.

Microorganisms strains and growth conditions
The A. tumefaciens strain EHA105 was cultured on 
Lysogeny Broth (LB) medium with rifampicin (100  mg 
 L−1), at 28 °C for 2 days. The V. mali strain EGI 1 isolated 
from M. sieversii in the Tianshan Wild Fruit forest, Xin-
jiang-Uyghur Autonomous region, China [33], was cul-
tured on Potato Dextrose Agar (PDA) for 3 days at 25 °C.

Optimization of transient transformation procedures in M. 
sieversii
To optimize the transient transformation to M. sieversii, 
different concentrations of sucrose, Tween-20, calcium 
chloride  (CaCl2), dithiothreitol (DTT), acetosyringone, 
5-azacytidine, and A. tumefaciens cell counts were 
tested, based on the version of transformation solution 
(150 μM acetosyringone, 2.5% (w/v) sucrose, 0.01%(w/v) 
Tween20). There is single variable in each set of tests 
(Fig. 1A–G), and the concentration of other component 
in test solutions remain consistent with the original rec-
ipe. To optimize efficient timing of transformation, seed-
lings soaked in transformation solutions were removed 
at different time points to subsequent co-culture. And to 
optimize efficient timing of cultivation, seedlings were 
harvested at different time points of co-culture proce-
dures. The transient transformation efficiency was rep-
resented by Gus expression level of p1301-Gus in M. 
sieversii leaves. GUS staining were performed following 
the procedures described by Zheng et al. [77]. The seed-
lings transient transformed with EHA105 were used as 
the controls (Con).

V. mali inoculation methods
To explore available inoculation methods for V. mali, 
leaves of the same size from 3-month-old seedlings of 
M. sieversii were punctured with sterile tips (200 μL) 
and infected with 5 different methods labeled as M1 to 
M5 showed in Table  1. The V. mali EGI-1 strain myce-
lial plugs (5  mm each) were excised from the edge of 
the growing colony of the strain (cultured for 3  days). 
Punctured leaves were incubated on water-saturated 
sterile filter paper at 25  °C for 24  h with mycelial plugs 
and 48 h without mycelial plugs (M1). Mycelia grown on 

PDA media (cultured for 5  days at 25  °C) were scraped 
with tips (200 μL) and adjusted to an OD 600 of 1.6 with 
potato dextrose liquid (PDL) medium (M2). Mycelia 
grown on PDA media with cellophane for 7 days at 25 °C 
were transferred to PDL medium, then fragmented with 
glass beads (200 rpm) for 30 min, and adjusted to an OD 
600 of 1.6 with PDL medium (M3). Mycelia were grown 
in PDL medium for 7  days, then fragmented with glass 
beads (200 rpm) for 30 min, and adjusted to an OD 600 of 
1.6 with PDL medium (M4). Mycelia were grown in PDL 
medium at 25 °C with glass beads sharking at 200 rpm to 
an OD 600 of 1.6 (7–9  days) (M5). Then the punctured 
leaves were soaked in mycelial suspension (M2-5) with 
shaking at 10  rpm for 10  min and incubated on water-
saturated sterile filter paper at 25 °C for 3 days.

Construction of plasmids and generation of transiently 
expressed plants
The coding sequence (CDS) of the studied transcription 
factors were cloned from cDNA of M. sieversii and intro-
duced to the binary vector pCambia1307-Flag. All the 
primers used for construction are shown in Additional 
file 1: Table S1. The resultant constructs were sequenced 
to validate and transferred into A. tumefaciens EHA105.

Transient transformation of M. sieversii was then per-
formed according to the optimized protocol. Firstly, the 
A. tumefaciens strains EHA105 harboring the designed 
genetic constructs were harvested at an OD600 of 0.8 
by centrifuging at 3000g for 5  min, and adjusted to an 
OD 600 of 1.2 with the optimized transformation solu-
tion (3% sucrose, 250 μM acetosyringone, 5 mM  CaCl2, 
0.04% DTT, 50  μM 5-azacytidine, 0.03% Tween-20) by 
vortex. M. sieversii seedlings of 3-month-old were soaked 
in bacterium suspension for 3 h with shaking at 90 rpm 
and 25  °C. Then the seedlings were quickly rinsed with 
distilled water twice, and wiped with sterile filter paper to 
remove the excess moisture.

