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METHODOLOGY

SpykProps: an imaging pipeline to quantify 
architecture in unilateral grass inflorescences
Joan Barreto Ortiz1,2, Candice N. Hirsch1, Nancy Jo Ehlke1 and Eric Watkins2* 

Abstract 

Background Inflorescence properties such length, spikelet number, and their spatial distribution across the rachis, 
are fundamental indicators of seed productivity in grasses and have been a target of selection throughout domes-
tication and crop improvement. However, quantifying such complex morphology is laborious, time-consuming, 
and commonly limited to human-perceived traits. These limitations can be exacerbated by unfavorable trait correla-
tions between inflorescence architecture and seed yield that can be unconsciously selected for. Computer vision 
offers an alternative to conventional phenotyping, enabling higher throughput and reducing subjectivity. These 
approaches provide valuable insights into the determinants of seed yield, and thus, aid breeding decisions.

Results Here, we described SpykProps, an inexpensive Python-based imaging system to quantify morphological 
properties in unilateral inflorescences, that was developed and tested on images of perennial grass (Lolium perenne 
L.) spikes. SpykProps is able to rapidly and accurately identify spikes (RMSE < 1), estimate their length  (R2 = 0.96), 
and number of spikelets  (R2 = 0.61). It also quantifies color and shape from hundreds of interacting descriptors 
that are accurate predictors of architectural and agronomic traits such as seed yield potential  (R2 = 0.94), rachis weight 
 (R2 = 0.83), and seed shattering  (R2 = 0.85).

Conclusions SpykProps is an open-source platform to characterize inflorescence architecture in a wide range 
of grasses. This imaging tool generates conventional and latent traits that can be used to better characterize devel-
opmental and agronomic traits associated with inflorescence architecture, and has applications in fields that include 
breeding, physiology, evolution, and development biology.

Keywords Inflorescence architecture, Latent phenotypes, Image analysis, High-throughput phenotyping, Machine 
learning

Background
Inflorescences are flower-bearing structures composed 
of multidimensional traits that are shaped by both natu-
ral and artificial selection. These selective pressures and 
developmental changes over variable climates resulted 

in plants with highly complex inflorescence architec-
tures [31]. Hidden in this complexity are the relationships 
between micro and macroscopic inflorescence traits that 
attract biotic and abiotic dispersers and allow gene flow 
across space and time [5, 33]. For example, short-distance 
dispersal relies on shattering, a programmed disarticu-
lation of inflorescence structures due to a microscopic 
abscission formation, as well as insects. In contrast, long-
distance dispersal is associated with wind, water, and ver-
tebrates [36], and thus depends on macroscopic or visible 
traits. For humans, selecting on inflorescence proper-
ties that reduced dispersal without affecting fitness was 
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paramount to plant domestication and to continued 
efforts to increase grain yield and food supply.

Spikes, panicles, and seed heads, all refer to grass inflo-
rescences, the morphology of which contributes to seed 
yield potential in grasses [1]. In grasses that are not fully 
domesticated, poor seed yield is commonly attributed to 
spike properties that facilitate dispersion such as shatter-
ing and asynchronous flowering and ripening. The rate 
at which such traits can be improved through breeding 
depends on their genetic architecture as well as our abil-
ity to properly quantify and select the traits that associ-
ate with them [47, 48]. This is a major challenge for yield 
increase because the myriad of traits comprising inflo-
rescence architecture are often pleiotropic [35] and have 
complex genetic correlations [30] that may result in indi-
rect selection for unfavorable traits [13, 22, 34, 37, 43], 
decreasing breeding efficiency. Furthermore, selection 
on spike properties is time consuming, low-throughput, 
costly, and restricted to traits that can be perceived or 
measured.

Because plant phenotypes are infinite over the lifetime 
of an organism, phenotyping at a single point in time pro-
vides the best estimates of their underlying genetic archi-
tecture at a given environment and developmental stage 
[10, 14]. The development of high-throughput pheno-
typing (HTP) systems has contributed to automating the 
measurement of complex traits and estimating this infi-
nite phenotypic space [44]. High-throughput phenotyp-
ing systems to characterize inflorescence architecture are 
less common. Image-based tools such as P-TRAP [3] and 
PANorama [11] have been developed to estimate proper-
ties such as length, spikelet number, and branching pat-
terns in rice. Similar methods exist for Zea mays [16], 
Sorghum bicolor [46], Triticum [20, 27], and Avena sativa 
[6]. While these tools have been useful in the breeding 
(Hamsa Poorna [19] and studying the genetic control of 
inflorescence morphology [12, 32], they focus on con-
ventional traits such as spike length and spikelet number. 
While their interpretability are a key advantage for plant 
breeding, the exclusive focus on these conventional traits 
impedes exploring the effect of subtle traits, i.e., latent 
traits, as the interacting components of multidimensional 
inflorescence architecture [10, 14].

