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Abstract 

Background  Object detection, size determination, and colour detection of images are tools commonly used in plant 
science. Key examples of this include identification of ripening stages of fruit such as tomatoes and the determination 
of chlorophyll content as an indicator of plant health. While methods exist for determining these important pheno-
types, they often require proprietary software or require coding knowledge to adapt existing code.

Results  We provide a set of free and open-source Python scripts that, without any adaptation, are able to perform 
background correction and colour correction on images using a ColourChecker chart. Further scripts identify objects, 
use an object of known size to calibrate for size, and extract the average colour of objects in RGB, Lab, and YUV colour 
spaces. We use two examples to demonstrate the use of these scripts. We show the consistency of these scripts 
by imaging in four different lighting conditions, and then we use two examples to show how the scripts can be used. 
In the first example, we estimate the lycopene content in tomatoes (Solanum lycopersicum) var. Tiny Tim using fruit 
images and an exponential model to predict lycopene content. We demonstrate that three different cameras (a DSLR 
camera and two separate mobile phones) are all able to model lycopene content. The models that predict lycopene 
or chlorophyll need to be adjusted depending on the camera used. In the second example, we estimate the chloro-
phyll content of basil (Ocimum basilicum) using leaf images and an exponential model to predict chlorophyll content.

Conclusion  A fast, cheap, non-destructive, and inexpensive method is provided for the determination of the size 
and colour of plant materials using a rig consisting of a lightbox, camera, and colour checker card and using free 
and open-source scripts that run in Python 3.8. This method accurately predicted the lycopene content in tomato 
fruit and the chlorophyll content in basil leaves.

Keywords  Colour, Chlorophyll, Lycopene, FOSS, Object detection, Open-source

Background
Quantitative colour analysis is an important aspect of 
plant material phenotyping and adds valuable informa-
tion in a variety of common applications. Colour has 
been shown to be an accurate predictor of ripeness in 
a variety of fruits, including bananas [1], tomatoes [2], 
and avocados [3]. As fruit ripens, the ratios of coloured 
compounds such as carotenoids, anthocyanins, and 
chlorophyll change and colourimetric methods are rou-
tinely used to determine the concentration of these com-
pounds, which can provide important information about 
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the quality and nutrition content of the plant/fruit [4]. 
Colour, in addition to fruit ripeness, is a good predictor 
of chlorophyll concentration in plant leaves, and models 
for several plant varieties, including rice [5], quinoa and 
amaranth [6], and Arabidopsis [7], have been developed. 
Furthermore, colour can be used to detect plant disease, 
which can save considerable time in plant pathological 
analysis [8].

When non-destructive colorimetric methods are 
required, visible imaging can be used to measure plant 
phenotypes such as leaf area, colour, yield, disease sever-
ity, fruit number, etc., and digital photography is the easi-
est and cheapest of these methods [9]. Many pipelines 
and tools have been developed for determining the size 
or colour of plant tissues; however, they often require the 
use of closed-source software/tools or extensive manual 
image correction [6, 10]. Eliminating proprietary soft-
ware and developing free and open source software 
(FOSS) has many benefits, including reducing research 
costs and generating software that is highly suitable for 
the required scientific task [11, 12] and makes these tech-
niques available to researchers with limited resources.

An improvement to FOSS that increases transpar-
ency, reproducibility, and reusability of software is to fol-
low the “FAIR” principles by producing software that is 
Findable, Accessible, Interoperable and Reusable, which, 
when used specifically for research software, is known 
as FAIR4RS [13]. Some recommendations have been 
made for FAIR4RS, including ensuring users know how 
to retrieve and cite software for findability, ensuring soft-
ware is preserved via “snapshots” using online reposito-
ries with concurrent version control to tag new releases 
to improve accessibility; adhering to software standards 
for interoperability; and including adequate documenta-
tion in conjunction with test data for improving repro-
ducibility [14]. Following FOSS and FAIR principles 
allows for the creation of plant colour software that is 
transparent, robust, and repeatable. This kind of colour 
detection system allows for generalisation of findings 
between systems and can help improve models used for 
colour detection and characterisation [15].

In this manuscript, we present a pipeline and set of 
FOSS scripts that follow the FAIR4RS principles for col-
our correcting digital photo images, separating objects, 
and determining the objects’ size and colour coordinates 

in various colour spaces. The pipeline is tested in four dif-
ferent lighting conditions to show the consistency of the 
colour correction pipeline. Two examples are then used 
to demonstrate possible use cases for these scripts: first, 
determining the lycopene content of tomatoes, which is 
done using three different cameras; and second, deter-
mining the chlorophyll content of basil leaves.

