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Abstract 

Background Thermography is a popular tool to assess plant water-use behavior, as plant temperature is influ-
enced by transpiration rate, and is commonly used in field experiments to detect plant water deficit. Its application 
in indoor automated phenotyping platforms is still limited and mainly focuses on differences in plant temperature 
between genotypes or treatments, instead of estimating stomatal conductance or transpiration rate. In this study, 
the transferability of commonly used thermography analysis protocols from the field to greenhouse phenotyping 
platforms was evaluated. In addition, the added value of combining thermal infrared (TIR) with hyperspectral imaging 
to monitor drought effects on plant transpiration rate (E) was evaluated.

Results The sensitivity of commonly used TIR indices to detect drought-induced and genotypic differences in water 
status was investigated in eight maize inbred lines in the automated phenotyping platform PHENOVISION. Indices 
that normalized plant temperature for vapor pressure deficit and/or air temperature at the time of imaging were 
most sensitive to drought and could detect genotypic differences in the plants’ water-use behavior. However, these 
indices were not strongly correlated to stomatal conductance and E. The canopy temperature depression index, 
the crop water stress index and the simplified stomatal conductance index were more suitable to monitor these 
traits, and were consequently used to develop empirical E prediction models by combining them with hyperspectral 
indices and/or environmental variables. Different modeling strategies were evaluated, including single index-based, 
machine learning and mechanistic models. Model comparison showed that combining multiple TIR indices in a ran-
dom forest model can improve E prediction accuracy, and that the contribution of the hyperspectral data is limited 
when multiple indices are used. However, the empirical models trained on one genotype were not transferable to all 
eight inbred lines.

Conclusion Overall, this study demonstrates that existing TIR indices can be used to monitor drought stress 
and develop E prediction models in an indoor setup, as long as the indices normalize plant temperature for ambient 
air temperature or relative humidity.
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Introduction
Effects of water deficit (WD)  on plant physiology have 
been widely studied, as they can have a major impact on 
plant performance and yield [1]. Thermography is a pop-
ular tool to monitor changes in plant water-use behav-
ior, especially those in response to WD. The amount of 
emitted thermal infrared (TIR) radiation of a plant relates 
to its temperature, which in itself depends on incoming 
radiation and transpiration rate (E) because of the latent 
heat of vaporization at the leaf surface [2]. Transpiration 
is important in regulating plant temperature for enzy-
matic processes and in providing nutrients from the soil 
via the xylem. It is driven by the evaporative demand in 
the atmosphere and controlled by stomatal conductance 
 (gs). Under water-limiting conditions, plants will reduce 
their E and water loss by closing their  stomata, result-
ing in an increase in plant  temperature  (Tp), which can 
be detected within leaves or at the whole leaf, plant and 
canopy level. As a consequence, the difference between 
plant and air temperature  (Ta) will be less negative in 
plants exposed to WD as compared to well-watered 
(WW) plants, allowing the detection of drought stress.

Thermal infrared sensors have been used in a wide 
range of studies on abiotic and biotic stresses, such as 
plant WD, salinity, and pathogen infection [3–9]. The 
performance in detecting stress strongly depends on 
stress-induced changes in  gs and E. In the case of plant 
WD, thermography has been implemented for automat-
ing irrigation [10, 11]. Thermography has also become a 
promising tool for plant phenotyping, because  Tp cor-
relates with both water-use behavior and physiological 
traits, such as E,  gs, relative water content, water potential 
(ψ) and non-photochemical quenching [12–16]. Thermal 
infrared sensors have been used to screen for stress-tol-
erant genotypes [5, 17] and to monitor the dynamic sto-
matal responses to abiotic stress [7, 18].

Thermography can be applied on different spatial scales 
from organ to field level [4, 5, 18, 19]. Most phenotyp-
ing studies have focused on field conditions, while the 
usability of thermography in indoor phenotyping plat-
forms is much less investigated. The latter allows for the 
comparison of treatments or genotypes under controlled 
environmental conditions, which can improve the accu-
racy of thermal imaging methods, as these are strongly 
affected by light intensity, temperature, vapor pressure 
deficit (VPD) and wind speed. The setup requires never-
theless temperature normalization and the use of refer-
ence surfaces, as indoor TIR detection is still influenced 
by all infrared radiation emitting surfaces, including 

greenhouse or growth chamber infrastructure. Most 
studies that have implemented TIR imaging in indoor 
phenotyping platforms have done direct comparisons of 
 Tp or have normalized plant temperature by calculating 
TIR indices [7, 19–22].

The simplest  Tp normalization is the Canopy Tempera-
ture Depression (CTD) index, which subtracts  Ta from 
 Tp to correct for ambient temperature conditions. This 
index has been applied to plant disease, heat tolerance 
and drought stress studies of crops or transgenic plants 
[8, 23, 24], as well as for automated irrigation schedul-
ing of wheat in the form of Stress Degree Days (SDD, 
[25]). An alternative approach to standardize plant tem-
perature is by normalizing it against the temperature 
of a non-transpiring and fully transpiring leaf or plant. 
This approach was implemented in the popular Crop 
Water Stress Index (CWSI), in which CTD was normal-
ized against its maximum (non-transpiring) and mini-
mum (fully transpiring) values. Three methods have been 
described to calculate the CWSI: the analytical (or energy 
balance), empirical (or baseline) and direct approach 
[26]. The latter two are more popular, as they require less 
meteorological information. The CTDs of non- and fully 
transpiring leaves are estimated with an empirical base-
line, a temperature histogram, or with wet and dry refer-
ence leaf temperatures  (Twet and  Tdry, respectively, [27]). 
The CWSI has been correlated with leaf water potential, 
 gs and evapotranspiration [9, 12, 13, 19, 23, 28, 29], but is 
not linearly related to  gs in the direct approach [26]. Con-
sequently, the CWSI has mainly been applied to detect 
stress and not to estimate  gs or E. The latter can be done 
using the energy balance model that describes the energy 
exchange between a leaf and its environment [2]. This 
mechanistic approach simplifies and improves the bio-
logical interpretation of the relationship between  Tp and 
 gs or E, but is based on many meteorological and physical 
variables that can be difficult to accurately estimate at the 
appropriate spatial scale and increase the complexity of 
data processing [18, 30]. Simplifications of the energy bal-
ance model have been developed to reduce the amount of 
required data by incorporating  Twet and/or  Tdry [30]. The 
reference materials used to estimate  Twet and  Tdry need 
to have the same optical and thermal properties as the 
leaves and have to be exposed to the same environmental 
conditions [31]. Incorporating this in an imaging setup 
can be technically challenging, consequently the energy 
balance approach has not been widely applied in pheno-
typing studies.
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In phenomics, TIR imaging is often combined with 
fluorescence and hyperspectral imaging, as these sys-
tems can capture complementary information on 
photosynthetic efficiency, leaf anatomy, pigment and 
water content [32–34]. The main reason for combin-
ing imaging systems is to simultaneously monitor mul-
tiple physiological traits, even though the integration 
of different data types may produce more robust trait 
prediction models. The combination of multi/hyper-
spectral, TIR and/or fluorescence data has been investi-
gated in disease, drought and yield detection in the field 
[15, 20, 35–41]. An increased prediction or classifica-
tion accuracy was obtained in the combination of TIR 
and hyperspectral indices in stepwise multiple linear 
regression, Partial Least Squares Regression (PLSR) or 
Support Vector Machine Classification models [15, 37, 
38].