Resistance analysis
A tip (200 μL) was used to puncture transformed leaves 
at middle of each side of lamina. Punctured leaves were 
incubated on water-saturated sterile filter paper at 25 °C 
for 24  h with mycelial plugs followed by 48  h without 
mycelial plugs. The transformed stems were punctured at 
the top with a blade, then incubated on water-saturated 
sterile filter paper at 25  °C with mycelial plugs for 48  h 
followed by 72 h without mycelial plugs.

Infected leaves were photographed daily, and the 
lesion areas were measured with ImageJ software. After 
3 days of incubation, the infected leaves were harvested 
to determine the  H2O2 content and malondialdehyde 
(MDA) content, and for DNA/RNA isolation. After 
5 days of incubation, the phloem around the wounds on 
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Fig. 1 Determination of the efficient transient transformation solution. Relative transcript abundances of Gus from different transformation 
solutions supplemented various concentrations of sucrose (A), Tween-20 (B), calcium chloride (C), dithiothreitol (D), acetosyringone (E), 
and 5’-azacytidine (F). Effect of A. tumefaciens cell content on transcript abundance of Gus gene (G). The expression of Gus in the control plant 
(transient transformed with EHA105 using the old method) was used as a calibrator to normalize the expression of Gus at different concentrations 
of chemicals. MsEF1α was used as the internal reference. Three replicates (sample size of 10 leaves) were performed. The error bar indicates standard 
deviations of the mean measurements. One-way ANOVA with Tukey’s multiple comparisons test were performed, and different letters represent 
significant differences among treatments (P < 0.05). GUS staining for leaves of M. sieversii (H). Transiently transformation with EHA105 harboring 
p1301-Gus was performed with old and optimized new transformation solution

Table 1 Details of V. mali inoculation methods

Growth conditions Treatment Inoculation

Media Time
(day)

Temperature
(℃)

Speed
(rpm)

Tool Time
(min)

Speed
(rpm)

Outcome
(PDA/PDL)

OD600 Method Time
(h/min)

M1 PDA 3 25 ± 2 ℃ 0 Sterile tips – – Mycelial plugs – Contact 24 h

M2 PDA 5 25 ± 2 ℃ 0 Sterile tips – – Mycelial suspension 1.6 Soak 10 min

M3 PDA + cellophane 7 25 ± 2 ℃ 0 Glass beads 30 200 Mycelial suspension 1.6 Soak 10 min

M4 PDL 7 25 ± 2 ℃ 0 Glass beads 30 200 Mycelial suspension 1.6 Soak 10 min

M5 PDL + glass beads 7–9 25 ± 2 ℃ 200 – – – Mycelial suspension 1.6 Soak 10 min
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stems was removed to expose the lesion, and the lesion 
length was measured by the software ImageJ. The stems 
with phloem were subsequently surface-sterilized with 
5% sodium hypochlorite and cut to segment (1 cm), then 
placed on a PDA medium to count the total number of V. 
mali colonies for 3 days.

Physiological experiments
H2O2 contents were determined using a commercially 
available kit from Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China). MDA contents were detected 
following the mothod of Wang et  al. [57]. At least 10 
leaves were included in each sample and three independ-
ent biological replicates were performed to ensure the 
accuracy of analyses.

Fungal biomass analysis
The fungal biomass of V. mali in leaves was determined 
by Real-time quantitative Polymerase Chain Reaction 
(RT-qPCR). The DNA extracted from each leaf sam-
ple was used as a template for RT-qPCR. The vector 
pEASY-T1 infused with the CDS of VmMyosin (DNA 
length = 4048) was used to establish the standard curve 
to calculate the DNA concentration (Log10). The V. mali 
biomass (copies  g−1, FW) were calculated as follows:

C = DNA concentration of each sample (ng μL−1), 
L = DNA length of CDS used for PCR (bp), V = DNA 
extraction volume of each sample (μL), W = fresh weight 
of each leaf sample (g). At least 10 leaves were included in 
each sample and three independent biological replicates 
were performed to ensure the accuracy of analyses.