Materials and methods
Materials

	 1.	 Any digital camera (whilst a DSLR camera that 
shoots in RAW is preferable, mobile phone cam-
eras can also be used).

	 2.	 A 24 swatch colour checker (code provided and 
colour file are for SpyderCheckr24, https://​spyde​rx.​
datac​olor.​com/​shop-​produ​cts/)

	 3.	 A lightbox with supplementary lighting (this is 
optional however it does improve the quality of the 
results, see for example https://​tinyu​rl.​com/​s8x4v​
2jd). The example lightbox contains LED lighting; 
this could be further improved by using bulbs that 
are closer to standard illuminants (D65 for sRGB).

	 4.	 An object of known size (coins work well).
	 5.	 Software: Python 3.8.
	 6.	 Python packages: List of packages and their ver-

sions used available in Additional file 1: S0.
	 7.	 Custom Python Scripts: https://​github.​com/​Harry​

CWrig​ht/​Plant​SizeC​lr
	 8.	 Snapshot of all scripts and data is available on 

Open Science Framework: www.​doi.​org/​10.​17605/​
OSF.​IO/​QAYMU

	 9.	 Optional for extraction of lycopene: acetone, high 
purity ethanol, hexane deionised water and a UV/
vis spectrophotometer

	10.	 Optional for extraction of chlorophyll: 80% acetone 
in deionised water and a UV/vis spectrophotom-
eter

Protocol
Figure  1A–F shows the general protocol and pipeline 
using the presented scripts for image correction, object 
detection and separation and colour and size determina-
tion and in depth details are provided.

Fig. 1  The framework for determining the size and colour of objects for plant phenotyping. The steps consist of (A) converting the raw file 
into a jpg file (optional) using the script NEF2JPG.py, (B) doing a background correction to account for the vignette effect by the camera lens using 
the BG_Corr.py file, (C) colour correction using a colour checker card using ClrCorr.py, (D) cropping of image for object identification using Crop.
py, (E) removal of the white background using BGRem.py (F) separation of objects using ObID.py and (G) determination of the size and colour 
of objects using SizeClr.py

(See figure on next page.)

https://spyderx.datacolor.com/shop-products/
https://spyderx.datacolor.com/shop-products/
https://tinyurl.com/s8x4v2jd
https://tinyurl.com/s8x4v2jd
https://github.com/HarryCWright/PlantSizeClr
https://github.com/HarryCWright/PlantSizeClr
http://www.doi.org/10.17605/OSF.IO/QAYMU
http://www.doi.org/10.17605/OSF.IO/QAYMU
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Fig. 1  (See legend on previous page.)
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1.	 A background image should be taken with the digi-
tal camera to perform a background correction that 
corrects for any lightness uniformity due to the cam-
era sensor or inhomogeneous lighting conditions. An 
example of a background image is provided in Addi-
tional file 2: S1.

2.	 Photograph plant tissue using a digital camera, ensur-
ing that plant tissue, colour checker board as well as 
an object of known size are all visible in the photo. 
Background removal and object separation relies on 
using a white background so users should capture 
images with a white background. The colour checker 
should be in a portrait orientation and the object for 
calibrating size should be the left most object (other 
than the colour checker board) an example of a good 
image is given in Fig. 1 A and in more detail in Addi-
tional file 3: S2. The scripts may not identify the col-
our checker if the colour checker is not square in the 
image, it is important to ensure it is when captur-
ing the images, otherwise the image may need to be 
cropped and rotated such that the colour corrector is 
square.

Note 1: Software scripts function for photos taken 
in both landscape and portrait, if using the Spyder-
Checker24 colour checker, the light blue swab should 
be in the top right and portrait irrespective of the image 
orientation.

Note 2: Photographs can be taken in varying lighting 
conditions; however, the use of lighting conditions that 
best imitate standard CIE illuminants (D55 or D65) will 
result in images with the lowest colour error. It is impor-
tant to ensure that there are no shadows cast onto the 
image or projected from the plant tissues, as this affects 
colour correction and object separation.

Note 3: All objects of interest (colour checker board, 
object of known size, plant tissue) should be placed as 
near to the centre of the photo as possible to minimise 
lens distortion effects.