In this study, commonly used TIR drought detec-
tion and E prediction methods developed under field 
conditions were investigated in a maize drought stress 
experiment using PHENOVISION, a high-throughput 
phenotyping platform in semi-controlled greenhouse 
conditions [42, 43] with the following aims:

• The drought sensitivity of existing and new TIR indi-
ces was compared using eight maize inbred lines.

• The advantages of combining TIR, environmental 
and hyperspectral data in E prediction models was 
evaluated, as the performance of this approach has 
only been investigated in field applications [15, 37, 
38]. This question was tackled by developing and 
comparing empirical models created using different 
data combinations and modeling approaches, such as 
linear, Least Absolute Shrinkage and Selection Oper-
ator (LASSO), PLSR and Random Forest (RF) regres-
sions.

• Empirical models are often setup specifically, limit-
ing the transferability to other genotypes, species and 
imaging setups/platforms. To evaluate setup speci-
ficity, the empirical models trained on one genotype 
were applied on seven additional maize inbred lines.

• The best performing empirical model was also com-
pared to a simplified version of the energy balance 
approach, which is a setup independent mechanistic 
model, to determine the most effective approach to 
estimate E.

Methods
Thermal imaging setup and environmental monitoring 
in the PHENOVISION plant phenotyping system
PHENOVISION is a plant phenotyping platform that 
automatically irrigates and images 392 plants (built by 
SMO, Eeklo, Belgium,[44]). Three imaging systems are 

available: a multi-view red–green–blue (RGB) imaging 
system, a top view TIR camera and a hyperspectral imag-
ing system [42, 43]. The TIR camera is positioned in an 
enclosed imaging cabin to eliminate outside radiation. 
The thermal images are captured using a FLIR SC645 
with a 24.6-mm lens (25° × 18.8° FOV) (FLIR Systems 
Inc., Belgium), which has an accuracy of 2% for objects 
with a temperature range of -20 to 150°C. The wavelength 
band ranges from 7.5 to 13 µm. The camera has a fixed 
top-view (close to nadir) position. Plant height is meas-
ured by means of a light curtain at the entrance of the 
cabin to adjust the position of plants (lift height) to the 
focus distance of the camera lens. At a distance of 3.5 m, 
the pixels in the 640 X 480 array have a spatial resolution 
of 5.76  mm2. Inside the imaging cabin, light racks con-
taining light emitting diode (LED) lamps are attached 
to the ceiling and to one wall to provide consistent illu-
mination. The LED lamps provide a photosynthetic 
active radiation (PAR) light intensity of 74 µmol photons 
 m−2  s−1 and emitt no radiant heat. A Lambertian surface 
made of aluminum foil and a black metal reference plate 
are positioned within the field of view of the camera. The 
aluminum foil is used to measure the reflected tempera-
ture, which is the energy emitted by the surroundings of 
the plant and reflected by the plant. It is required to cor-
rect the measured thermal energy of the plant and con-
sequently the   Tp. The black reference plate is connected 
to a thermocouple to monitor deviations in the camera 
accuracy over time (‘drift’), which is further explained in 
the image processing section. Besides this, the camera is 
allowed to perform automatic non-uniformity correction 
(NUC), which corrects for detector drift due to camera 
frame heating during operation. In this study, the imaged 
temperature of the black plate was also used as a surro-
gate for the temperature of a non-transpiring plant  (Tdry, 
Additional file  1, [4, 27]). Thermal data were combined 
with environmental measurements collected at three dif-
ferent locations in the greenhouse, namely in the growth 
zone (gz), and inside (in) and outside (out) the cabin 
(Fig. 1).

Experimental setup
Plants were grown in a semi-controlled environment 
with adjustable  Ta and relative humidity (RH). During 
seedling establishment,  Ta was set at 23  °C during day-
time and 22  °C at night and vapor pressure deficit was 
maintained at 1.5  kPa by means of RH adjustments. A 
diurnal gradient in environmental conditions was estab-
lished from the V4 (four fully developed leaves) stage 
onwards by gradually increasing  Ta from 22  °C at night 
to 28 °C in the afternoon, which resulted in VPD values 
ranging from 1.5  kPa during the night to 3  kPa in the 
afternoon. A 16/8-h  day/night cycle was maintained in 
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the greenhouse using high-pressure sodium vapor lamps. 
The light intensity (photosynthetically active radiation, 
PAR) was 280 µmol  m−2  s−1 on average. Additionally, RH, 
 Ta, VPD, PAR, and black sphere temperature  (TBS) were 
measured in the growth zone by four weather stations 
containing a SKH 2053 humidity and temperature sen-
sor, a PAR SKL 2625 sensor (Skye Instruments, UK) and 
a metal black sphere (Testo BE, Belgium) with a MWTC/
MWTC-D thermocouple inside (OMEGA Engineer-
ing Ltd., UK). The black sphere temperature represents 
radiant heat, which may be higher than  Ta under influ-
ence of solar radiation or heat produced by lamps. Slight 
variability in PAR and  Ta was observed within the growth 
zone which had a negligible effect on the phenotype 
(Additional file 2: Table S1). Consequently, the gz meas-
urements were averaged. Outside and inside the imaging 
cabin, RH and  Ta were monitored using El-USB-2 loggers 
(Lascar electronics, UK). Maize plants were sown in 7-l 
plastic pots filled with peat-based soil containing Osmo-
cote® fertilizer (N. V. Van Israel, Belgium). The plants 
were fertilized weekly with 40 ml of a 200-ppm N solu-
tion of Peters® Excel CalMag Grower (ICL Specialty Fer-
tilizers, The Netherlands).

