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aviation fuel [1–5]. They require low agricultural input 
such as water, pesticides, and fertilizer, and perform well 
on marginal lands [6, 7]. Moreover, pennycress and cam-
elina are cold tolerant and have a short life cycle, allow-
ing them to be planted as a fallow replacement crop in 
double- or relay-cropping systems [8–14]. In addition to 
increasing the land use efficiency and productivity per 
unit area, camelina and pennycress also serve as winter 
cover crops that provide many environmental benefits, 
including limiting soil erosion and nutrient loss, improv-
ing water quality, suppressing weed growth, and increas-
ing pollinator abundance [13, 15–18].

The seed coat is a maternal tissue that derives from the 
outer and inner integuments of the ovule during seed 
embryogenesis [19–21]. It not only serves as a physi-
cal barrier that protects the embryo, but also allows the 
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Abstract
Background Pennycress and camelina are two important novel biofuel oilseed crop species. Their seeds contain 
high content of oil that can be easily converted into biodiesel or jet fuel, while the left-over materials are usually made 
into press cake meals for feeding livestock. Therefore, the ability to manipulate the seed coat encapsulating the oil- 
and protein-rich embryos is critical for improving seed oil production and press cake quality.

Results Here, we tested the promoter activity of two Arabidopsis seed coat genes, AtTT10 and AtDP1, in pennycress 
and camelina by using eGFP and GUS reporters. Overall, both promoters show high levels of activities in the seed coat 
in these two biofuel crops, with very low or no expression in other tissues. Importantly, AtTT10 promoter activity in 
camelina shows differences from that in Arabidopsis, which highlights that the behavior of an exogenous promoter in 
closely related species cannot be assumed the same and still requires experimental determination.
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embryo to sense environmental cues [22]. After double 
fertilization, the embryo and endosperm start to develop, 
and the seed coat also undergoes a series of developmen-
tal changes. During the early stages (globular to linear 
cotyledon stage) of Arabidopsis seed development, the 
inner integument of the seed coat comprises three lay-
ers of cells and the outer integument is composed of two 
cell layers [20, 23]. When the embryo reaches the green 
mature stage, the outside cell layer of the outer integu-
ment develops mucilage and the inner cell layer experi-
ences significant cell wall thickening [20], while the inner 
integument accumulates proanthocyanidins [24]. Also, 
an endosperm layer is tightly attached to the inside of 
the inner integument. During the transition from the lin-
ear cotyledon stage to the green mature stage, the coty-
ledons also expand greatly in size and storage reserves 
(oil, proteins, etc.) start to accumulate. After the green 
mature stage, seeds enter a brown mature stage and start 
to lose water, eventually becoming dormant and dry [21]. 
Although other Brassicaceae species may differ from Ara-
bidopsis in the number of cell layers contained in outer 
and inner integuments during development, they all have 
the same overall seed coat structure layout [20, 25].

Promoters are generally considered to be the major 
determinant in controlling a gene’s temporal and spatial 
expression patterns, and are used as such in synthetic 
biology research and applications [26]. Several seed coat-
specific genes have been experimentally identified in the 

model plant Arabidopsis thaliana [23, 27–32]. The pro-
moter of some of these genes were shown to be able to 
drive gene expression in canola (Brassica napus) in a seed 
coat-specific manner [33–35]. Like canola, pennycress 
and camelina are members of the Brassicaceae family and 
are closely related to Arabidopsis [36]. Because of this 
similarity, it is expected that Arabidopsis promoters may 
also be used for seed coat-specific expression in these 
two oilseed crops.

Here we report the testing of the promoters of two 
Arabidopsis genes, AtTT10 (At5g48100) and AtDP1 
(At4g11180), in pennycress and camelina. Using both the 
GUS and eGFP reporters, we found that the predominant 
activities of AtTT10 and AtDP1 promoters occur in the 
outer integument of seed coat, demonstrating that they 
can be used for targeted modification of seed coat traits 
in these two emerging biofuel oilseed crops.