3.	 If images are captured in RAW format, they need 
to be converted to *.jpg format, if a Nikon camera 
is used that saves RAW files as *.NEF file, then the 
included script NEF2JPG.py can be used to convert 
the file to jpg. This script can batch process all the 
files in a folder. If RAW images from other devices 
are used they will need to be converted to jpg outside 
of this pipeline before continuing with step 4.

4.	 Background correction is done on the *.jpg files. The 
script BG_Corr.py is able to batch process all files in a 
particular folder. The script will prompt you to select 
the background image file captured for background 
correction. It will then ask you for the folder with 

all the images that required background correction 
before corrected the files. Files will be saved using 
their initial filename plus”_BGcorrected.jpg”.

5.	 Colour correction is done on background corrected 
jpg files. The script will prompt you for the *.csv file 
that contains the RGB data of your colour correc-
tion swatches (if using SpyderCheckr24 this is sup-
plied in Additional file 4: S3). The order of the colour 
swatches entered into the.csv file is important and 
Additional file 5: S4 demonstrates the order the val-
ues need to be entered into the file. It will then ask 
you for the folder that contains the images that you 
wish to correct and proceed to colour correct the 
batch of images. It will print out the r [2] values of 
the colour correction matrix and these should all be 
above 0.95 if images have been successfully corrected. 
Corrected images will be saved using their initial file-
name plus the suffix “_fin.jpg”. Furthermore a.csv file 
will be generated that saves the average swatch error 
for each file before and after colour correction. This 
function also prints and saves the RGB values of the 
white swatch, to ensure that colour correction is not 
resulting in saturated RGB values. A note is printed 
in the command line stating whether there may be 
saturation problems that need further investigation.

6.	 For object identification and separation it is neces-
sary to crop the colour corrector out of the colour 
corrected images as shown in Fig.  1D. The pro-
vided script Crop.py is able to do this cropping. It 
will prompt you to select the folder with the cor-
rected images and then display the images one at a 
time. The user must click and drag a rectangle on the 
image with their mouse to select the region of inter-
est (ROI). The region of interest should include all 
objects of interest as well as the object of known size. 
The object of known size should now be the left most 
object in the image. Once the user is happy with the 
ROI they press enter and this will crop and save the 
image and open the following image. Images will be 
saved as their initial filename plus the suffix “_crop.
jpg”.

7.	 Background removal is done using the script 
BGRem.py. The user will be prompted to select the 
folder that has the images which require background 
removal. This script also has a threshold value that 
can be changed if the background removal is either 
cropping the objects of interest by being too aggres-
sive in thresholding or not removing the background 
entirely. This is changed on line 16 of the script 
BGRem.py (a good starting value is 150). Images with 
their background removed are saved as their initial 
name plus the suffix “_BGRem.jpg”.
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8.	 Object separation is done using the script ObID.py 
which will prompt the user to select the folder which 
has the image files for object separation. Once the 
script is run, an image will be displayed with an iden-
tified object highlighted and the user will be asked to 
give this object a name in the IDE software used to 
run the script. The object will then be saved as a jpg 
file with this name. This will then repeat for the next 
object in the image and once all objects have been 
named the script will move to the next image in the 
folder.

9.	 Finally colour and size information can be extracted 
from the individual saved objects. This is done using 
the script SizeClr.py. This will prompt the user for 
the folder with the separated object images and for 
the file that contains the object of known size. The 
user will be prompted for the height and width of the 
object in the unit of interest and should enter this in 
the IDE. The script will then work through each of 
the objects and extract their size data (width, height 
and area) as well as the colour in three colour spaces; 
RGB, YUV and CIELAB. For CIELAB it is assumed 
that the observer is 2° and the illuminant is a CIE 
standard illuminant D65. If this is not the case the 
user should change these values on line 583–585 of 
script PlantSzClr.py. Colour and size information is 
saved in a new.csv file. The user will be prompted to 
give the name of this csv file and information is saved 
in columns as shown in Fig. 1F.

Image processing
Although detailed understanding of the backend pro-
cessing is not required to use the pipeline, some under-
standing can benefit the user, particularly for background 
correction, colour correction, object separation, and col-
our determination.

Background correction: This function corrects an 
experimental image using a background image captured 
under the same conditions and camera settings. First, the 
background image is blurred (5 × 5 pixels) and normal-
ised to values between 0 and 1. Then, the experimental 
image is divided by the normalised background image to 
correct for any differences in lighting and exposure. The 
resulting corrected image is clipped to the valid range 
(0,255) and saved.