Two drought stress experiments were performed to 
determine the effectiveness of TIR imaging for drought 
stress detection and E predictions. The first small 
drought  experiment (DR) investigated the effect of WD 
on the transpiration rate and stomatal conductance of 
maize genotype B104, while the second experiment 
tested the transferability (TF)  of thermal image-based 
phenotyping to other maize genotypes.

During the  DR  experiment, B104 maize plants were 
positioned randomly on the platform. WD treatments 
were applied based on the gravimetric measurement of 
soil water content and automated weighing and water-
ing in the phenotyping platform. The DR experiment 
included four WD treatments with a soil water content of 

0.8 (soil water potential < − 1500 kPa), 1.0 (< − 1500 kPa), 
1.4 (± − 100 kPa) and 1.6 g  H2O  g−1 dry soil (± -40 kPa), 
and one WW treatment with a soil water content of 2.4 g 
 H2O  g−1 dry soil (± -10  kPa). Twenty plants were ran-
domly assigned to each treatment and were surrounded 
by border plants, which received a mild WD treatment 
(1.8  g  H2O  g−1 dry soil, ± −  25  kPa). At sowing, a fixed 
amount of water was added to each pot to ensure germi-
nation. After this, plants were weighed on a daily basis 
and water was added according to the target soil water 
content until the plants reached V10-11 (10 to 11 fully 
developed leaves, the end of the experiment).

The TF experiment contained a total of 306 plants 
belonging to eight inbred lines, namely B104, H99, MS71, 
NC358, OH43, TX303, Tzi8 and W153R, and 80 bor-
der plants (B104). The inbred lines contained stiff stalk 
(B104), non-stiff stalk (H99, MS71, OH43 and W153R), 
tropical-subtropical (NC358 and Tzi8) and tropical-
subtropical mixed (TX303) genotypes [45] that varied 
in drought sensitivity, morphology and developmental 
timing. For each genotype, 19 plants were assigned to 
a WD treatment and 19 to a WW treatment. All plants 
were irrigated to a WW soil water content of 2.4 g  H2O 
 g−1 dry soil (soil water potential of -10  kPa) until they 
reached the V5 (five fully developed leaves) stage, after 
which water was withheld from WD plants until a soil 
water content of 1.4 g  H2O  g−1 dry soil (soil water poten-
tial of ± -100 kPa) was attained. Once the WD soil water 
content was reached, plants were irrigated daily to main-
tain this soil water content.

Thermal and hyperspectral image processing
Imaging of individual plants was performed daily 
between 7.30 and 14.00 during the  DR and TF experi-
ments (14,744 images of eight genotypes). These images 
were supplemented with 288 afternoon images that 
were captured on TF sampling days for physiologi-
cal traits. These took place at two timepoints: the V5 
stage + 10  days and the V13 stage ± 2  days (Additional 
file  2: Table  S2). The images collected during the DR 
experiment were used (together with the TF dataset) to 
create E prediction models, while the TF images were 
also used to evaluate the drought detectability of thermal 
indices and to investigate the transferability of indices 
and models to multiple genotypes.

Thermographic data were processed using the ‘raw-
2temp’ function of the ‘Thermimage’ R package [46], 
which converts raw radiation values to temperature using 
standard equations applied in thermography. This func-
tion includes a correction for background long-wave 
emission (reflected temperature), which was estimated 
using crumpled and flattened aluminum foil (Lambertian 
surface) with an emissivity of 1. The ‘raw2temp’ function 

Fig. 1 Location of environment monitoring positions 
in PHENOVISION. A indicates the growth zone. B shows 
the monitoring position outside the imaging cabin. This 
is the location where the plants are waiting before imaging. C 
indicates the position inside the TIR imaging cabin
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requires the distance between the plant and camera (m), 
 Ta (°C), RH (%), an estimate of leaf emissivity, which 
was set to 0.96 [47], reflected temperature (°C), Infrared 
Window Temperature = 20 (°C), Infrared Window trans-
mission = 1, and the constants PlanckR1 = 16,963.094, 
PlanckB = 1435.3, PlanckF = 1, PlanckO = −  4328 and 
PlanckR2 = 0.014514672 (Fig.  2). Deviations in the cam-
era accuracy (camera ‘drift’) were determined using a 
black plate with thermocouple. If a consistent difference 
higher than 1°C between the temperature estimated by 

the camera and the thermocouple was observed, the 
imaged temperature was adjusted using the median dif-
ference in temperature measured by the two devices. 
After image pre-processing, the plant was segmented out 
of the background by aligning the thermal image with 
the corresponding segmented RGB image. RGB images 
were collected using an Allied Vision Technologies Pro-
silica GE4000C 11-megapixel camera (Allied Vision 
Technologies GmbH, Germany) equipped with a Canon 
EF 24 mm f/1.4L II USM lens (Canon Inc., Japan). RGB 