DNA isolation, RNA extraction, and RT‑qPCR analysis
Total DNA was extracted from the infected leaves using 
the Super Plant Genomic DNA Kit (TIANGEN, China). 
Total RNA was isolated from the infected leaves using 
the Plant RNA Kit (OMEGA, USA). TransScript One-
Step gDNA Removal (Transgen Biotech, China) was 
used to remove the genomic DNA from extracted total 
RNA. DNA and RNA concentration was measured by 
NanoDrop 2000 (Thermofisher, USA). Two micrograms 
of total RNA from each sample were reverse transcribed 
into cDNA using oligo(dT) primers with cDNA Synthesis 
SuperMix (Transgen Biotech, China). MsEF1α was used 
as the internal reference gene.

The RT-qPCR was carried out on CFX96 Real-Time 
PCR Detection System (Bio-Rad, USA) using the fol-
lowing conditions: initial denaturation at 94  °C for 60 s; 
45 cycles at 94 °C for 10 s (denaturation), 59 °C for 20 s 
(annealing), 72 °C for 30 s (elongation), and 80 °C for 1 s 

(

6.02× 10
23

× C× 10
−9

)

÷ (L× 660)× (V÷W)

for plate reading. The reaction mixture contained 10 μL 
of TB Green Premix Ex Taq II (Takara Bio, Japan), for-
ward and reverse primers (0.5 μmol  L−1 each), and 2 μL 
of tenfold diluted cDNA or fivefold diluted DNA as the 
template. The sequences of primers are shown in Addi-
tional file 1: Table S1. Three independent biological rep-
lications were performed, and the relative expression 
levels were calculated following the  2−ΔΔCt method [36].

Statistical analyses
Statistical analyses were carried out using SPSS 21.0 
(SPSS Inc., Chicago, III, USA) software. Data were com-
pared using Student’s t-test or one-way ANOVA (Tukey). 
Differences were considered to be significant if P < 0.05.

Results
Determination of the suitable transformation solution 
for M. sieversii
To investigate the most effective solution for M. siever-
sii transient transformation, different concentrations of 
sucrose, Tween-20,  CaCl2, DTT, acetosyringone, 5-aza-
cytidine and A. tumefaciens EHA105 were tested based 
on the original recipe (150  μM acetosyringone, 2.5% 
(w/v) sucrose, 0.01%(w/v) Tween20). The transforma-
tion efficiency was represented by Gus gene expres-
sion level detected by RT-qPCR. Results revealed that 
different concentration of transformation compounds 
demonstrated various transformation efficiency. The 
transformation efficiency of Gus gene increased with 
sucrose concentration, followed by a decrease in data, 
and 3% sucrose was found to be the best concentra-
tion (Fig.  1A). Similar transformation pattern were also 
observed for Tween-20 that optimal transformation 
concentration was 0.03% (Fig. 1B). The expression levels 
of Gus gene were substantially increased by supplying 
calcium chloride (5–20  mM), and peaked at concentra-
tion of 5  mM. However, transformation efficiency with 
25 mM of  CaCl2 was lower than that without  CaCl2 indi-
cating that excess  CaCl2 (> 25  mM) impedes transfor-
mation (Fig.  1C). Providing DTT, acetosyringone, and 
5’-azacytidine has the same effect. Adding relatively low 
concentration of them has less effects on transformation, 
with the optimal concentrations being 0.04% for DTT, 
250  mM for acetosyringone and 50  mM for 5’-azacyti-
dine (Fig. 1D–F). It is worth noting that acetosyringone 
followed by 5’-azacytidine may play the most impor-
tant role in transient transformation, as the highest Gus 
expression level at 250  mM increased by 181 fold and 
123 fold, respectively (Fig. 1E and F). In addition, the Gus 
expression level showed that the most appropriate con-
centration of A. tumefaciens was  OD600 of 1.2 (Fig. 1G). 
The GUS staining showed that the transformation effi-
ciency of optimized transient transformation solution 
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(3% sucrose, 0.03% Tween-20, 5 mM  CaCl2, 0.04% DTT, 
250 μM acetosyringone, 50 μM 5’-azacytidine) is signifi-
cantly increased compared with the old transformation 
solution [22] (Fig. 1H and Table 2).