Colour correction: A colour correction process 
was performed using the colour_checker_detection 
python package with slight modifications to ensure 
accurate identification of all 24 swatches. The func-
tion implements polynomial regression to adjust for 
any discrepancies between the observed and reference 
RGB values of the swatches. The process takes in two 

parameters: an array of the reference sRGB values for 
the 24 swatches and the observed mean RGB colours 
of the same swatches. The function creates a design 
matrix with the observed RGB values and their powers 
up to the third order and fits a linear regression model 
to each of the R, G, and B channels using this matrix 
and the swatch sRGB values. The optimal correction 
coefficients were determined through ordinary least 
squares regression. The RGB channels of the experi-
mental image were corrected by applying the correc-
tion transformation (Eq. 1).

where CCcorr is the corrected colour channel (R, G or B) 
value, β is the correction coefficient for each channel, and 
Ri, Gi and Bi are the observed red, blue and green values 
within the image. This type of polynomial regression has 
been successfully used to minimise error when trans-
forming from RGB to device-independent sRGB that 
minimises the error due to non-ideal illuminants. Polyno-
mial modelling has also been used to convert directly to 
XYZ tristimulus values [16]. The sRGB colour space also 
has a relationship to the CIE colourimetric colour space 
and allows for conversion between these colour spaces 
[17]. To demonstrate the error reduction 50 images of 
lettuce were captured in a lightbox and the average error 
between the reference swatch sRGB value and captured 
value was calculated according to Eq. (2).

where Rref,i, Gref,i and Bref,i are the reference sRGB val-
ues for the three colour bands for each of the swatches, 
Ri,, Gi, and Bi are the observed colour band values in the 
image and ΔRGBi is the error for each of the 24 swatches. 
The mean error of the 24 swatches over the fifty images 
before colour correction was 43.05 and this was reduced 
to 10.49 once colour correction had taken place (Fig. 2).

Background removal: This function removes the back-
ground of an image using colour thresholding and mor-
phological transformations (cv2.getStructuringElement) 
and cv2.morphologyEx) which exclude small pixels and 
remove all except large objects.

Object separation: This function is designed to perform 
object detection and segmentation on digital images. It 
employs Canny edge detection to extract edges from the 
input image and applies contour detection to identify and 
sort the contours in the resulting edge map. The function 
then computes the mean RGB color of each object and 

(1)

CCCorr = β1,CCRi + β2,CCGi + β3,CCBi + β4,CCR
2
i

+ β5,CCG
2
i + β6,CCB

2
i + β7,CCR

3
i

+ β8,CCG
3
i + β9,CCB

3
i

(2)
�RGBi =

√

(Rref,i − Ri)
2 + (Gref,i − Gi)

2 + (Bref,i − Bi)
2
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transforms these values into YUV and CIE Lab* color 
bands. To determine the object’s maximum width and 
height, as well as its area, the function counts the number 
of non-white pixels.

Note on ideal plant tissue
Although there are many applications for this type of col-
orimetric determination in plant phenotyping, it must 
be noted that for the two case studies provided the plant 
tissues are ideal for this type of phenotyping (basil leaves 
are smooth, without wax or hairs, green and unvarie-
gated and tomatoes follow a green/yellow/orange/red 
ripening process and are undamaged and free from dirt). 
For non-ideal leaves there can be a significant change in 
their reflectance patterns and intensity [18] which would 
likely need a more complex pipeline for understanding 
colour than the pipeline provided here as would damage 
or dirty tomato fruit.

Lycopene extraction
Lycopene extraction was done as a case study using the 
pipeline. The lycopene was solvent extracted and its con-
centration measured by UV/vis spectrophotometry. Lyco-
pene extraction was completed according to the method 
described by Fish et  al. [19] with a slight modification. 
Fresh tomato tissue was finely ground in a mortar and pes-
tle with an equal weight of deionised water to give a paste. 
0.4–0.6 g of this paste was added to a vial and kept on ice 
in the dark until processing. To each vial, 5 mL of acetone, 
5 mL of 95% ethanol, and 10.0 mL of hexane were added. 
Vials were sealed and placed on their sides in a container 
that contained ice, and they were mixed for 15 min at 180 
rpm on an orbital shaker. After shaking, 3  ml of deion-
ised water was added to the vials, and they were shaken 
for another 5 min. Samples were then left to phase sepa-
rate at room temperature for 5 min before absorbance was 

measured. The UV/vis absorbance of the upper (hexane) 
fraction was measured between 400 and 700 nm, and the 
intensity at 503 nm was used for lycopene content deter-
mination, measured against a hexane blank. The lycopene 
concentration was calculated according to Eq. (3).

where L is the lycopene concentration in mg kg−1, A503 
is the absorbance at 503 nm, 17.2 × 104  M−1  cm−1 is the 
molar extinction coefficient for lycopene in hexane [20].