Fig. 2 Schematic representation of the image processing and transpiration rate prediction model development pipeline. The top light gray square 
summarizes the image processing for the Red–Green–Blue (RGB: green), Thermal Infrared (TIR: orange) and hyperspectral visible and near-infrared 
(VNIR) and shortwave-infrared (SWIR) (blue) imaging systems. The RGB image processing consisted of a plant segmentation using a convolutional 
neural network (CNN). The TIR image processing included a radiation to temperature (T) conversion, TIR plant segmentation by aligning RGB and TIR 
images and the calculation of median plant temperature  (Tp) and TIR indices. The hyperspectral processing consisted of a radiometric calibration 
and plant segmentation using the Red-edge Normalized Difference Vegetation Index (Re-NDVI) and a random forest (RF) model for VNIR and SWIR, 
respectively. After the hyperspectral segmentation, a correction of the distance between the white reference plate and the plant was performed 
followed by a brightness classification of the VNIR data and a VNIR-SWIR alignment to extract illumination classes from the data. Indices 
and reflectance were calculated for the intermediate light class [42]. The bottom gray square summarizes the different modeling approaches 
applied to develop transpiration rate (E) prediction models. Mechanistic energy balance and empirical models were developed by combining 
different data types including environmental data (env: pink), TIR data and hyperspectral data (hyp). The empirical modeling algorithms were Least 
Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), linear model with stepwise selection, Partial Least Square Regression 
(PLSR) and linear models combining one TIR index with environmental data and hyperspectral indices
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plant segmentation was performed with a convolutional 
neural network (CNN) model developed in Pytorch 
(Fig. 2). The CNN model was composed of a pre-trained 
DenseNet M161 backbone with added bilinear upsam-
pling layers after each ‘dense’ layer, where each new 
layer is upsampled to the same resolution as the closest 
higher-resolution DenseNet output and then combined 
using a weighted sum. This is done until a feature map 
at the original image resolution is created. The training 
and validation of the CNN model was performed on 1MP 
foreground-containing crops of 255 manually annotated 
image-segmentation pairs. A subset of 10% of the images 
were randomly chosen for validation. Optimization was 
done for 7300 steps (using a batch size of 2) with binary 
cross-entropy loss and weight updates calculated using 
stochastic gradient descent with momentum (learning 
rate = 0.01 and momentum = 0.95). Additionally, sev-
eral standard image augmentation, class weighting and 
image weighting techniques were used during training. 
More details on the CNN model can be found in De 
Meyer et  al. [48]. The segmented and raw RGB images 
were downscaled from 2672 × 4008 to 1336 × 2004 pixel 
resolution for the thermal image analysis. Both thermal 
and RGB cameras were first calibrated using a metal 
plate with holes or a chessboard (Matlab, Simon Donné, 
IMEC—IPI—Ghent University), which resulted in intrin-
sic and extrinsic camera matrices. Due to a slight shift 
in the RGB camera position, the extrinsic matrix could 
not be utilized. Instead, the translation parameters of the 
extrinsic matrix were expressed in function of the dis-
tance between the RGB camera and the plant. This was 
done because the alignment of the TIR and RGB images 
was affected by the position (height) of the plant. The 
transformation matrices were used to align the ther-
mal and RGB images (Fig. 2). This required the distance 
between the plant and the cameras, which was not avail-
able for each pixel. Instead, the distance between 2/3 of 
the plant height and the cameras was used. Using 2/3 of 
the plant height as an average depth value for all plant 
pixels did not perform optimally for large plants because 
the leaves were positioned further apart. To resolve this 
issue, an erosion was applied on the segmentation filters 
(binary image) to remove remaining background pixels 
(‘erode’ function of the ‘mmand’ R package [49]). The 
median temperature of each plant was calculated and 
used for drought detection and E predictions (Fig. 2).

Hyperspectral data were collected by two pushbroom 
line-scanners in a second imaging cabin in PHENOVI-
SION. The visible and near-infrared (400–1000  nm) 
and shortwave-infrared (970–2500  nm) scanners had 
a spectral resolution of 3 and 6.3  nm, respectively. 
The specifications of this imaging system have been 
described in Mertens et  al. [42]. The pre-processing 

included image calibration, plant segmentation and 
illumination classification (Fig.  2) as detailed in 
Mertens et  al. [42]. The illumination classification 
was not able to remove all the light effects, because 
the distance between the white reference plate, which 
is used to calibrate the hyperspectral images, and the 
top of the plant was too big for large plants. This issue 
was solved by correcting the reflectance distribution 
of a plant (pixel level) to the distribution it would have 
had at the white reference height tile in the PHENO-
VISION imaging cabin (at 1.2 m from the imaging sys-
tem). Three plants were therefore imaged at different 
lift heights and the relationship between average reflec-
tance and the distance between plant and camera was 
determined (Fig. 3). This relationship was then used to 
adjust the reflectance distribution on a pixel level with 
the following formula.

In this equation, ρadji is the adjusted reflectance of 
wavelength i, ρi corresponds to the unadjusted reflec-
tance, ρscaledwhitei represents the scaled average reflec-
tance of the plant positioned at the white reference 
and ρscaledcurrenti is the scaled average reflectance at the 
actual distance from the camera. The reflectance dis-
tribution correction was performed before illumina-
tion classification and reflectance averaging (Fig. 2). To 
simplify the analysis, only one light class (intermedi-
ate light class) was selected based on the percentage of 

(1)ρadji = ρi ∗
ρscaledwhitei

ρscaledcurrenti

Fig. 3 Relationship between reflectance and the distance 
between the plant and the camera. Average plant reflectance 
was scaled between zero and one to remove biological variation 
between the plants. Three plants were used to determine this 
relationship, indicated with gray, yellow and blue dots. The average 
relationship and the 95% confidence interval are indicated by a black 
line and gray shading, respectively
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pixels per plant it contained during all experiments and 
the ability to detect drought [42].

Physiological trait measurements
Gas exchange measurements were collected once per 
week between 7.30 and 14.00 in the DR experiment. 
Five plants per treatment (total of 25) were measured 
5–10  min before imaging (Additional file  2: Tables S2 
and S3). The gas exchange measurements were collected 
using a portable LICOR 6400-XT infrared gas analyzer 
(LI-COR Biosciences, USA). A steady-state  CO2 level 
of 400 µmol   mol−1 was maintained in the leaf chamber, 
while temperature and PAR were adjusted to the green-
house temperature (25–31°C) and PAR (50–700  µmol 
photons  m−2  s−1) conditions at the time of measurement.