Optimization for transformation and cultivation time
The soaking times of 0.5, 1, 2, 3, 4, 5, and 6 h were evalu-
ated in order to determine the optimal time. Gus expres-
sion levels gradually increased from 0.5 to 4 h, and then 
decreased as time passed. It was found that soaking for 
four hours led to the best result (Fig.  2A). Additionally, 
we determined the maximum accumulation time of Gus 
transcript abundance based on dynamic changes in tran-
script abundance over time. Transiently transformed 
leaves were harvested every 12  h till 7  days after trans-
formation. During prolonged cultivation, the expression 
of Gus progressively increased until peaking at 72 h, and 
then decreased (Fig. 2B). As evidenced by the RT-qPCR 
results, the high expression level (> 20 fold) of Gus was 
sustained from 24 to 108 h. A further study could be con-
ducted with the successfully transformed leaves, which 
were cultured for 1–5 days.

Exploration available of V. mali inoculation methods of leaf
Five inoculation methods (M1-M5) were examined on 
leaves of M. sieversii (Fig.  3A). Inoculation with myce-
lial plug (M1), the most commonly used method for V. 
mali infection, was performed as a control. For the other 
4 methods (M2-M5), soaking leaves in mycelial suspen-
sion was the common step, but their differences were 
in the steps involved in preparing mycelial suspensions. 
According to the incidence rates of five different infec-
tion methods, M1-M4 successfully caused symptoms 
(necrosis) in leaves when infected with V. mali. Dis-
ease progression was fastest in M1, with 97.2% of leaves 
infected after the first day. In M2 and M4, the disease 
progressed more slowly. There was a moderate inci-
dence rate of leaves infected using M2 and M4 on days 
1–4. In M3, incidence rates of leaves were zero on day 1 
and 25% on day 4 due to the slowest progression of the 
disease (Fig. 3B). In general, the results of the lesion area 
were consistent with those of fungal biomass. Among the 
lesion areas and fungal biomass, M1 and M2 were com-
paratively higher (Fig. 3C and D). Lower lesion area and 
fungal biomass were observed in M3 and M4 (Fig. 3C, D). 
The results suggested that M1-M4 could be used for V. 
mali infection, and M2 was the best choice for infection 
with mycelial suspension, due to its moderate incidence 
rate and comparatively higher fungal biomass.

Identification of resistant transcription factors
The efficient disease-resistant gene screening system 
was built with optimal transformation and inoculation 

procedures. Using this system, we investigated the contri-
bution of transcription factors to the immune response. 
Among the RNA-seq data previously studied [33] several 
transcripts were highly induced by V. mali infection, and 
RT-qPCR analysis validated different expression pat-
terns of MsERF1B, MsEIL3, and MsbHLH41 (Fig.  4A) 
that were selected for further study. Three transient over-
expression of candidate genes (MsERF1B-OE, MsEIL3-
OE and MsbHLH41-OE) displayed significantly increased 
expression levels respectively. The control plants were 
transiently transformed with pCambia1307-Flag (Con) 
(Fig. 4B).

It was found that MsEIL3-OE and MsbHLH41-OE, 
but not MsERF1B-OE, were clearly reduced in their 
incidence rates (Fig. 4C) and lesion areas (Fig. 4D) over 
the course of the disease (Fig.  4H). Consistently, the 
accumulation of fungal biomass (Fig. 4E),  H2O2 content 
(Fig. 4F), and MDA content (Fig. 4G) in MsEIL3-OE and 
MsbHLH41-OE but not MsERF1B-OE were substantially 
decreased. These results indicate that the transcription 
factors MsEIL3 and MsbHLH41 might play an important 
role disease resistance of M. sieversii in response to V. 
mali and can be utilized in apple breeding.