Lycopene model training and validation
A large range of models have been suggested for fitting 
colour data from digital images to lycopene concentra-
tion, including linear and exponential models. Liñero et al. 
used a quadratic equation using the CIELAB colour space, 
which explained 95 percent of the variance [21], whereas 
Arias et  al. used linear and exponential fits using param-
eters from the CIELAB colour space to classify tomatoes 
into maturity groups and to predict lycopene content. An 
exponential model in the form shown in Eq. (4) was found 
to be the best predictor of lycopene concentration, with an 
r2 of 0.96. [22].

where Lpred is the predicted lycopene content, β1, β2 and 
β3 are fitting parameters and a* and b* are colour channels 
in the CIELAB colour space. For this case study Eq. (4) is 
used to fit lycopene data.

Chlorophyll extraction
Chlorophyll extraction was used to provide a second exam-
ple of the pipeline. Chlorophyll was extracted from basil 
leaves, and the chlorophyll content was determined using 
UV/vis spectrophotometry. 70−100 mg of fresh leaf matter 
was ground to a paste with a pestle and mortar in 3 ml of an 
80% acetone solution. This turbid paste was transferred to a 
15 ml centrifuge tube. A further 1.5 ml of 80% acetone was 
used to rinse the mortar and pestle, and the final solution 
was brought up to 5 ml with 80% acetone [23]. Chlorophyll 
extraction was allowed to take place in the dark overnight. 
Vials were then centrifuged at 4000 RPM for 10 min, and 
the supernatant was collected for spectrophotometry. The 
UV/vis absorption at 646 nm and 663 nm was used to esti-
mate the chlorophyll content according to Eqs. (5, 6 and 7) 
[24].

(3)

L =
A503

17.2 × 104M−1cm−1
×

536.9 g

mole

×
1 l

103ml
×

103 mg

g
×

10 ml

kg tissue

=
A503 × 31.2

g tissue

(4)Lpred=β1e
β2

a∗

b∗ +β3

Fig. 2  The error between captured RGB values and the sRGB 
(ΔRGB) values for the 24 swatches on the SpyderCheckr24 colour 
checker before and after colour correction. The filled area indicates 
the standard deviation (n = 50) for different images of lettuces 
captured in a light box. The mean error before and after colour 
correction is shown on the right hand side
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where Ca is the amount of chlorophyll a, Cb is the amount 
of chlorophyll b and Ct is the amount of total chlorophyll 
(all in µg ml−1). A663 and A646 is the absorption at specific 
wavelengths.

Chlorophyll model training and validation
For model fitting of chlorophyll content an exponential 
model using the RGB colour system has been shown to 
accurately predict chlorophyll content in several crops 
including quinoa and amaranth [6], and Arabidopsis [7] 
and is used in case study example. Chlorophyll content 
was determined using the model shown in Eq. (8).

where Ctpred is the predicted total chlorophyll content, β1, 
β2, β3 and β4 are fitting parameters and R, G and B are the 
colour bands in the RGB colour space.

Results and discussion
Lighting test
To determine the flexibility and robustness of the pipe-
line, and in particular the background and colour cor-
rection scripts, images containing just the colour 
corrector were captured in four different locations with 
varying lighting conditions. Location one was the most 
controlled in a LED-lit lightbox, location two was done in 
natural lighting conditions; and locations three and four 
were done in two separate laboratories with fluorescent 
lighting (Light intensity and spectrums given in Addi-
tional file 6: S5 measured with a LI-COR LI-180). Images 
were captured with a Nikon D60 with the following set-
tings: aperture = f/4.2, shutter speed = 1/200 s, ISO = 100, 
file storage = RAW. The average error of the swatches of 
the colour corrector, as defined in Eq. (2), was used to 
determine the deviation of the image from the reference 
sRGB colour space, and these values were compared for 
the four locations before and after background and col-
our correction.