Materials and methods
Plant material and growth condition
Pennycress spring annual line ‘MN108’ [37] and camelina 
cultivar ‘Suneson’ (Montana State University releases) 
were grown in environment controlled growth cham-
bers under 16  h light/ 8  h dark periods (light intensity 
150 µmol m–2  s–1) with 50% humidity at 21  °C. Two to 
four seeds were sown into a 6-inch pot with soil mix 
“Sunshine” (Sun Gro Horticulture, Agawam, MA) 

Fig. 1 GUS signals showing AtTT10 and AtDP1 promoters activities in transgenic pennycress different tissues. One week old whole seedlings (A, F and K), 
rosette leaves of mature plants (B, G and L), inflorescence (C, H and M), silicles (hand peeled open and removed seeds) (D, I and N) and seeds (cut open 
along the longitudinal direction with the cutting sides facing down) (E, J and O) of wildtype (A-E), transgenic line carrying AtTT10p:eGFP-GUS (F-J) and 
transgenic line carrying AtDP1p:eGFP-GUS (K-O) were treated with GUS staining. Scale bars = 1 cm
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supplemented with Scotts Osmocote Plus slow release 
fertilizer (Hummert International, Earth City, MO, USA).

Generation of promoter-reporter constructs
A 2 kb promoter upstream of AtTT10 (At5g48100) gene 
coding region and a 1.2 kb promoter upstream of AtDP1 
(At4g11180) gene coding region were PCR amplified 
from Arabidopsis Col-0 with primers oXL1968/ oXL1969 
and oXL1970/ oXL1971, respectively (supplemen-
tal Table S1). They were fused with an eGFP (enhanced 
green fluorescent protein)-GUS (β-glucuronidase) 
dual reporter gene, and an HSP terminator sequence 
into pEarleyGate103 binary vector linearized with  AseI 
and PvuI, using NEBuilder® HiFi DNA Assembly (New 
England Biolabs, Ipswich, MA, USA, Cat. No. E2621), 
forming the final constructs AtTT10p:eGFP-GUS and 
AtDP1p:eGFP-GUS (supplemental Fig. S1).

Agrobacterium-mediated transformation of pennycress 
and camelina via floral dip
A modified floral dip method [38–40] was used to trans-
form pennycress and camelina. Five weeks old camelina 
plants and six weeks old pennycress plants were used for 
transformation. Single colonies of Agrobacterium tume-
faciens strain GV3101 transformed by electroporation 
with binary vectors were picked into 5 mL LB media with 
proper antibiotic selection, and after overnight shaking 

incubation at 30  °C, transferred to 500 mL LB media 
with proper antibiotics and shake incubated overnight at 
30 °C. The agrobacteria cells were spun down for 20 min 
at 4,000  rpm and the cell pellets were resuspended in 
500 mL infiltration media (5% sucrose and 0.05% (v/v) 
silwet-77). Pennycress and camelina floral buds were 
dipped into the infiltration media with agrobacteria and 
treated with vacuum at -0.9 to -1 bar for 5–10 min. The 
inflorescences were then wrapped with plastic film and 
the plants were laid down and kept in the dark in the 
growth chamber to recover overnight, before returning 
to the normal growth condition the next morning.

Identification of transgenic pennycress and camelina
Seeds were surface sterilized with sterilization solution 
(20% bleach and 0.02% Tween-20 in distilled deionized 
water) for 15  min with constant shaking at room tem-
perature, and then washed with distilled deionized water 
for five times. The surface sterilized seeds were then dis-
pensed to MS (Murashige and Skoog) solid media con-
taining hygromycin (MS salt 4.33 g L− 1, sucrose 1% (w/v), 
agar 0.7% (w/v), pH adjusted to 5.7, hygromycin 30  µg 
mL− 1). Plates were then cold treated in darkness at 4 °C 
for 48 h for seed stratification, before being moved to a 
growth chamber. Hygromycin resistant seedlings (sup-
plemental Fig. S2) were transferred to soil and grown to 

Fig. 2 GUS signals showing AtTT10 and AtDP1 promoters activities in transgenic camelina different tissues. One week old whole seedlings (A, F and K), 
rosette leaves of mature plants (B, G and L), inflorescence (C, H and M), silicles (hand peeled open and removed seeds) (D, I and N) and seeds (cut open 
along the longitudinal direction with the cutting sides facing down) (E, J and O) of wildtype (A-E), transgenic line carrying AtTT10p:eGFP-GUS (F-J) and 
transgenic line carrying AtDP1p:eGFP-GUS (K-O) were treated with GUS staining. Scale bars = 1 cm
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full maturity, and transgene presence was confirmed by 
PCR (supplemental Table S1).