In accordance with the leaf experiment results, 
functional characterization of MsEIL3-OE and Msb-
HLH41-OE, but not MsERF1B-OE, in stem (Fig.  5A) 
demonstrated significantly reduced incidence rates 
(Fig.  5B) and lesion lengths (Fig.  5C). Furthermore, 
MsEIL3-OE at day 2 and MsbHLH41-OE at day 3 showed 
obvious decreases in fungal biomass (Fig. 5D). The results 
suggest that MsEIL3 and MsbHLH41 play positive roles 
in enhancing M.sieversii’s resistance to V. mali, but not 
MsERF1B.

The database creation of M. sieversii responsive genes 
against V. mali
In order to complete disease-resistant gene screening sys-
tem for M. sieversii, a V. mali response gene database was 
created for further investigation. A total of 182 response 
genes were selected from highly differently expressed 
genes that appeared in the transcriptome of M. sieversii 
in the response to V. mali infection, and divided into 7 
categories, including receptor-like kinase, phosphoryla-
tion signal transduction system, transcription factor, E3 
ubiquitin ligase, enzyme, metabolism, others (Fig.  6). 
These 7 categories covered the upstream signal transduc-
tion system, expression regulation system, protein modi-
fication system, downstream enzyme and metabolite 
system. The receptor-like protein series mainly included 
Cysteine-rich receptor/Leucine-rich repeat/Proline-rich 
receptor-like protein kinase (Additional file 3: Table S3). 
The phosphorylation signal transduction system mainly 
included mitogen-activated protein kinase, serine/
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Fig. 2 Optimization for transformation and cultivation time. A Analysis of the transformation efficiency at different time points after soaking 
in the optimal transformation solution. B Dynamic changes of Gus gene transcript accumulation during cultivation. The expression of Gus 
in the control plant (transient transformed with EHA105 using the old method) was used as a calibrator to normalize the expression of Gus 
at different time points of transformation and cultivation. MsEF1α was used as the internal reference. Three replicates (sample size of 10 leaves) were 
performed. The error bar indicates standard deviations of the mean measurements. One-way ANOVA with Tukey’s multiple comparisons test were 
performed, and different letters represent significant differences among treatments (P < 0.05)

Fig. 3 Evaluation of available inoculation methods of wild apple leaves with V. mali. A The leaves of M. sieversii infected with V. mali using 5 
different infection methods (M1-M5). B The disease incidence rate, C the lesion area of inoculated leaves using M1-M4 methods. Lesion areas were 
assessed by ImageJ. D The relative V. mali biomass of infected leaves using M1-M4 methods. M1-M5: Leaves of M. sieversii were punctured (200 μL) 
and inoculated with 5 different methods. M1 was inoculated with a mycelial plug for 24 h, and M2-5 was soaked in mycelial filament suspension 
for 10 min. The mycelium grown on PDA media was scraped with 200μL sterile tips (M2), the mycelium grown on PDA media with cellophane 
was fragmented with glass beads (200 rpm) for 30 min (M3), the mycelium grown in the PDL media for 7 days was fragmented with glass 
beads (200 rpm) for 30 min (M4), and the mycelium grown in PDL media with glass beads (200 rpm) for 7–9 days. The relative V. mali biomass 
was determined by RT-qPCR. Data are the means ± SE of three biological repeats (sample size of 10 leaves). A student’s t-test was performed. 
**P < 0.01, ***P < 0.001
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threonine-protein kinase (Additional file  3: Table  S3). 
Members of the bHLH/MYB/WRKY/ERF family con-
stituted the majority of the transcription factor series 
(Additional file  3: Table  S3). The enzyme part princi-
pally contained chitinase, pectinase and UDP-glycosyl-
transferase (Additional file 3: Table S3). A major part of 
the metabolism series is comprised of genes associated 
with cytoderm, lignin, callose, flavonoids, anthocyanins, 
and melatonin (Additional file  3: Table  S3). A number 
of other proteins were also included, such as pathogen-
esis-related proteins, hormone-related proteins, and so 
on (Additional file 3: Table S3). Using this database, the 
response genes affected or regulated by candidate genes 
in immune regulation network could be screened out 
rapidly.