The same measurement approach and schedule was 
applied in the TF experiment, in which fluorescence 
and gas exchange measurements were collected on 
three plants per genotype-treatment combination (total 
of 48 plants). Here, additional physiological measure-
ments were collected in the afternoon (13.00–18.00) at 
V5 + 10  days (acute drought phase) and V13 ± two days 
(13 fully developed leaves) for nine plants per genotype-
treatment combination (total of 144 plants, Additional 
file  2: Tables S2 and S3). Non-destructive fluorescence 

and gas exchange measurements consisted of effective 
quantum yield of photosystem II (φPS2), energy harvest-
ing efficiency by oxidized PSII  (Fv’/Fm’), E and  gs of  H2O. 
In addition, leaf ψ of a top leaf, which was clearly vis-
ible in the image, was destructively measured 5–10 min 
after imaging using a PMS model 1000 pressure chamber 
(PMS Instrument Company, USA). Six plants per gen-
otype-treatment combination (96 plants in total) were 
selected to monitor ψ during the TF experiment. Each 
individual plant was measured every two weeks result-
ing in 48 measurements per week. Additional ψ measure-
ments were also collected at V5 + 10 days and V13 ± two 
days (144 plants, Additional file 2: Table S2 and S3).

Indices
Thermal infrared indices were calculated to detect plant 
WD and to estimate E for different maize genotypes. The 
indices combined  Tp with  Tdry (black plate visible in the 
image) or environmental measurements collected in the 
growth zone, and inside and outside of the imaging cabin 
(Fig. 1). Six existing and two new indices,  TBS-Tp and tem-
perature ratio index (TRI), were evaluated (Table 1). The 
new  TBS-Tp is an adaptation of  Tdry-Tp that was tested, 
because  Tdry as well as  TBS measured the combined effect 
of incoming radiation and  Ta on an object’s temperature. 

Table 1 Thermal infrared and hyperspectral reflectance indices evaluated in this study

Reflectance wavelengths (nm) are indicated by ρ, all temperature measurements are expressed in °C

Index Formula References

Thermal Infrared
Canopy Temperature Depression (CTD) CTD = Tp − Ta [53]

Canopy Stress Index (CSI) CSI =
Tp−Ta
VPD

[54]

Idso’s Crop Water Stress Index (ICWSI) ICWSI =
Tp−Tmin

Tmax−Tmin

[55]

Crop Water Stress Index (CWSI) CWSI =
(Tp−Ta)−(Tp−Ta)max

(Tp−Ta)min−(Tp−Ta)max

[50, 56]

Simplified Stomatal Conductance Index  (Tdry-Tp) Tdry − Tp [57]

Temperature Ratio Index (TRI) TRI =
Tp
Ta

This study

TBS-Tp TBS − Tp This study

Hyperspectral
1st derivative Simple Ratio index 660/1040  (dSR660/1040) dSR660/1040 = ρ′660/ρ′1040 [58]

Normalized Difference index 1425/2145  (ND1425/2145) ND1425/2145 =
(ρ1425−ρ2145)

(ρ1425+ρ2145)
[59]

Water Band index
(WBI)

WBI = ρ900/ρ970 [60]

Simple ratio index 1440/1460  (SR1440/1460) SR1440/1460 = ρ1440/ρ1460 [59]

Normalized Difference Water Index (NDWI) NDWI = ρ857−ρ1241

ρ857+ρ1241
[61]

Relative Moisture Percentage 1483/1430  (RMP1483/1430) RMP1483/1430 =
ρ1483

ρ1430
[62]

Water Content Index (WCI) WCI =
(ρ686−ρ955)

(ρ955−ρ548)
[42]

Water Potential index 2  (WPI2) WPI2 =
(ρ665+ρ1457)

(ρ715+ρ1457)
[42]

Ratio index 953/492  (R953/492) R953/492 =
ρ953

ρ492
[42]

Normalized Difference index 1407/1862  (NDI1407/1862) NDI1407/1862 =
ρ1407−ρ1862

ρ1407+ρ1862
[42]
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The temperature ratio index (TRI) was evaluated because 
it could detect WD treatments and because it correlated 
with  gs and E. The ICWSI and CWSI indices were cal-
culated using the baseline approach. This required the 
estimation of the maximum temperature or minimum 
CTD of a non-transpiring plant and the minimum tem-
perature or maximum CTD of a fully transpiring plant. 
The maximum temperature was assumed to be  Ta + 3°C 
based on the maximum CTD observed in this study and 
literature [50]. The  Tp or CTD of a fully transpiring plant 
was determined with a baseline that related  Tp or CTD 
to VPD for each genotype (12 WW plants, 38 ± 4 images 
per genotype). The baseline models were created using 
the ‘lm’ function of the ‘stats’ R package [51]. For both the 
ICWSI and CWSI, a development-corrected baseline was 
developed, while for the CWSI, a second baseline model 
was developed that corrected for non-constant environ-
mental conditions (Additional file  2: Fig. S1). Baselines 
were therefore created for young and mature plants sepa-
rately (ICSWI,  CWSIdev), or by adding  Ta as a predictor 
to the baseline models  (CWSITa, [26]).

Hyperspectral indices were evaluated by determining 
their relationship with E and  gs. Ten indices were selected 
for this analysis, of which six were correlated with E and 
four with water content or ψ (Table  1). Correlations of 
indices and environmental data with E and  gs were cal-
culated using the ‘cor.mtest’ function of the ‘corrplot’ 
R package [52]. Indices and environmental data that 
showed strong correlations were subsequently used to 
create linear prediction models for E.

Transpiration rate modeling
Different combinations of datasets, including data on  Tp 
and TIR indices, environmental and hyperspectral data, 
and modeling approaches were evaluated (Fig. 2). Linear 
models were created to relate  Tp, indices and environ-
mental data with E. Index-based linear models had E as 
dependent variable and an index as independent variable, 
while correlation-based linear models combined one 
strongly correlating index with environmental data (‘lm’ 
function of ‘stats’ R package). The significant contribution 
of different predictors to the linear model was evaluated 
using the Chi-square test of the ‘anova’ function (‘stats’ 
R package). To investigate if combining multiple indices 
with  Tp and environmental data could improve predic-
tion accuracy, RF, LASSO and stepwise selection mod-
els were created using the ‘randomForest’, ‘glmnet’ and 
‘olsrr’ R packages, respectively [63–65]. The RF model 
hyperparameters were fine-tuned by leave-one-out cross 
validation (LOOCV) and the optimal number of predic-
tors was determined with the ‘VSURF’ R package [66]. To 
combine thermal, environmental and hyperspectral data, 
correlation-based linear models, that combine TIR and 

hyperspectral indices, RF, LASSO, stepwise selection and 
PLSR models were evaluated [67]. The PLSR models were 
created with the PLSR function of the ‘pls’ R package as 
described in Mertens et al. [42]. The E prediction models 
were developed using ordered quantile normalized data 
(‘orderNorm’ function, ‘bestNormalize’ R package, [68]). 
The prediction accuracy of the models was evaluated by 
calculating the ‘out-of-bag’ test Mean Absolute Percent 
Error (MAPE, formula 2), the Root Mean Square Error 
(RMSE) and R-squared  (R2) (‘postResample’ function, 
‘caret’ R package, [69]) of 100 bootstrap samples. A final 
model was created using the whole B104 dataset. This 
model was subsequently used to test the transferability of 
the models to different genotypes.