A two-way ANOVA was performed to analyse the 
effect of location and colour correction on the ΔRGB 
error. Main effects analysis showed that both location 
(F(3, 184) = 15.7, p < 0.001) and colour correction (F(1, 
184) = 221, p < 0.001) had significant effect on the ΔRGB 
error. A statistically significant interaction between the 

(5)Ca = 12.21A663 − 2.81A646

(6)Cb = 20.13A646 − 5.03A663

(7)Ct = Ca + Cb

(8)Ctpred = e(β1R + β2G + β3B + β4)

effects was also revealed by the two-way ANOVA (F (3, 
184) = 9.57, p < 0.001) (Table 1). The light box and natu-
rally lit images had statistically significantly lower error 
than the two laboratories with fluorescent lighting, which 
had higher error before colour correction (Fig. 3A). For 
all locations, the ΔRGB error reduced after colour correc-
tion, and, after colour correction the error did not differ 
between the four locations (Fig.  3A). The log10 trans-
formed data is presented in Fig. 3 A as tests for normal-
ity and equal variance were not met with untransformed 
data. Additional file  7: S6 displays the untransformed 
error data. The images on the colour correction card 
make visualising these errors before and after colour cor-
rection easier, and these images are shown in Fig. 3B. The 
mean untransformed mean ΔRGB error for the four loca-
tions (lightbox, natural, lab 1 and lab2), after colour cor-
rection were: 10.6, 10.4, 10.0 and 14.3 (Additional file 7: 
S6) with the first three having similar error to that shown 
in Fig. 2.

This analysis reveals that although the lighting condi-
tions have a large influence on the ΔRGB error, once col-
our correction is done, the error is comparable between 
locations. The pipeline can be used in varying lighting 
conditions; however, it should be noted that locations 
with more consistent controllable light (natural and light-
box) had the lowest errors before colour correction and 
produced more consistent images. It is suggested that a 
lightbox be used in conjunction with this pipeline; how-
ever, in  situations where this is not possible, using sup-
plementary daylight LEDs (5000–6500  K) can increase 
consistency and decrease ΔRGB error.

Lycopene extraction
Twenty tomatoes were processed, and lycopene was sol-
vent extracted according to the protocol described in 
the methods section to generate their absorption spec-
tra (Fig. 4A). The full spectrum was measured for toma-
toes of different colours and at the wavelength of interest 
(503 nm) the absorbance peak increased as tomatoes rip-
ened from green to red (Fig. 4B).

Table 1  Two-way ANOVA table for the error of swatches on 
colour corrector card

Factor SS df F PR(> F)

Location 2.98 3 15.7  < 0.001

Corrected 14.0 1 221  < 0.001

Location x corrected 1.82 3 9.57  < 0.001

Residual 11.6 184 – –
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Lycopene model generation and multi camera test
Model training
Twenty tomatoes were imaged using three different 
cameras: a DSLR camera (Nikon D60) and two mobile 
phone cameras (Xioami Mi 9SE and iPhone 7) to 

determine whether the pipeline is flexible in respect of 
the camera and camera settings used. The settings used 
for the DSLR camera were: aperture = f/4.2, shutter 
speed = 1/200  s, ISO = 100, file storage = RAW. For the 
two mobile phones, images were captured in automatic 

Fig. 3  A Log10 transformations of the error of the 24 colour corrector swatches before colour correction (pink) and after colour correction (blue) 
for images captured on a Nikon D60 at four different locations with different lighting conditions. The box is created from the first to the third 
quartile and the horizontal line through the box indicates the median. Thin whiskers show 1.5 × IQR from the edges of the box. Different letters 
indicate that means are significantly different (Tukey HSD, p < .05). B Shows the photos of the colour corrector board in the four locations, 
before and after colour correction
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mode with no settings controlled. The images were pro-
cessed using the colour and size pipeline, and Eq.  (4) 
was used to model lycopene content using the CIELAB 
colour space. For all three cameras, the model proved 
successful, and suitable fitting parameters were deter-
mined for all three cameras (Fig.  5). The DSLR cam-
era had the least amount of curvature of the three 

cameras, possibly due to proprietary image process-
ing routines on the mobile phones increasing this 
curvature. The predicted lycopene values accurately 
predicted the observed lycopene values for the Nikon 
D60 (r2 = 0.919), Xioami Mi 9 SE (r2 = 0.931), and the 
iPhone 7 (r2 = 0.943) and the predicted against observed 

Fig. 4  A UV spectrophotometry spectrum for tomato fruit with the vertical dashed line indicating the wavelengths used to determine lycopene 
content (503 nm) and B background and colour corrected images of the tomato fruit before lycopene extraction

Fig. 5  a*/b* values from Lab colour space of test tomatoes captured on different cameras; A Nikon D60, B Xioami Mi 9SE and C iPhone 7 
against lycopene content determined via extraction and spectrophotometry. The black line indicates an exponential fit of the data used to predict 
lycopene content
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curve did not deviate from the y = x line for any of the 
cameras (Fig. 6).