The response genes regulated by MsbHLH41 or MsEIL3
By screening MsEIL3-OE and MsbHLH41-OE strains, 
the response gene database was examined to find down-
stream response genes regulated by MsbHLH41 or 

MsEIL3. According to the results of RT-qPCR, 30 and 5 
response genes were induced or reduced by MsbHLH41 
respectively. The most up-regulated section was tran-
scription factors (12), followed by metabolism-related 
genes (6). MYB family accounted for the most regulated 
transcription factors, as 5 members (MYB3, MYB4, 
MYB6, MYB62, MYB108) were induced by MsbHLH41. 
The callose accumulation-related genes were most influ-
enced in the metabolism section, as 3 genes were altered 
by MsbHLH41. It is interesting to note that MsbHLH41 
enhanced transcription of transcription factor TGA9 
(23.5 fold), acidic endochitinase CHIA (10.5 fold), GDSL 
esterase GLIP1-3 (10.1 fold), G-type lectin S-receptor-
like protein kinase LECRK4 (9.5 fold) and Serine/threo-
nine-protein kinase OXI1 (8.5 fold).

The expression of 24 and 21 response genes, respec-
tively, was up- or down-regulated by MsEIL3. Tran-
scriptional factors (5) and metabolism-related genes 
(11) were most highly induced. It was found that 
the genes callose synthase CALS12 (80 fold), heavy 

Fig. 4 Characterization of transiently over-expressed candidate genes (MsERF1B, MsbHLH41 and MsEIL3) for disease resistance in V. mali inoculated 
leaves. A The expression patterns of MsERF1B, MsbHLH41, and MsEIL3 induced by V. mali. Comparison of RNA-seq data (red line) with RT-qPCR data 
(black column). The FPKM values were shown on the right y-axis, while the relative expression levels were shown on the left y-axis. B The expression 
levels of MsERF1B, MsbHLH41, and MsEIL3 in transiently transformed lines were respectively detected by RT-qPCR. Three transiently transformed 
plants (MsERF1B-OE, MsEIL3-OE, and MsbHLH41-OE) and a control line (Con) transiently transformed with pCambia1307-Flag were tested. The 
incidence rate (C), lesion area (D), V. mali fungal biomass (E),  H2O2 content (F), MDA content (G) and phenotype (H) of transiently transformed leaves 
inoculated with V. mali. The leaf samples were harvested at 3 days post-inoculation. The lesion area was measured with the ImageJ software. The V. 
mali fungal biomass was determined by RT-qPCR. Data are the means ± SE of three biological repeats (sample size of 10 leaves). A student’s t-test 
was performed. *P < 0.05, **P < 0.01, ***P < 0.001
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metal-associated isoprenylated plant protein HIPP39 
(12.1fold), transcription factor TT2 (9.9 fold) and 
MYC2 (8.8 fold) were the most strongly induced. In 
contrast, transcription factors (7), receptor-like pro-
tein kinase (4) and metabolism-related genes (4) repre-
sented the sections with the greatest reduction. Three 
of the reduced receptor-like protein kinase belonged 

to the Leucine-rich repeat receptor-like protein kinase 
group, including the most reduced gene RLK-1. Intrigu-
ingly, MPKKK5, MYB3, LAC7-1, LAC7-2, GLC-S, and 
CKX3 were up-regulated and CALS2 was down-reg-
ulated by both MsbHLH41 and MsEIL3 (Fig.  6), indi-
cating that they play important roles in the immune 
system of M. sieversii.

Fig. 5 Determining function of MsERF1B, MsbHLH41 and MsEIL3 for resistance in stems against fungi pathogen. Three transiently transformed 
over-expressed plants (MsERF1B-OE, MsEIL3-OE, and MsbHLH41-OE) and a control line (Con) transiently transformed with pCambia1307-Flag were 
tested. The phenotype (A), incidence rate (B), lesion length (C), and cultivated fungal biomass (D) of 4 kinds of transiently transformed stems 
inoculated with V. mali. The stem samples were harvested at 5 days post-inoculation. The lesion length was measured with the ImageJ software. 
The cultivated fungal biomass was counted for 3 days from the surface-sterilized stem segment placed on PDA. Data are the means ± SE of three 
biological repeats (sample size of 6 stems). A student’s t-test was performed. *P < 0.05, **P < 0.01