Histochemical GUS staining
Pennycress and camelina seeds, one week old seedlings 
grown on MS plates, rosette leaves from mature plants, 
inflorescence, and silicles (seeds removed) were collected 
into ice-cold PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 
mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4) before GUS 
staining. Seeds at appropriate developmental stages were 
quickly hand-dissected along the longitudinal axis, and 
the embryo, inner integument with attached peripheral 
endosperm, and outer integument layers were collected 
separately. Immediately after harvesting, PBS buffer was 
completely removed, and GUS staining solution (14 mM 
NaH2PO4, 36 mM Na2HPO4, 2 mM K4[Fe(CN)6], 2 mM 
K3[Fe(CN)6], 0.2% Triton X-100, 10 mM EDTA, 2 mM 
X-GLUC (5-Bromo-4-Chloro-3-Indoyl-Beta-D-Glucuro-
nide, Gold Biotechnology, St. Louis, MO, USA, Catalog 
number G1281)) was added to each sample. Samples 
were placed under vacuum at -1 bar for 10–15 min, and 
then incubated at 37  °C for 2  h. Afterwards, the GUS 

staining solution was completely removed, and the sam-
ples were washed with 70% ethanol at 4 °C until the tissue 
was fully cleared (about 30–60 min for developing seeds, 
2 days for seedlings and silicles, and 5–7 days for mature 
leaves and floral tissue). When necessary, stained and 
cleared samples were mounted to slides for microscopic 
analysis using a dissecting fluorescence microscope 
(Zeiss SteREO Discovery.V20) or an upright fluores-
cence microscope (Zeiss Model Axio Imager M1) with 
50% glycerol. Microscopic images were taken with a Zeiss 
AxioCam ICc5 camera and processed with Adobe Photo-
shop and Illustrator software.

Results
Generation of AtTT10 and AtDP1 promoter-reporter lines in 
pennycress and camelina
AtTT10 (also known as AtLAC15) and AtDP1 promot-
ers were amplified from Arabidopsis Col-0 genomic 
DNA and assembled with an eGFP-GUS dual reporter 
into a binary vector (supplemental Figure S1). The result-
ing constructs were introduced into pennycress spring 
annual variety ‘MN108’ and camelina cultivar ‘Suneson’ 

Fig. 3 GFP signals showing AtTT10 and AtDP1 promoter activities in transgenic pennycress seeds. (A) Three seeds of pennycress WT (‘MN108’), transgenic 
pennycress with AtTT10p:eGFP-GUS (labeled as TT10 in short), and transgenic pennycress with AtDP1p:eGFP-GUS (labeled as DP1 in short), were arranged 
into a single view field of a dissecting microscope and observed under bright field. Panel B, E, F, I and J were organized the same way. (B) The same sam-
ples in panel A were observed under the GFP florescent channel. (C) One seed from each of the three genotypes shown in panel A and B was cut along 
the longitudinal direction with the cutting sides facing up, and observed using a dissecting microscope under bright field. Panel D, G, H, K and L were 
organized the same way. Arrows indicate the embryos in each dissected seed. (D) The same samples in panel C were observed under the GFP florescent 
channel. (A-D) Seeds at linear cotyledon development stage. (E-H) Seeds at the walking-stick embryo development stage. (I-L) Seeds at the green mature 
development stage. Field area of panel A, B, E, F, I and J are the same; field area of panel C, D, G, H, K and L are the same
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by Agrobacterium-mediated transformation (see materi-
als and methods). Transgenic T1 generation plants were 
selected by hygromycin resistance on MS medium (sup-
plemental Figure S2) and the presence of the transgene 
was confirmed by PCR (supplemental Table S1).