The description and results of the mechanistic energy 
balance model that was evaluated in this study can be 
found in the Additional file 1.

Drought detection and statistics
The effectiveness of TIR indices in detecting the occur-
rence of plant WD was evaluated by comparing when 
significant differences between the WW and WD treat-
ments were first detected and for how many days. To 
take variation in the start of the WD treatment in the TF 
experiment into account, time was expressed as days after 
V5 (start drought). Treatment differences were tested for 
each day and for each genotype (start experiment: n = 19, 
end: n = 5) with a factorial ANOVA using the ‘lsmeans’ 
R package [70]. Factorial ANOVA was also used to test 
treatment differences in E,  gs, ψ and φPS2 for every group 
of four days and genotype (n = 3, can be higher on sam-
pling days). The days were grouped together because 
measurements at each timepoint were spread over a few 
consecutive days. The physiological data were split into 
morning (< 13.00) and afternoon (> 13.00) measurements 
to take the time-of-day effect on physiology into account. 
The TIR index data were not split into morning and after-
noon, as the majority of the images were collected in the 
morning. All the p-values were corrected using the sidak 
method (‘MHTmult’ R package, [71]).

Genotypic differences in the sensitivity of TIR indices 
and physiological measurements to drought stress effects 
were tested for each day after V5 using the ‘contrast’ 
function in the ‘lsmeans’ R package [70]. The genotype 
analysis of the physiological traits could only be per-
formed at 10 days after V5 (n = 8–10 for each treatment). 
This is because the sample size was too small before that 
timepoint because not all plants had reached their target 
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WD. The p-values of this analysis were corrected using 
the sidak method (‘MHTmult’ R package, [71]).

Results
Drought affects the water‑use behavior of B104 maize
In the TF experiment, a WD treatment was applied on 
B104 maize from the V5 developmental stage onward. It 
consisted of two stages, namely an acute drought stage, in 
which water was withheld until the lower soil water con-
tent was reached (V5 + maximum 10 days), and a steady-
state drought during further development, when the 
plants were grown continuously at this lower soil water 
content. Plant physiology was most strongly affected dur-
ing and shortly after the acute drought stage, in which 
a decrease in the  gs, E, φPS2 and ψ was observed in the 
WD treatment (Fig. 4A). The treatment differences were 
only significant for leaf ψ and  gs measured in the after-
noon at 10 days after the onset of drought. The absence 
of significant differences in the other physiological traits 
and timepoints may be related to the limited number of 
available datapoints. The difference between WD and 
WW plants became less pronounced during the steady-
state drought as the WD plants adapted to the lower 
soil water content (Fig.  4A). This adaptation included a 
decrease in biomass, as the WD B104 plants had on aver-
age 39% lower fresh weight at silking compared to WW 
plants (WW: 615.3 ± 70.9  g, WD: 375.3 ± 34.2  g), result-
ing in lower water requirements during the steady-state 
drought.

Thermal infrared indices can detect drought
All indices that normalized  Tp using environmental 
variables were calculated for each of the three environ-
ment monitoring positions to determine which one was 
the  most suitable for drought detection. They showed 
slight differences in VPD and  Ta. During the TF experi-
ment, VPD and  Ta were the  highest outside the imag-
ing cabin  (VPDout: 2.2 kPa,  Ta_out: 27 °C), followed by the 
positions inside the cabin and in the growth zone  (VPDin: 
1.9  kPa,  Ta_in: 25.53  °C,  VPDgz: 1.8  kPa,  Ta_gz: 25  °C) 
(Additional file  2: Fig. S2). Consequently, indices pro-
duced slightly different values depending on the monitor-
ing position with those using VPD and/or  Ta measured 
inside the imaging cabin performing better (Additional 
file  2: Fig. S2; Table  2). The indices that included VPD 
and/or  Ta collected outside the cabin or in the growth 
zone were excluded to simplify the drought detection 
analysis.

Thermal indices also showed stronger differences 
between treatments during the acute drought period 
and a recovery during the steady-state drought. The CSI 
demonstrated the strongest drought stress effects with 

significant treatment differences from 4 until 23  days 
after the onset of drought (Fig.  4B). It was followed by 
the indices TRI, CTD and  Tdry-Tp in which the drought 
stress effects lasted from 4 until 20 days after the onset 
of drought, and finally ICWSI in which the first drought 
detection occurred at 8  days and lasted until 23  days. 
The indices  CWSIdev,  CWSITa and  TBS-Tp were less 
or not sensitive to drought as significant effects were 
absent  (CWSITa) or only visible on a few days  (CWSIdev 
and  TBS-Tp, Fig. 4B). The thermal indices were not only 
influenced by soil WD, but also showed a trend during 
the morning and early afternoon with lower CSI and TRI 
values for WW plants around noon compared to the 
morning (Fig.  5). These diurnal changes corresponded 
with an increase in VPD and  Ta in the greenhouse and 
a decrease in CTD. The decrease was less pronounced 
for WD plants, which often resulted in larger treatment 
differences around noon than in the morning. Trends 
were also visible in the physiological measurements, 
where a decrease in ψ was observed during the morning, 
which was more pronounced for WD compared to WW 
plants (Fig. 5G). Overall, TIR indices were able to detect 
drought stress effects in an automated phenotyping plat-
form as long as environmental data, such as  Ta and VPD, 
were used to normalize  Tp.