(See figure on next page.)
Fig. 6 The response genes regulated by MsbHLH41 or MsEIL3. The expression levels of the receptor-like kinase (A), phosphorylation signal 
transduction system gene (B), transcription factor (C), E3 ubiquitin ligase (D), enzyme (E), metabolism-related gene (F), and others (G). Transcription 
levels of response genes were determined by RT-qPCR. Control plants (transiently transformed with pCambia1307-Flag) were used to normalize 
the expression levels. MsEF1α was used as the internal reference. Values represent the means ± SD of three biological replicates (sample size of 10 
leaves). Differences were assessed by Student’s t-test, *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 6 (See legend on previous page.)
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The protocol for disease‑resistant gene screening system 
of M. sieversii in response to V. mali
The protocol for the efficient disease-resistant gene 
screening system of M. sieversii in response to V. mali 

is shown in Fig.  7. This study developed optimal trans-
formation procedures for transiently transforming can-
didate genes in seedlings of M. sieversii. Following the 
transformation, the ideal method among the four avail-
able methods is used to inoculate the transformed leaves 

Fig. 7 Outlines of disease-resistant gene screening system of M. sieversii in response to V. mali. Three-month-old seedlings of M. sieversii were 
surface-sterilized with 75% ethanol and then transiently transformed with EHA105 containing pCambia1307-Flag-Gene recombined vector. The 
leaves and stems were then infected with V. mali using a suitable method. To investigate the incidence and lesion areas, leaves were photographed 
for 3 days. Then the leaves were harvested to analyze  H2O2 content, MDA content, and the V. mal biomass. The phloem around the wounds 
on stems was removed after 5 days of incubation to expose the lesion length. Surface sterilized stems were cut into segments (1 cm), then placed 
on a PDA medium and photographed to study cultured V. mali biomass
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and stems with V. mali. Our third step is to co-cultivate 
the leaves for three days and take pictures of the lesions 
every day to determine the incidence and the lesion 
areas. In the fourth step, we harvest the leaves and meas-
ure  H2O2 and MDA, then extract DNA and isolate RNA 
to assess fungal biomass and calculate expression lev-
els. A fifth step involves girdling the infected stems after 
five days of co-cultivation and taking photographs of the 
lesions. The sixth step involves cutting surface-sterilized 
stem segments into 1 cm segments and placing them on 
a PDA medium for 3  days, taking pictures every day to 
calculate the cultivated fungal biomass (Fig. 7).

Discussion
Full seedlings soaking transient transformations medi-
ated by A. tumefaciens have been established since 2012 
[77] and applied to investigate stress response genes at 
2014 [22], initially in tobacco, then in Arabidopsis, birch, 
poplar, tamarisk, cork, willow, and aralia[77]. In con-
trast to other transient transformation methods, such 
as biolistic transformation and syringe infiltration, it is 
simple, quick, economical, and effective. In the last dec-
ade, the function of a growing number of genes in Tam-
arix hispida, Betula platyphylla, Morus alba, Populus 
trichocarpa, Withania somnifera and Paeonia lactiflora 
have been identified using this full seedlings soaking 
transient transformation method [15–17, 21, 30, 43, 46, 
49, 54, 58, 71, 72, 74]. It also facilitates research on reg-
ulatory networks [23, 24, 59, 65] and reverse chromatin 
immunoprecipitation technique [54, 58, 64]. As yet, there 
has been no study on the best transient transformation 
techniques for M. sieversii. Compared to the original 
transformation solution used for investigation of stress 
response genes [22], the concentration of acetosyringone, 
Tween-20 and A. tumefaciens was substantially elevated, 
and  CaCl2, DTT and 5’-azacytidine were extra added 
(Fig. 1 and Table 2). Dithiothreitol (DTT), a kind of anti-
oxidant, scavenged excess ROS produced during trans-
formation process caused by A. tumefaciens [7, 8, 42] and 
consequently increased the efficiency of transformation. 
A decrease in DNA methylation of transgenes resulted in 
increased expression of transgenes using 5’-azacytidine 
[4, 5, 40, 63]. As a result, optimized transformation solu-
tions for M. sieversii enhanced transformation efficiency 
when  CaCl2, DTT, and 5’-azacytidine were added at opti-
mal concentrations.