Here we describe SpykProps, a tool that, unlike other 
imaging approaches, allows one to derive latent pheno-
types from a myriad of interacting descriptors of color 
and shape that focus on the inflorescence as a multidi-
mensional phenotype. In addition, our tool can accu-
rately measure conventional traits such as spike length, 
area, and spikelet number, and does not require propri-
etary software or sophisticated imaging hardware. This 
system was developed and tested in perennial ryegrass 
(Lolium perenne L.), a multifunctional crop that due 

to its recent domestication for seed production suffers 
from yield reductions from wild spike architectural traits. 
Nonetheless, SpykProps can be used to study other spe-
cies with two-ranked unilateral, i.e., flat inflorescences 
[21] in fields including breeding, physiology, evolutionary 
biology, and developmental biology.

Results
Our goal was to develop an inexpensive high-through-
put system capable of quantifying spike architecture 
in species with a two-ranked unilateral inflorescence, 
such as perennial ryegrass. Accordingly, we developed 
SpykProps, an imaging pipeline written in Python to 
characterize color and shape-based properties of the 
spike and spikelets. This system is aimed to be imple-
mented in breeding and research programs seeking to 
unveil subtle relationships between architectural and 
dispersal traits affecting yield, using RGB images (Fig. 1). 
The pipeline was built using 8-bit color images obtained 
with flatbed scanners at 600 dpi that have a black non-
reflective background. However, the functions in the 
program have flexibility to process images of variable 
size, resolution, and background color. SpykProps is an 
open-source program that can be accessed from https:// 
github. com/ joanm anbar/ SpykP rops along with detailed 
instructions to analyze single spikes using a Python inte-
grated development environment, or to automate it on a 
set of images using Bash and the SpykBatch.py function. 
In either run mode, images are imported and parameters 
can be set to export datasheets with hundreds of color 
and shape descriptors per spike and spikelet, along with 
images of the segmented structures for visual validation.

Spike segmentation
The first step in the automated pipeline is to identify 
spikes in the image and separate them from background 
and other debris. This requires a threshold that can either 
be set on a channel from the red-green-blue (RGB) value 
representation, or can be estimated automatically using 
the Otsu algorithm [29]. This algorithm uses the pixel 
intensity histogram in gray scale to maximize separability 
between classes, resulting in a stringent threshold when 
using dark backgrounds and therefore requires a scaling 
factor. In Spykprops, spikes are detected using the spike_
segm function calling on either the channel_thresh option 
for manual RGB thresholding or the OtsuScaling option 
for automated segmentation. At this step, users can also 
opt to rescale the original images by a factor (rescale_
rgb), resulting in fewer pixels and detail to process, 
reducing computational time. The spike_segm function 
produces segmented spikes in individual output images 
with different representations including, RGB, CIELAB 
(L*a*b*), and hue-saturation-value (HSV). Using multiple 

https://github.com/joanmanbar/SpykProps
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spaces provides a broader range of colors which increases 
the ability to discriminate across spikes with similar color 
profiles. Selecting a proper method and threshold that 
accurately segments the spike is essential since the binary 
mask that results from this step directly affects the qual-
ity of the color and shape descriptors.

To determine optimal thresholds for accurately seg-
menting spikes in our images, we evaluated different 
thresholds on the red channel as well as scaling factors for 
the Otsu algorithm (Fig. 2). Specifically, 116 images con-
taining 2743 spikes were run through SpkyPros rescaled 
at 50% on each axis and were also manually segmented. 
Pixel values between 20 and 35 on the red channel and 
scaling the Otsu threshold by 28–30% had a RMSE < 1, 
i.e., an average lower than one misdetected spike (0.03%). 
The optimal threshold value on the red channel was 20 
(RMSE = 0.89 ± 0.49) and the best scaling factor for the 
Otsu threshold was 29% (RMSE = 0.91 ± 0.48). The time 
to detect the 2743 spikes and generate binary masks for 
all tested thresholds across both methods was 184  min, 
with an average of 0.14  s per spike and threshold. It is 

important to note that optimal thresholds may vary 
according to image resolution, size, light conditions, and 
the color and texture of the image background. These fea-
tures of the image may also impact processing time and 
accuracy. As such, we included a Python script (SpikeSeg_
Batch.py) within SpykProps to assist users in determining 
the method and threshold that is most optimized to their 
image properties.