Environmental data and thermal indices can predict 
transpiration rate
Besides drought detection, TIR indices can be used to 
monitor  gs and E. In the PHENOVISION setting, rela-
tively strong correlations with  gs and E were observed 
for  Tdry-Tp  (rE = 0.61,  rgs = 0.50, P < 0.05),  CWSITa 
 (rE = −  0.61,  rgs = −  0.58, P < 0.05) and CTD  (rE = −  0.63, 
 rgs = − 0.64, P < 0.05) (Fig. 6B). In the case of  CWSITa and 
CTD, the highest correlations were found when environ-
mental data measured outside the imaging cabin were 
used. This is also the location where the gas exchange 
measurements were performed. Consequently, also E 
and  gs showed the highest correlations with environ-
mental data collected at this position (Fig. 6A). PAR and 
 TBS, which were only measured in the growth zone, were 
also significantly correlated with E and  gs  (rE-PAR = 0.54, 
 rE-TBS = 0.58,  rgs-PAR = 0.54,rgs-TBS = 0.54, P < 0.05). The cor-
related environmental data and indices were combined to 
create empirical models that predict E.

The indices with the strongest correlations,  CWSITa_out, 
 CTDout and  Tdry-Tp (Fig.  6B and Additional file  2: Fig. 
S3), had the highest prediction accuracy of all the index-
based models with an RMSE of 0.68, 0.66 and 0.61 and an 
 R2 of 0.39, 0.44 and 0.41, respectively (Table 3, Fig. 7). The 
test prediction accuracy of these models was improved 
by combining the indices with environmental data, such 
as  VPDout, PAR and  TBS  (RMSECWSI_TaOut-env = 0.57, 
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 RMSECTD_Out-env = 0.60,  RMSETdry-Tp-env = 0.56,  R2
CWSI_

TaOut-env = 0.52,  R2
CTD_Out-env = 0.57 and  R2

Tdry-Tp-env = 0.55, 
Table 4, Fig. 7).  VPDout was the only environmental vari-
able that improved the prediction accuracy of all three 
index-based models. PAR and  TBS were added to the 
index-based models because they relate to the incoming 

radiation, which may additionally increase  Tp indepen-
dently of  Ta.

To evaluate the impact of combining different indi-
ces and environmental data on the prediction accuracy 
of E, stepwise selection, LASSO and RF models were 
developed and compared with the single index models. 

Fig. 4 Responses of physiological traits and thermal infrared indices to drought. (A) Drought effects on plant physiology during the TF experiment. 
The B104 genotype and four physiological traits, i.e. stomatal conductance  (gs, mol  H2O  m−2  s−1), effective quantum yield of photosystem II (φPS2), 
transpiration rate (E, mmol  H2O  m−2  s−1) and leaf water potential (ψ, MPa), were selected for this analysis. (B) Responses of thermal infrared (TIR) 
indices to drought. B104 maize plants  (nWD: 19,  nWW: 19) were imaged daily and TIR indices were calculated using the formulas described in Table 1. 
Well-watered (WW) and water-deficit (WD) maize plants were monitored from V4 until the silking stage. The average trends of the WW and WD 
treatments are indicated by blue solid and red dashed lines, respectively. The 95% confidence interval of the average is represented by gray shading 
(A) and the standard deviation by blue and red shading for the WW and WD treatments, respectively (B). Individual measurements of the plants 
are visualized by blue dots (WW) and red circles (WD). The black vertical line indicates the start of the WD treatment. The days on which significant 
treatment differences were observed are marked with a light gray vertical shading behind the average trend and dots (P < 0.05)
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Including multiple indices and environmental variables 
could indeed improve the prediction accuracy even fur-
ther. The LASSO model had the highest accuracy of all 
TIR models with a median test RMSE = 0.47 and test 
 R2 = 0.63 (Table 5, Fig. 7). Interpreting the variables of a 
LASSO model is difficult as it removes redundant vari-
ables with potential biological relevance. The variables 
of the RF model (second-best) were therefore evalu-
ated (Table 5). RF selected four environmental variables 
 (Ta_out,  VPDgz,  PARgz and  TBS_gz) and 11 indices  (CTDout, 
 CSIin,  CSIout,  ICWSIin,  CWSIdev_in,  CWSIdev_out,  CWSIdev_

gz,  CWSITa_gz,  TBS-Tp,  TRIin and  TRIgz). Most of these 
variables were significantly correlated with E, except for 
the CSI indices,  ICWSIin and the indices using gz data. 
The RF model incorporated environmental data of all 
three monitoring positions directly or indirectly (through 
indices). This may indicate that all three monitoring 
positions capture relevant information to predict E in 
PHENOVISION. The value of the different monitoring 
positions may be explained by the fact that the plants 
were not stabilized and acclimatized to the environment 
of the cabin during TIR imaging. In PHENOVISION, 
maize plants (and E) can adjust to the growth zone envi-
ronment and the waiting area outside the imaging cabin, 
as they remain at these positions for some time, while in 
the imaging cabin they are immediately imaged to avoid 
acclimatization to an irrelevant environment. Conse-
quently, the transportation of the plants around the plat-
form increases the need of monitoring the environment 
at multiple locations.

Hyperspectral data improve transpiration rate prediction 
accuracy
Combining TIR and hyperspectral data may improve 
the accuracy and robustness of E prediction models, 

Table 2 Effect of the environmental measurement location on 
the drought sensitivity of the thermal infrared indices

The effect of location on drought sensitivity was assessed by means of the 
number of days that showed significant differences in index values between 
well-watered and water-deficit treatment. na not applicable  (Tdry is only 
measured inside the imaging cabin)