The activities of AtTT10 and AtDP1 promoters in 
pennycress and camelina are mainly detected in seed coat
We performed GUS staining in different tissues of the 
transgenic pennycress and camelina, including one week 
old whole seedlings, rosette leaves from mature plants, 
inflorescence, green silicles, and seeds. Non-transgenic 
wild-type plants were used as a negative control. In pen-
nycress, among the tissues examined, GUS staining was 
only observed at the seed surface for AtDP1p:eGFP-
GUS, whereas the GUS signal has a wider distribution 
for AtTT10p:eGFP-GUS (Fig.  1). Besides the strong 
GUS signals in seeds, transgenic pennycress carrying 
AtTT10p:eGFP-GUS showed low levels of GUS staining 
in cotyledons, flowers, and the septa of silicles. In cam-
elina, no GUS signal was found in tissues other than the 

seeds except the presence of trace amount of staining in 
the funiculi on the septa of silicles that directly connect 
with seeds for AtTT10p:eGFP-GUS (Fig. 2).

AtTT10 and AtDP1 promoters show different expression 
profiles during seed development in pennycress and 
camelina
To better understand the activities of the two promoters 
in pennycress and camelina seed coat during seed devel-
opment, we monitored the GFP signal in the seed coat 
during five different stages: the heart stage, linear coty-
ledon stage, walking-stick embryo stage, green mature 
stage, and the brown mature stage. Developmental stages 
are defined by embryo morphology based on Arabidop-
sis research [19, 21]. GFP signals were not detected from 
seeds at the heart stage and the brown mature stage, and 
thus we focused on the middle three stages for more 
careful characterization. In addition to imaging the intact 
seed, we also cut open a seed to gain additional informa-
tion on the location of the GFP signal within the seed. 
Consistent with the inference from whole seed GUS 

Fig. 4 GFP signals showing AtTT10 and AtDP1 promoter activities in transgenic camelina seeds. (A) Three seeds of camelina WT (‘Suneson’), transgenic 
camelina with AtTT10p:eGFP-GUS (labeled as TT10 in short), and transgenic camelina with AtDP1p:eGFP-GUS (labeled as DP1 in short), were arranged into 
a single view field of a dissecting microscope and observed under bright field. Panel B, E, F, I and J were organized the same way. (B) The same samples 
in panel A were observed under the GFP florescent channel. (C) One seed from each of the three genotypes shown in panel A and B was cut along the 
longitudinal direction with the cutting sides facing up, and observed using a dissecting microscope under bright field. Panel D, G, H, K and L were orga-
nized the same way. Arrows indicate the embryos in each dissected seed, the embryos were placed next to the seed coat tissue. (D) The same samples in 
panel C were observed under the GFP florescent channel. (A-D) Seeds at linear cotyledon development stage. (E-H) Seeds at the walking-stick embryo 
development stage. (I-L) Seeds at the green mature development stage. Field area of panel A, B, E, F, I and J are the same; field area of panel C, D, G, H, K 
and L are the same
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staining data, AtTT10 and AtDP1 promoters drive gene 
expression in the seed coat in both pennycress (Fig.  3) 
and camelina (Fig. 4).

In pennycress, AtTT10 promoter drove eGFP expres-
sion in the seed coat at all three stages, with the walk-
ing-stick embryo stage showing the highest GFP signal 
intensity among the three stages observed, whereas the 
AtDP1 promoter driving eGFP expression started dur-
ing the walking-stick embryo stage and increased at the 
green mature stage (Fig.  3). In camelina, both AtTT10 
and AtDP1 promoters drove eGFP expression in the seed 
coat during all three developmental stages; however, the 
strongest expression was at the linear cotyledon stage for 
AtTT10 promoter and the walking-stick stage for AtDP1 
promoter (Fig. 4).

AtTT10 and AtDP1 promoters are mainly active in outer 
integument of seed coat
As revealed by the GFP data, AtTT10 and AtDP1 pro-
moters seemed to drive gene expression mainly in the 
outer integument of the seed coat in pennycress and 
camelina. To further investigate in which seed coat layer 

the two promoters are active, we separated different 
parts of the seed and examined them with GUS stain-
ing. Seeds of green mature stage were hand dissected into 
three parts: the outer integument, the inner integument 
with attached peripheral endosperm, and the embryo. 
These parts were collected separately and stained for 
GUS expression. In transgenic pennycress and camelina 
that carry either AtTT10p:eGFP-GUS or AtDP1p:eGFP-
GUS, intense blue color was observed only in the outer 
integument while the inner integument and the embryo 
were mostly free from GUS staining (Figs. 5 and 6). This 
expression pattern generally holds true for seeds at other 
stages examined in this study, as evident from the GFP 
reporter signals (Figs.  3 and 4). The only exception was 
noticed at the early cotyledon embryo stage in transgenic 
pennycress carrying AtTT10p:eGFP-GUS where the GFP 
signal was seen in the inner integument instead (Fig. 3D 
and Supplemental Figure S3).