Spike length
Spike length is a major determinant of spike architecture 
in the grasses [1, 28], and a key component of seed yield 
in perennial ryegrass [2]. However, measuring this trait in 
field or lab conditions can be tedious, time intensive, and 
low-throughput, making it an important trait for image 
based acquisition. Imaging strategies often approxi-
mate length from the major axis’ distance of a geometric 
object such as an ellipse, fitted on the object of interest 
(Fig. 3A) or its convex hull (Fig. 3B). This strategy works 
well on straight spikes but has reduced accuracy with 
curved spike architectures. To account for this curved 

Fig. 1 Overview of the SpykProps pipeline in the context of agronomic or breeding research. Spikes from field or control conditions, can be imaged 
in situ or harvested for further processing in a dry lab. SpykProps segments spikes and quantifies color and shape, using univariate and multivariate 
descriptors. This enables rapid, holistic, and less biased characterization of multidimensional spike architecture variations, offering researchers 
improved phenotyping tools, especially when combined with machine learning techniques
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architecture that is commonly observed in perennial 
ryegrass, and many other species for which SpykProps 
could be applied, we implemented two additional meth-
ods that reduce the spike’s binary mask to a single-pixel 
(thinning) after applying a low-pass filter (blurring). 
These methods include skeleton, which relies on Zhang 
and Suen’s [45] skeletonization algorithm (Fig.  3C), and 
medial_axis, which computes the medial axis transform 
of the spike (Van der Walt et al., n.d.) (Fig. 3D). Any or all 
of these four methods can be specified on the spk_length 
function which returns the estimated length, computing 
time, and in the case of the thinning methods an image 
of the spike’s binary mask with the overlay of the length 
(Fig. 3C, D).

To determine the accuracy of each of the length detec-
tion methods that are built into SpykProps, we compared 
predicted lengths to manual measurements of spike 
length obtained using ImageJ [15] for 810 segmented 
spikes. As predicted, thinning algorithms, i.e., medial 
axis  (R2 = 0.96) and skeleton  (R2 = 0.95) that can account 
for the curved nature of some spikes were more accu-
rate in approximating spike length than using the major 
axis of a fitted ellipse on the binary spike  (R2 = 0.92) or 

on its convex hull  (R2 = 0.81) (Fig. 3). Nevertheless, there 
was a tradeoff between accuracy and execution time for 
the thinning algorithms (Fig.  3E). Using a fitted ellipse 
on the spike was on average 15 times faster than the 
medial axis method. The fastest method, fitted ellipse, 
was also less variable (0.007 ± 0.006  s) than medial axis 
(0.103 ± 0.023  s), convex hull (0.063 ± 0.027  s), and skel-
eton (0.086 ± 0.030  s). However, this variability in exe-
cution time is highly dependent on the proportion of 
irregular spikes in the set of images. Taken together, this 
analysis demonstrates that if curved spikes are common 
in a dataset, the medial axis is the ideal approach despite 
the computational cost. Otherwise, the length of a fit-
ted ellipse on the spike will suffice to provide an accurate 
approximation of spike length.

Spikelet segmentation
In addition to spike length, the number of spikelets and 
distribution across the rachis are key components of 
seed productivity [21]. To segment individual spikelets, 
we compiled a series of algorithms in a single function 
(spikelet_segm) that returns spikelet count and gener-
ates a mask to quantify their morphology. The first steps 
involve adding a pad around the spike to facilitate mor-
phological operations such as erosion and opening, 
which are performed using a cross-shaped kernel of 3 × 3 
pixels. These convolutions are executed on a 10% rescaled 
version of the spike’s mask to increase performance, 
before it is rescaled back to its original size to generate 
a mask of the Euclidean distances from each pixel to the 
nearest background pixel. The local peaks in the mask are 
calculated according to the expected minimum distance 
(in pixels) between spikelets and are used as markers for 
the watershed algorithm, which approximates the spike-
lets boundaries by treating the transformed distance as a 
topographic map flooded with water (Fig. 4A). Next, an 
ellipse is fitted on each spikelet contour and its major axis 
length is used to estimate the spikelet’s angle (Fig.  4A) 
with respect to the top-left image corner. Spikelet detec-
tion accuracy primarily depends on the minimum dis-
tance expected between spikelets, which must be defined 
a priori. Such distance must be carefully established 
based on the type of misdetections and whether the mis-
detections can be easily filtered based on size (Additional 
file  1: Fig S2). Users can determine the best minimum 
distance for their inflorescences from a range of values in 
the SpikeletSeg_batch.py program, which also generates 
images of the detected spikelets as in Fig. 4A and a data-
set with the number of detected spikelets, as well their 
ellipse’s area, length, and relative angle (Fig. 4B).