The plant size and colour pipeline was able to success-
fully correct images from all three cameras and models 
with independent fitting parameters were developed 
for all three cameras. Although the DSLR camera that 
images in raw format has the model with the least cur-
vature, all three models have high r2 indicating that the 
exponential model given in Eq. 4 is suitable for predicting 
lycopene content using the a*/b* ratio from the CIELAB 
colour space.

Model validation
To validate the model, five more tomatoes were imaged 
and had their lycopene solvent extracted. This was 
done using only the Nikon D60 and images were taken 
inside the lightbox under the same lighting conditions 
as the training set. The lycopene content predicted from 
the a*/b* ratio was for all five tomatoes was within the 
expected range of the model (Fig. 7A). Furthermore, one 
of the five tomatoes in the validation set had a lycopene 
content much higher than any of the training tomatoes 
and the model accurately predicted this value (Fig.  7B). 
This was not the case for the models developed for the 
iPhone 7 (Additional file 8: S7). The standardised residu-
als for the model for training and validation show similar 
deviation for the two datasets (Fig. 7C) and an ANOVA 
of the predicted vs observed values for the training and 
validation set further highlight the precision of the model 
(Fig. 7C).

The validation of the a*/b* model shows that once these 
models are developed the pipeline, in conjunction with 

developed fitting parameters, can be used to predict the 
lycopene content of tomatoes. This validation set also 
indicates the importance of using a range of coloured 
tomatoes that cover the full range of expected colours to 
generate data over the entire range of lycopene content 
when training models, to avoid the need for extrapolating 
models outside of their training range. This is particularly 
important when using a mobile phone camera, where 
models have greater curvature.

Chlorophyll extraction
Twenty basil leaves were processed, and chlorophyll was 
solvent extracted according to the protocol described in 
the methods section to generate their absorption spec-
tra (Fig. 8A). The full spectrum was measured for leaves 
of different colours and at the wavelengths of inter-
est (646  nm and 663  nm) the absorbance increased as 
the colour of the basil leaves changed from yellow to 
green (Fig. 8B).

Chlorophyll model generation and validation
Twenty basil leaves were imaged using a DSLR camera 
(Nikon D60). The settings used for the DSLR camera 
were: aperture = f/4.2; shutter speed = 1/200 s; ISO = 100; 
file storage = RAW. All images were taken inside a light-
box for the chlorophyll trials (both training and vali-
dation). The images were processed using the colour 
and size pipelines, and Eq. (8) was used to model chlo-
rophyll content using the RGB colour space. Equation 
(8) was suitable for fitting colour data to the extracted 
chlorophyll content from basil leaves, as fitting param-
eters were found and the predicted values were similar 

Fig. 6  Predicted lycopene content determined from Lab colour space of test tomatoes captured on different cameras; A Nikon D60, B Xioami Mi 
9SE and C iPhone 7 against lycopene content determined via extraction and spectrophotometry in mg lycopene per kg wet mass tomato. The 
black dashed line indicates the y = x line and the r2 of the fit is inset and the solid blue line shows the fit of the observed and predicted data
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to the observed values (r2 = 0.933). The predicted ver-
sus observed chlorophyll content curve deviated slightly 
from the y = x curve, indicating that the model slightly 
underpredicts chlorophyll content at low chlorophyll 
content and slightly overpredicts chlorophyll content at 
high chlorophyll content (Fig. 9A).

To validate the model, five more basil leaves were 
imaged and had chlorophyll extracted. Validation was 
done using only the Nikon D60, and images were taken 
inside the lightbox. The chlorophyll content was accu-
rately predicted for four of the validation leaves; however, 
the fifth validation leaf had a chlorophyll content greater 
than any in the training set, and the chlorophyll content 
of this leaf was under predicted (Ctpred = 1.13  µg  g−1; 
Ctobs = 1.51  µg  g−1) (Fig.  9B). The standardised residu-
als for the model for training and validation show simi-
lar deviation for the two datasets (Fig. 9C). An ANOVA 
of the predicted vs observed values for the training and 

validation dataset showed a lower F and p value for the 
validation dataset likely due to the single data point from 
outside of the training range skewing the result (Fig. 9C). 
This point is left in the analysis to highlight the impor-
tance of training models using a subset of leaves that 
cover the full range of expected chlorophyll content.