Inoculating leaves and twigs with mycelium plugs (M1) 
is a common method of introducing V. mali due to its 
uniformity [29, 55]. Irrespective of its simplicity, fixing 
mycelial plugs to leaves and stems is a lengthy and time-
consuming process. Further, strong inoculation methods 
with high incidence missed genes with little resistance 

(Fig.  3). Among the four kinds of inoculation methods 
developed with mycelium suspension, three succeeded 
in causing Valsa canker. Scraping the mycelia in M2 was 
time-consuming and cellophane was used in M3 to facili-
tate the isolation of mycelia from PDA media. Mycelium 
death caused by shaking with glass beads for too long 
time might be the reason for the failure result with M5. 
In conclusion, M4 might be the optimal inoculation 
method with mycelium suspension for simple steps and 
appropriate incidence.

Transcription factors that contain the basic Helix-
Loop-Helix region constitute a ubiquitous family in 
eukaryotes [47]. As well as being involved in the response 
to abiotic stress (high salt, dehydration, and abscisic acid) 
[25], biotic stress (chitin) [32], the bHLH41 is involved in 
the synthesis of flavonoid compounds [19]. The reduced 
incidence (Figs. 4C, 5B) and lesion area/length (Figs. 4D, 
and 5C), as well as reduced fungal biomass (Figs.  4E, 
5D), suggests that MsbHLH41 prevents both coloni-
zation and propagation of V. mali. In accordance with 
the expression pattern induced by V. mali (Fig. 4A), the 
lesion area in leaves decreased significantly only on day 
2 and 3 (Fig. 4D), indicating that MsbHLH41 might play 
an important role in the middle-late stages of the disease. 
OXI1, a serine/threonine protein kinase, was one of the 
most increased genes (Fig. 6B). By linking oxidative burst 
signals to diverse downstream responses, it positively 
regulated defense against oomycetes, bacterial [41], and 
aphids [48]. The OXI1 gene has recently been found to 
control both basal and effector-triggered plant immunity 
by controlling programmed cell death [45]. MsbHLH41 
may enhance the resistance by directly or indirectly up-
regulating the positive regulator OXI1.

Transcription factor EIL3 was involved in ethylene sig-
nal transduction [68]. It was involved in leaf senescence 
[18], fruit ripening [51], response to sulfate deprivation 
[2, 9, 27, 38, 44, 60–62]. It is rare for EIL3 to be reported 
in the immune system, and this study identified the first 
defense response to V. mali. MsMYC2, one of the most 
induced genes by MsEIL3 (Fig. 6C), was verified to be the 
master regulator of many jasmonic acid (JA) and salicylic 
acid (SA) responsive genes [10, 11, 13, 28, 35, 73]. As 
plant defenses against pathogens rely on the accumula-
tion of SA or JA, MsEIL3 may enhance the resistance of 
M. sieversii by up-regulating the master regulator of these 
2 kinds of immune hormones. Among the response genes 
regulated by both MsbHLH41 and MsEIL3, MsLAC7 
was noteworthy (Fig.  6). LAC7, negatively regulated by 
miR857 and miR397, promoted lignin deposition and 
resistance to Botrytis cinerea [70, 76]. MsbHLH41 and 
MsEIL3 may both enhance the resistance by directly or 
indirectly up-regulating the positive regulator MsLAC7.
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In conclusion, manipulating gene expression in  situ 
was achieved by establishing optimal transient trans-
formation. The development of 3 additional methods 
for V. mali inoculation facilitates the study of immune 
response during different disease progression. By 
combining these two parts, the efficient system for 
screening disease-resistant genes of M. sieversii was 
established. The use of this system has been found to 
be extremely effective in identifying the resistant genes 
in M. sieversii within a short period of time. As a result, 
the highly resistant or susceptible genes identified by 
this system, typically MsbHLH41 and MsEIL3, will be 
candidates for gene editing. Then the resistant variety 
of the cultivated apple was obtained by over-expres-
sion/knockout of the resistant/susceptible candidate 
genes.
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