To assess the accuracy of our spikelet segmentation 
method, we visually counted the number of spikelets 
across 793 spikes and compared them with automated 

Fig. 2 Spike segmentation methods included in SpykProps. A 
Segmentation based on input threshold for the red channel. B Otsu 
segmentation scaled by a factor. RMSE (y-axis) is the root mean 
squared error. Error bars represent the standard deviation
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detection. The spikes were segmented using a minimum 
threshold of 25 in the red channel and a range of mini-
mum distances from 25 to 75 pixels between spikelets. 
Our results indicated that values between 25 and 40 pix-
els missed or overestimated less than two spikelets per 
spike on average (Fig. 4C). We then selected a minimum 
distance of 25 pixels (1.98 ± 1.64 misdetections) to vali-
date the spikelet count and found a strong Pearson cor-
relation (r = 0.78) between the automated and manual 
spikelet count on 793 spikes (Fig.  4D). This indicates 
relatively high accuracy  (R2 = 0.61) with potential for 
improvement using conditional or variable minimum 
expected distances between spikelets.

Quantifying spike shape
The ubiquity of irregular shapes in plant morphology 
poses a challenge in accurately quantifying phenotypic 
variation. As a result, conventional phenotyping meth-
ods tend to prioritize interpretability and ease of meas-
urement, leading to potential biases and a limited scope 
of the multidimensional phenotype [14, 25]. SpykProps 
addresses these challenges in two ways: using both geo-
metric descriptors that are easy to interpret, and elliptical 

Fourier descriptors, which approach the overall spike 
shape from a multidimensional perspective.

Geometric descriptors are generated from the binary 
mask resulting in segmenting spikelets, also referred 
to as regions of interest (ROI). This step relies on the 
regionprops function from scikit-image (Van der Walt 
et al., n.d.), which generates over 20 possible properties; 
however, we only focused on those that are more rel-
evant to spike architecture (Table 1). Nevertheless, addi-
tional variables can be retrieved with minor changes in 
the SpikeDF and SpikeletDF functions within SpykProps, 
based on specific researcher needs. These descriptors 
can be combined with spike length, number of spikelets, 
and other univariate traits, to derive more robust and 
uncorrelated phenotypes using dimensional reduction 
techniques.

The spike shape can also be quantified by deriving 
latent features from its contour. This is done by decom-
posing the outline into waves with a specified number 
of harmonic series using the Fourier Transform [9, 26]. 
The resulting Elliptical Fourier descriptors (EFDs) are the 
coefficients  an,  bn,  cn and  dn, derived from the elliptic loci 
xi = aicoscosθ + bisinsinθ and yi = cicoscosθ + disinsinθ , 
for a point  (xi,  yi) with n number or harmonics [23]. The 

Fig. 3 Spike length approximation methods included in SpykProps. Figures A–D show in the top: a binary mask with an overlayed red line 
indicating the approximated length; and the bottom: the scatterplot with a regression line of predicted (x-axis) and observed (y-axis) lengths, 
with the Pearson correlation coefficient (R; p < 0.001). The spike length in A and B are approximated as twice the major axis (longest red line) 
of a fitted ellipse on the spike (A) or its convex hull (B). The spike length in C and D are determined by Zhang’s (C) or medial axis (D) skeletonization 
algorithms. (E) Average execution time per spike in seconds across methods with standard error calculated from execution time of 810 binary 
images
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coefficients are obtained using the CalculateEFD func-
tion from the spatial-efd package [42] which is built on 
the pyefd module. To do so, we first provide a binary 

mask of the spike and fill any holes using the binary_
fill_holes function from SciPy [41], and then execute the 
findContours function using the RETR_CCOMP mode 
and the CHAIN_APPROX_SIMPLE method [7] to extract 
the outline of the spike as paired x and y coordinates. 
Once obtained, the  an,  bn,  cn, and  dn, are normalized to 
be insensitive to the spike’s rotation and size. The out-
line representation of the spike depends on the number 
of harmonics chosen: the more harmonics included, 
the more accurate the shape representation (Fig.  5). It 
is worth mentioning that the EFD can also be used to 
describe more features including symmetric  (bn and 
 cn harmonics) and asymmetric  (an and  dn harmonics) 
sources of variance [9].