Fig. 5 GUS signals showing AtTT10 and AtDP1 promoter activities in transgenic pennycress seeds. Green mature stage of seeds of wildtype (A-C), 
transgenic line carrying AtTT10p:eGFP-GUS (D-F) and transgenic line carrying AtDP1p:eGFP-GUS (G-I) were cut along the longitudinal direction, and then 
manually separated into three parts, namely inner integument layers with peripheral endosperm tissue (A, D and G), outer integument layers (B, E and 
H), and embryos (C, F and I), and then treated with GUS staining. Scale bar = 0.5 mm
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Discussion
Both AtTT10 and AtDP1 drive gene expression 
predominantly in seed coat in pennycress and camelina
Seed coat specific promoters are important biotechnol-
ogy tools for engineering seed traits in crops. Testing 
the promoter activity of well-characterized Arabidopsis 
genes in Brassicaceae oilseed crop species is an attrac-
tive approach which bypasses the requirement of com-
prehensive transcriptome analysis in the target species to 
discover candidate promoters. Several Arabidopsis seed 
coat specific gene promoters including TT10, DP1, GILT 
[29], BAN [27], and δVPE [28] have been tested in canola 
[30, 33–35]. In this study, we tested the activity of Arabi-
dopsis TT10 and DP1 promoters in two emerging biofuel 
oilseed crops, pennycress and camelina. In general, both 
AtTT10 and AtDP1 promoters show strong activity in the 
seed coat and little to no activity in other tissues exam-
ined. This seed coat specific expression pattern observed 
in pennycress and camelina is similar to the activities of 
the AtTT10 and AtDP1 promoters in Arabidopsis [23, 30, 
41] and canola [30, 33].

AtTT10 promoter behaves differently in pennycress and 
camelina
Despite the overall similarity in the promoter activity, 
there were notable differences in the expression pattern 
of AtTT10 promoter between pennycress and camelina. 
In pennycress, AtTT10 promoter activity was detected 
in the inner integument of seed coat at the linear coty-
ledon stage but in the outer integument instead during 
later stages (Fig. 3D and Supplemental Figure S3), which 
is consistent with the observation in Arabidopsis [23]. In 
contrast, AtTT10 promoter activity was only detected in 
the outer integument in camelina (Fig. 4D), which is sim-
ilar to the observation in canola [33].

AtTT10 was reported to encode a laccase that func-
tions in oxidative polymerization of flavonoids and 
monolignols in the seed coat. Arabidopsis tt10 mutants 
showed a delay in seed coat browning, accumulates less 
lignin, and has more soluble proanthocyanidins in seeds 
than wild type [23, 24, 42]. It is possible that TT10 pro-
moter activity in inner integument and outer integu-
ment is responsible for producing the enzyme required 

Fig. 6 GUS signals showing AtTT10 and AtDP1 promoter activities in transgenic camelina seeds. Green mature stage of seeds of wildtype (A-C), trans-
genic line carrying AtTT10p:eGFP-GUS (D-F) and transgenic line carrying AtDP1p:eGFP-GUS (G-I) were cut along the longitudinal direction, and then manu-
ally separated into three parts, namely inner integument layers with peripheral endosperm tissue (A, D and G), outer integument layers (B, E and H), and 
embryos (C, F and I), and then treated with GUS staining. Scale bar = 0.5 mm
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for polymerization of proanthocyanidins and lignin, 
respectively. The lack of activity in inner integument in 
camelina and canola suggests that some cis elements in 
AtTT10 promoter or their interaction with trans factors 
may not be conserved between Arabidopsis and these 
two species.