This underprediction in the validation data set rein-
forces what we learned from the lycopene validation data. 
In order to use colour data to accurately predict coloured 
compounds in plant materials, the training set needs to 
incorporate samples from the entire expected colour 
range, as model prediction is only accurate within the 
range of the training data (it does not always extrapolate 
accurately). This is particularly important when models 
have large curvature, such as the two models generated 
using the mobile phone cameras for lycopene content.

Validation tomatoes were also captured under the 
four different lighting conditions (Fig.  10A) used in the 

Fig. 7  A a/b values from Lab colour space of test tomatoes captured on a Nikon D60 against lycopene content determined via extraction 
and spectrophotometry in mg lycopene per kg wet mass tomato. The solid line indicates an exponential fit of the data used to predict lycopene 
content. B Predicted lycopene content determined from Lab colour space of test tomatoes captured on Nikon D60 against lycopene content 
determined via extraction and spectrophotometry in mg lycopene per kg wet mass tomato. The dashed line indicates the y = x line. The pink circles 
show the data used to train the model and the blue squares indicate validation data points. C The standardised residuals of the training dataset, 
pink circles, and validation dataset, blue squares of the model fit and descriptive statistics of the model, with d.f; F and p indicating the degrees 
of freedom, F value and p value for an ANOVA of the predicted against observed values of the model for the training and validation datasets. RMSE 
is the root mean square error of the model
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lighting test to determine importance of consistent light-
ing when capturing images (using the Nikon with the 
same capture settings as all previous captures). The a*/b* 
value is consistent for the four lighting conditions for low 
a*/b* (and lycopene) values, however for tomato 5 and 
tomato 6 the a*/b* value is significantly different between 
the lightbox/natural lit images and the two fluorescently 
lit images, lab 1 and lab 2 (Fig.  10B). This is likely due 
to the substantial amount of light reflected in lab 1 and 
lab 2. This result suggests that lighting should be kept as 
consistent as possible when capturing images for quanti-
fication of chemical compounds by colour. Furthermore 
models developed under one set of lighting are unlikely 
to be transferrable if lighting is drastically changed.

Conclusions
A set of open source Python scripts is presented with 
a pipeline for imaging, background correction, colour 
correction, cropping, separating objects, and deter-
mining the size and colour of objects. The pipeline is 
validated using lycopene extraction from tomatoes and 
chlorophyll extraction from basil leaves. Tomatoes were 
imaged in four different locations under four different 
lighting conditions (lightbox, natural light, and two 
different fluorescent lights) using three different cam-
eras (a DSLR and two mobile phones). In each of these 
cases, a colour corrector was imaged, and the differ-
ence between the actual colour of the swatches and the 
captured colour was compared. The error was highest 

Fig. 8  A UV spectrophotometry spectrum for basil leaves with the vertical dashed lines indicating the wavelengths used to determine total 
chlorophyll content (646 nm and 663 nm) and B background and colour corrected images of the basil leaves before chlorophyll extraction
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before colour correction in the images captured under 
fluorescent lighting conditions and was lowest in natu-
ral light and in the lightbox. Colour correction reduced 
this error in all locations, and there was no difference 
in the error of the swatches between the four locations 
after colour correction. All three cameras were able to 
predict lycopene content accurately; however, valida-
tion indicated that the DSLR camera was the only one 
that accurately predicted lycopene content outside of 
the training set. Furthermore, tomatoes captured under 

different lighting conditions, even after colour correc-
tion, had different mean a*/b* values at high lycopene 
content. The chlorophyll content of basil leaves was 
accurately predicted using the DSLR camera in the 
lightbox; however, validation showed that the model 
underpredicted when a leaf was imaged from outside 
the training set. This indicates that model training 
when imaging plant materials should include the entire 
range of expected plant material colours to ensure 
accurate predictions.

Fig. 9  A Training data of predicted total chlorophyll content determined from RGB colour space of test basil leaves captured on a Nikon 
D60 against total chlorophyll content determined via extraction and spectrophotometry in µg chlorophyll per g wet mass basil. The r2 value 
is inset, the black dashed line indicates the y = x line and the blue line indicates the fit of the observed and actual data. B The blue squares show 
the validation data points predicted by the model and the dashed line indicates the y = x line. C The standardised residuals of the training dataset, 
pink circles, and validation dataset, blue squares of the model fit and descriptive statistics of the model, with d.f; F and p indicating the degrees 
of freedom, F value and p value for an ANOVA of the predicted against observed values of the model for the training and validation datasets. RMSE 
is the root mean square error of the model
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