When computing the EFD, the pipeline uses the Fou-
rierPower function to estimate the number of harmon-
ics needed to exceed a 0.9999 threshold Fourier power 
[42] as a univariate representation of the outline. This 
value can be used as an “optimal” number of harmonics 
(Fig.  5D), along with the number of spikelets per spike, 
and geometric descriptors such as area, perimeter, circu-
larity, length, etc., as additional sets of shape properties 
from which latent variables could be derived. Unlike the 
original geometric variables, latent variables are orthogo-
nal and account for maximized variation across multiple 
dimensions of shape [10].

Quantifying spike color
Color is an important feature in plant inflorescence, the 
variation of which often provides information on matu-
rity levels at the time of harvest. Color is a quantitative 
trait commonly described as qualitative because small 
variations in hue do not necessarily add relevant informa-
tion to a biological phenomenon. However, maturity and 
ripening can be highly variable and arguably impossible 
to properly quantify at the spikelet or even plant level 

Fig. 4 Assessment of the spikelet detection method included 
in SpykProps. A, B Output images from the spikelet_segm function 
where each color in A represents an approximated spikelet region, 
to which a numbered ellipse and its major axis line will be fitted 
(B). C Root mean squared error (RMSE) across minimum Euclidean 
distances in pixels expected between the center of a spikelet. D 
Scatterplots of the predicted (x-axis) versus observed (y-axis) number 
of spikelets per spike, with their Pearson correlation coefficient (R; 
p < 0.001)

Table 1 Geometric descriptors of spike and spikelet shape

a Italic features refer to those described in the column Property
b Region of interest (ROI), specifically refers to a segmented spike or spikelet

Property Description Purpose

Areaa Number of pixels within the  ROIb Quantifies the ROI’s area

Eccentricity Measure of elongation Helps to identify curved spikes

Equivalent diameter Diameter of a circle with same the area Provides a latent measure of ROI’s size and shape with reference 
to a circle

Extents Ratio of the ROI’s bounding box area to the Area Provides a latent measure of the ROI’s spread or aperture

Ferets Estimate of longest and shortest distance within the ROI’s 
outline

Useful to estimate width on non-curved ROI’s. Unlike Minor Axis, 
it considers the overall shape rather than a fitted ellipse

Major axis Length of the longest axes of an ellipse fitted on the ROI Provides a fast estimate of length on non-curved ROI’s

Minor axis Length of the shortest axes of an ellipse fitted on the ROI Provides a fast estimate of width on non-curved ROI’s

Perimeter Length of the ROI’s outline Provides a latent measure of the ROI’s size

Solidity Ratio of the Area to the ROI’s convex hull’s area Provides a latent measure of shape
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without high-throughput technology and data. The use of 
mean intensity values in a region of interest for a given 
color-space can be problematic when the pixel distribu-
tion is not normal. Instead of mean values per channel, 
SpykProps provides different percentiles across several 
color spaces as well as descriptors of their variation. 
There are currently 77 color descriptors that are output 
using the function channel_percentiles which considers 
all non-zero pixel values in each spike and returns the 
minimum, maximum, mean, standard deviation, coeffi-
cient of variation, percentiles 5, 25, 50, 75, 95, and quan-
tile-based coefficient of variation across nine channels (R, 
G, B, H, S, V, L*, a*, b*). In addition, channel_percentiles 
estimates the same parameters for negative and positive 
values in a* and b*. The resulting dataset can be dimen-
sionally reduced with methods such as principal compo-
nent analysis, where the resulting eigenvectors could be 
used as latent variables to separate samples with similar 
color profiles.

An example of how latent color phenotypes could 
help distinguish spikes with near identical color profiles 
is shown in Fig.  6 and Additional file  1: Fig S3. Upon 
projecting a subset of spikes into the first two linear 

combinations from variable color descriptors, we used 
their Euclidean distance (ED) to quantify the ability to 
separate spikes. In general, more descriptors tend to 
increase the separation between all spikes but could also 
introduce more noise when trying to separate a subsam-
ple of spikes. For example, using only the mean values of 
the RGB channels (Fig.  6B) resulted in the lowest aver-
age ED (1.92 ± 1.49) for all spikes (8892) and an average of 
0.07 ± 0.04 for the spikes in Fig. 6A. Adding more descrip-
tors to these channels (Fig.  6C) substantially increased 
the separation across all spikes (ED = 5.59 ± 3.82), and 
even more so when adding more color spaces as in 
Fig. 6D (ED = 7.84 ± 5.24), and more descriptors of spread 
as in Fig.  6E (ED = 8.2 ± 5.85). The greatest ED between 
spikes in Fig.  6A (0.08 ± 0.05) was achieved when using 
the output from SpykProps (Fig. 6D). It should be noted 
that this evaluation does not necessarily indicate the 
“best” method to use for quantifying color or a spike, but 
rather illustrates how using a few highly correlated vari-
ables, (i.e., mean RGB values), limits the ability to char-
acterize and distinguish color among different spikes. 
Ultimately, users will need to determine the combination 
of color descriptors that best capture variation in color 
profile across their germplasm from the array of color 
descriptors that are output in SpykProps.