Apart from in the seed coat, very low levels of GUS sig-
nals were detected in the seedlings and flowers in penny-
cress carrying AtTT10p:eGFP-GUS (Fig. 1F and 1H). This 
expression pattern is consistent with the report demon-
strating that Arabidopsis showed low levels of AtTT10 
expressions in stems, seedlings, and flowers [23]. How-
ever, no AtTT10 promoter activities were seen in cam-
elina seedlings and flowers (Fig.  2F and 2H), similar to 
what was observed in canola [33].

These results suggest that the activity of a promoter 
may differ even in closely related species. Such species-
dependent expression pattern differences have also been 
observed for other genes. For example, Arabidopsis δVPE 
promoter showed activities mainly in the inner integu-
ment of Arabidopsis seed coat [28], but in transgenic 
canola, it was mainly active in outer integument [34]. 
Therefore, careful examination of exogenous promoter 
activities in target species remains necessary, even when 
species are closely related.

AtTT10 promoter has a broader expression activity than 
AtDP1 promoter
While both AtTT10 and AtDP1 promoters showed major 
activity in the outer integument of seed coat in both pen-
nycress and camelina, these two promoters have slightly 
different expression profiles. In both species, AtDP1 
promoter’s activity is more specific to the seed coat than 
the AtTT10 promoter (Figs. 1 and 2). We also observed 
differences in the growth stage at which these promot-
ers exhibit peak activity. In pennycress, the AtTT10 pro-
moter signal was strongest in the walking-stick stage and 
remained high during the green mature stage; while the 
AtDP1 promoter showed the highest activity during the 
green mature stage (Fig. 3). In camelina, the AtTT10 pro-
moter activity appeared strongest at the linear cotyledon 
stage and became increasingly weaker during the later 
stages, whereas AtDP1-driven GFP signal peaked at the 
walking-stick stage (Fig. 4).

Potential application of AtTT10 and AtDP1 promoters to 
improve pennycress and camelina
An increasing amount of evidence suggests that seed 
coat pigmentation and lignification is negatively associ-
ated with seed oil production and meal quality [43–48]. 
Flavonoid pigments and lignin are both derived from the 
phenylpropanoid pathway, which produces a wide range 
of products in different plant tissues serving critical 
functions [49, 50]. Modifying phenolic traits for oilseed 

improvement thus requires manipulating genes and path-
ways in a seed coat tissue-specific manner to avoid the 
negative effects associated with broad perturbation of 
phenylpropanoid production and plant growth.

In addition to removing negative seed coat qualities, 
utilizing seed coat specific promoters may offer a prom-
ising route to augmenting the pennycress and camelina 
seed value. Press meal for feeding livestock, a byproduct 
of seed oil extraction, has been an important target trait 
during pennycress and camelina domestication [51–53]. 
Specifically, the seed coat tissue specific expression of 
bioactive compounds can substantially improve meal 
quality and value. An attractive candidate of gain-of-
function strategy of this kind is to employ seed coat pro-
moters to drive expression of QsuB (3-dehydroshikimate 
dehydratase). This application not only induced biosyn-
thesis and accumulation of protocatechuate (PCA), a 
phenolic bioproduct with recognized health benefits, but 
also reduces lignin production [54, 55].

Another attractive area is in manipulating the produc-
tion of seed mucilage, particularly in camelina. For basic 
research, seed mucilage offers a unique window to study 
plant polysaccharide biosynthesis [56]. In the meantime, 
mucilage production has garnered attention in the food 
and chemical industry due to its utility as a plant-derived 
polymer [57]. The application of seed coat specific pro-
moters enables precise engineering of mucilage charac-
teristics, mitigating the risk of disturbing plant normal 
growth.

Our analyses demonstrate that both AtTT10 and 
AtDP1 promoters are suitable for driving gene expression 
in seed coat in pennycress and camelina. The observed 
differences in the temporal and spatial expression pat-
terns between these two promoters add nuance to our 
ability of engineering seed coat traits in the two emerging 
non-food oilseed crops. The choice of promoter depends 
on the specific target application and species. For exam-
ple, AtDP1 promoter is notably more active during the 
later stages of seed coat development in pennycress, 
at the green mature stage, marking it more suitable for 
applications aimed at this particular phase of pennycress 
seed development.
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