Example application of SpykProps in perennial ryegrass 
breeding
As a proof of concept to validate the applicability of our 
system in agronomic and breeding settings, we estimate 
the predictability  (R2) of shape and color descriptors on 
yield-related traits measured in a perennial ryegrass nurs-
ery. Multiple machine learning algorithms showed that 
some spike properties are more important than others 
depending on the trait. Gradient boosting machine (gbm) 
models, in particular, consistently showed that shape and 
color features were good predictors of theoretical yield 
potential  (R2 = 0.94), while elliptical Fourier were better 
for rachis weight  (R2 = 0.83). Other traits, such as visual 
shattering, were best modeled using all descriptors from 
SpykProps  (R2 = 0.85; Fig. 7). This suggests that the addi-
tional trait features exported from SpykProps can be 
used to train models to maximize accuracy and efficiency 
when phenotyping complex spike architectural traits 
associated with seed yield.

Our results suggest that latent descriptors of shape 
and color are relevant to the relationships affecting spike 
architecture and yield-related traits. While spike area was 
the most important feature to predict seed yield poten-
tial and shattering, latent properties of color had at least 
double the importance compared to the average feature 
(Additional file 1: Table S1). For these traits, and particu-
larly for yield potential, descriptors of the distribution of 

Fig. 5 Spike shape reconstruction using Fourier series with different 
numbers of harmonics (n). A n = 1, B n = 10, C n = 30, D n = 81 
(optimal), and E n = 100. The shape of the spike is outlined in black, 
and the outline approximation is fitted in red
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greenness had significant importance, and so did meas-
urements of variability such as CV and QCV. Ellipti-
cal Fourier descriptors were also relevant, especially, to 
predict rachis weight. Altogether, this proof of concept 
highlights the importance of comprehensively character-
izing shape and color in understanding the relationship 
between spike architecture and yield related traits.

Discussion
Our imaging platform provides advantages that dis-
tinguish it from similar systems, enabling an overall 
improvement in data quantity and quality. SpykProps is 
high throughput and fast, enabling the extraction of more 
than 100 traits per spike in less than three seconds, and 

multiple spikes at a time. This attribute is particularly 
crucial in scenarios where limited sample size and num-
ber of traits pose challenges to data quality. Our system 
minimizes human subjectivity, allowing for a compre-
hensive and unbiased assessment of color and shape. 
Unlike conventional approaches relying solely on central 
tendencies, our system focuses on different measures of 
spread and variability, providing a more comprehensive 
representation of color. Additionally, elliptical Fourier 
descriptors provide a purely quantitative definition of 
inflorescence shape. Such an approach has proven key 
to identify variation and eigenshapes associated with 
specific morphotypes in leaf morphology [8, 17], but are 
yet to be investigated in inflorescences. Importantly, our 

Fig. 6 Effect of additional color descriptors on separability of spikes with similar color profile. A Example of three spikes with similar color profiles 
selected from a random image (Additional file 1: Figure S1). B–E Standardized (0–1) principal components with their percentage of variance 
explained, derived from various number of color descriptors for 8892 spikes encompassing 694 images. Circles and numbers correspond to a subset 
of all spikes in Additional file 1: Figure S2; colored circles refer to spikes in A. Descriptors are mean RGB values (B); different descriptors of the pixel 
frequency distribution for R, G, and B (C); same descriptors as in B, for all channels in RGB, HSV, and Lab color spaces (D); same descriptors as in C 
in addition to the coefficient of variation (CV) and quantile-based CV for each channel (E)
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continuously-improving platform can be freely accessed 
from its Github repository, and can be operated without 
specific imaging hardware.

SpykProps has potential applications across research 
areas including agronomy, genetics, and developmen-
tal biology. For instance, comprehensive assessments of 
inflorescence morphology throughout the growing sea-
son could provide valuable insights into the dynamics 
affecting developmental rate and seed productivity. Simi-
larly, our tool could be useful in comprehending disease 
progression, assessing its severity, and unraveling plant 
responses to other biotic and abiotic stresses. When cou-
pled with environmental data, such assessments could 
facilitate identifying optimal timing for various agro-
nomic management practices. Moreover, the integration 
of genomic resources could expand our understanding of 
source-sink relationships, and thus aid the development 
of varieties with improved resource allocation, response 
to biotic and abiotic stresses, and overall performance.

Given that our system is meant as a foundation for the 
study of inflorescence architecture through latent pheno-
types, it currently has some challenges. First, SpykProps 
is limited to unbranched inflorescences that can be flat-
tened out without compromising their 3D shape. For 
example, the system would work on perennial ryegrass, 
which it was developed on, and other species with similar 
architectures such as two-row barley (Hordeum vulgare) 
but would not currently work on 6-row barley or wheat 
(Triticum aestivum) that do not have a flat inflorescence 
architecture. However, researchers can overcome these 
challenges reconstructing their 3D-shaped samples by 
imaging and stitching multiple sides [38] or using proper 
3D imaging hardware [39]. Second, best results require 
sample preparation to avoid overlapping spikes, which 

can increase phenotyping time. Nevertheless, SpykProps 
can identify overlapping spikes as outliers from the spike’s 
outline Fourier transform, or length, which alleviates the 
problem with large enough sample size. Similarly, the 
output data facilitates detecting outliers with anomalous 
colors that might influence spike segmentation; and users 
can also evaluate different parameters to determine ade-
quate segmentation parameters. Lastly, unlike conven-
tional traits, latent phenotypes are not intuitive or easy 
to interpret. For example, classifying a spike as “green” or 
with a maturity percentage, is more straightforward than 
calculating a score on a principal component -or a differ-
ent dimensional reduction approach- from over a hun-
dred color variables. However, the latter would account 
for a larger proportion of phenotypic variation, and to a 
greater extent, for the interaction between subtle traits 
that comprise the complex conventional traits.

Conclusion
We developed SpykProps, a freely available Python-based 
imaging platform to measure conventional and latent 
phenotypes in unilateral grass inflorescences. Using per-
ennial ryegrass spikes as a model, we showed that our 
high throughput phenotyping system is able to quantify 
spike architecture and accurately associate such mor-
phology with yield-related traits. SpykProps has potential 
applications in agronomy, plant breeding, and develop-
mental biology as demonstrated in the case example with 
perennial ryegrass.

Methods
Plant material
The spikes to develop SpykProps were obtained from 
perennial ryegrass plants of the variety Galactic Green 

Fig. 7 Correlation between predicted and observed agronomic values on three agronomic traits. Scatterplots with a regression line of predicted 
(x-axis) and observed (y-axis) trait value, with their Pearson correlation coefficient (R; p < 0.001). Gradient boosting machine (gbm) models were 
trained using a different set of descriptors from SpykProps
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that were harvested from experiments in field and green-
house conditions [4]. The experiments sought to evalu-
ate the effect of ethylene and gibberellin inhibitors at 
different rates on shattering and seed yield in perennial 
ryegrass. The greenhouse experiment took place in 2021 
at the Minnesota Agricultural Experiment Station Plant 
Growth Facility in St. Paul, Minnesota, United States. 
The field experiment was located in Roseau, Minnesota, 
and comprised two locations separated by 6.5  km that 
were planted in 2020 as a double crop with spring wheat 
and harvested in 2021. Upon maturity, spikes were har-
vested at 0.5 mm below the last spikelet, bagged in paper 
bags, and stored for further processing. Variation across 
environments and inhibitor rates provided a wide range 
of size and color within and among spikes.

Data collection
A total of 166 images were obtained by carefully placing 
the dry spikes on a CanoScan Lide 300 flatbed scanner at 
600 dpi and 107 MB in disk. All images were 7016 pixels 
in height by 5104 pixels width and contained between 5 
and 23 spikes. We used a black velvet as a background for 
the images which reduced light reflectance and poten-
tial artifacts in the images. The data collected from the 
pipeline was obtained using a MacBook Pro 2021 with 
an Apple M1 Pro chip, a 16  GB memory, and running 
macOS Monterrey.

Imaging pipeline
This pipeline was developed using Python to segment 
spike and spikelets before extracting features describ-
ing variation in morphology. The system includes func-
tions to visualize, compare, and extract data for a single 
spike, but it is meant to be used on a set of images con-
taining multiple spikes. Ideally, such images contain 
inflorescences of the same plots, replication, or plant. 
The most complete datasets are obtained by running the 
SpykBatch.py function, which only requires the path to 
the images in a Python list. Once finished, the function 
returns different datasets containing spikes and spikelets 
color and shape descriptors. Color data was generated in 
Python using the spike’s binary mask and its RGB version 
to characterize the pixel distribution across color-spaces 
and channels. In addition, we developed R functions to 
generate coefficients of variation (CV) and quartile-
based coefficients of variation (QCV) for the color data. 
The shape data comprises elliptical Fourier descriptors 
(EFD), as well as geometric properties extracted from the 
spike’s binary mask using the regionprops function (Van 
der Walt et  al., n.d.), both available for Python.When 
computing the EFD, the pipeline uses the FourierPower 
function to estimate the number of harmonics needed to 

exceed a 0.9999 threshold Fourier power [42], unless they 
are specified by the user.

Validation and models
We developed multiple machine learning models on Spy-
Props data from a first-year production nursery evalu-
ated for seed shattering and other seed yield traits. The 
nursery was located in the Turfgrass Research, Out-
reach and Education Center at the University of Min-
nesota, and comprised 20 different maternal clones and 
their half-sib families (Additional file  1: Fig S4), repli-
cated across three blocks. The traits were collected from 
approximately 10 spikes per plot that were harvested and 
imaged as described above. In summary, each sample was 
first given average percentage scores per spike for visual 
shattering estimate (VSE) at harvest and for total seed 
retention (RET) after induced detachment with a wrist 
action shaker. Next, we weighed the seed detached before 
and after shaking (DBS and DAS, respectively), hand-
threshed the spikes to weigh the seed retained before and 
after shaking (RBS and RAS, respectively), and derived 
the rachis weight (RW) and theoretical yield potential 
(TYP) from the measurements [4]. In addition, an aver-
aged developmental rate score (DEV) was also given 
based on a phenological scale for cool-season peren-
nial grasses that has previously been described [18]. The 
descriptive statistics for agronomic traits can be found 
on Additional file 2: Table S2. Lastly, we simulated a nor-
mally distributed trait with mean zero and standard devi-
ation one, as a control to compare predictions.

Combinations of shape and color descriptors were 
derived from the parents and offspring and used to 
train the models with data from 70% of the families. 
Because spike shape and particularly curvature was 
affected by storing bags, we removed spikes with cur-
vature greater than 5.5 standard deviations above the 
mean). In some plots, this induced the need for sam-
pling from the imaging data to match the number of 
processed spikes in the agronomic data. We filtered out 
near-zero-variance predictors as well as those with a 
Pearson’s correlation coefficient greater than 0.85, and 
scale and center the remaining variables before train-
ing. All models were trained using the Caret package 
[24], cross-validated using leave-one-out (LOOCV) 
method, and their performance was evaluated based 
on their root mean squared error (RMSE), mean abso-
lute error (MAE), and the Pearson correlation coeffi-
cient (R) between the predicted and observed values for 
both the training and testing datasets (Additional file 3: 
Table  S3). The models included: partial least squares 
(pls), ridge (ridge), least absolute shrinkage and selec-
tion operator (lasso), and principal component regres-
sion (pcr), elastic net (enet), gradient boosting machine 
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(gbm), support vector machine radial (svmRadial) 
and lineal (svmLinear), and random forest (rf). Tun-
ing parameters were set based on Caret’s default val-
ues, which included: up to 30 eigenvectors for pls and 
pcr; C = 1 for svmLinear and svmRadial, with the latter 
including sigma = 0.1; lambda = 0.1 for ridge and enet; 
similar to lasso, enet included fraction = 0.1; finally, gbm 
was evaluated with different values for tree number 
(50, 100, and 150), interaction depth (1, 5, 9), but fixed 
shrinkage (0.1) and n.minobsinnode (10). The model 
with the highest  R2 was kept when multiple parameters 
were tested.

Abbreviations
CV  Coefficient of variation
DAS  Detached after shaking
DBS  Detached before shaking
DEV  Developmental stage
DPI  Dots per inch
ED  Euclidean distance
EFD  Elliptical Fourier descriptor
ENET  Elastic net
GB  Gigabytes
GBM  Gradient boosting machine
HSV  Hue, saturation, value
HTP  High throughput phenotyping
LASSO  Least absolute shrinkage and selection operator
MB  Megabytes
PCA  Principal component analysis
PCR  Principal component regression
PLS  Partial least squares
QCV  Quantile-based coefficient of variation
RAS  Retained after shaking
RBS  Retained before shaking
RET  Seed retention
RF  Random forest
RGB  Red, green, blue
ROI  Region of interest
RMSE  Root mean square error
RW  Rachis weight
SVM  Support vector machine
TYP  Theoretical yield potential
VSE  Visual shattering estimate
2D  Two dimensional image
3D  Three dimensional image
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