Index Number of days with significant treatment differences

Inside cabin Outside cabin Growth zone

CSI 15 4 1

CTD 11 7 1

Tdry-Tp 11 na na

TRI 11 7 1

ICWSI 9 1 0

CWSI 0 0 0

CWSITa 1 0 0

TBS-Tp 0 0 1

Fig. 5 Daytime trend in environmental data, thermal infrared indices 
and leaf water potential of B104 plants. For the environmental 
data and indices, one day during the acute drought period 
was selected that corresponded with about 5 days after the onset 
of drought. For leaf water potential (ψ), all measurements 
collected during the experiment were used because of the limited 
number of B104 measurements per day. Average and individual 
environmental measurements (A–C) are shown with black lines 
and black dots, respectively. The average index and ψ values 
of the well-watered (WW) and water-deficit (WD) treatment are 
represented by a blue line and a red dashed line, respectively (D–G). 
The individual plants are visualized with blue dots (WW) and red 
circles (WD). Daytime patterns of meteorological data: (A) PAR 
in the growth zone  (PARgz), (B) VPD inside the cabin  (VPDin), and (C) 
air temperature inside the cabin  (Ta_in). Morning patterns of TIR: (D) 
 CSIin index, (E)  TRIin index, and (F)  CTDin index. (G) Daytime trend 
in leaf ψ
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as significant correlations between hyperspectral data 
and  gs or E were observed (42; Fig. 6C). The wavelength 
regions that correlated with E were located around 
523  nm, 992  nm, 1407  nm, 1881  nm and 2346  nm. 
All wavelengths, except for 523  nm, are related to 
water content and leaf anatomy [32, 72]. Six out of 10 
selected indices (Table  1) correlated significantly with 

E (Fig. 6C, P< 0.05). The strongest negative relationship 
was present between E and the WBI index (r = − 0.52), 
while the most prominent positive correlation was 
observed for  RMP1483/1430 (r = 0.53). Adding hyper-
spectral indices (WBI and  RMP1483/1430) to TIR index-
based models significantly improved the  CTDout and 
 CWSITa_out models with about 11% and  9%, respectively 

Fig. 6 Correlation of stomatal conductance and transpiration rate with measured independent variables. The independent variables included (A) 
environmental variables: temperature of a non-transpiring plant  (Tdry), photosynthetically active radiation (PAR), black sphere temperature  (TBS), 
air temperature  (Ta), relative humidity (RH) and vapor pressure deficit (VPD) measured in the growth zone (gz), and inside (in) and outside (out) 
the cabin, (B) thermal infrared indices (Table 1), and (C) relative reflectance at 532, 992, 1407 and 1881 nm and hyperspectral indices (Table 1). 
Significant (P < 0.05) correlations are indicated in blue (positive) and red (negative). gs stomatal conductance, E transpiration rate
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(Table 4, Fig. 7, Chi-square test, P < 0.05). The absence 
of improvement in the  Tdry-Tp model may be related to 
the limited amount of hyperspectral information (wave-
lengths) contained in these indices. This constraint was 
reduced by training machine learning models (PLSR, 
RF, LASSO, step-wise selection) on the complete 
hyperspectral, environmental and TIR datasets. The 
LASSO and RF models with hyperspectral data were 
compared to the previously developed LASSO and RF 
E prediction models to evaluate the contribution of the 
hyperspectral imaging system. The prediction accuracy 
was improved to a small extent: the test RMSE of the 
RF model was slightly reduced by 10%, while the test 
 R2 of both models was improved by 8 ± 2% (Table  5, 
Fig.  7). The best performing model was the LASSO 
model, which had a RMSE of 0.49 and a  R2 of 0.69. All 
algorithms selected environmental and thermal data, as 
well as hyperspectral information. The  TBS,  CTDout and 
reflectance around 500  nm were selected by all model 
algorithms, while PAR,  VPDout,  Tdry–Tp,  ICWSIin and 
reflectance around 2500  nm were predictors in three 
out of four models. All the variables selected by the 
models are listed in Table  5. The wavelengths selected 
by the E models were mainly related to water content 

and leaf anatomy (around 2500 nm) or photosynthesis/
pigment content (around 500  nm). The hyperspectral 
models also included environmental data from all three 
monitoring positions directly or indirectly. Including 
environmental data into the E prediction models was 
pivotal as LASSO models created using only image-
based data (hyperspectral and/or  Tp) had an approxi-
mately 30% lower prediction accuracy than the LASSO 
model that incorporated all available data (Table 5).

Validating thermal indices and models on other maize 
genotypes
All empirical E prediction models developed so far were 
trained on the B104 genotype. The transferability of these 
models to other genotypes (H99, MS71, NC358, OH43, 
TX303, TZi8 and W153R) was uncertain, as genotypes 
may differ in drought sensitivity, water-use behavior, 
leaf anatomy and reflectance. In this study, all genotypes 
showed a similar drought response in measured physi-
ological traits with larger treatment differences in the 
period of acute drought. The magnitude of these drought 
stress effects differed among genotypes (Fig.  8). Leaf ψ 
and φPS2 showed the largest genotypic differences with 
more pronounced treatment effects in NC358, OH43, 
TZi8 and W153R compared to B104, H99, MS71 and 
TX303. However, only TX303 differed significantly from 
NC358, OH43 and W153R at 10 days after the onset of 
drought. Drought stress effects on E and  gs were less 
variable between genotypes. Treatment differences were 
only slightly larger in B104, MS71, NC358, TX303 and 
TZi8 compared to H99, OH43 and W153R (Fig. 8). This 
difference was mainly caused by higher E and  gs values 
in WW plants, while the treatment differences in ψ and 
φPS2 resulted from decreases in the WD plants. The 
most drought-sensitive indices in B104  (CSIin and  TRIin) 
were able to detect drought stress effects in all eight 
genotypes and showed differences between genotypes. 
TX303 and TZi8 had the strongest drought stress effects, 
as significant treatment differences were observed dur-
ing 28.5 ± 1.5 and 25.5 ± 1.5  days of the TF experiment, 
respectively. They were followed by B104, MS71 and 
NC358 with 20.5 ± 1.5, 20.5 ± 0.5 and 20.5 ± 0.5  days, 
respectively. The weakest drought stress effects were 
observed in H99, OH43 and W153R, for which only 
15.5 ± 0.5, 8.5 ± 0.5 and 10 ± 1  days of the experiment 
showed significant treatment differences (Fig. 9).

The relationship between E and TIR indices across 
genotypes influenced the prediction accuracy of the E 
prediction models. Most models were able to make rea-
sonable predictions of E for multiple genotypes, except 
for the LASSO model trained on TIR and environmen-
tal data, and the stepwise selection model that combined 
the environmental information with both hyperspectral 

Table 3 The prediction accuracy of normalized thermal infrared 
indices

Index-based models were created for each index and the prediction accuracy 
was evaluated by calculating the median test RMSE,  R2 and MAPE of 100 
bootstrap samples

Index RMSE R2 MAPE (%)

CTDin 0.66 0.32 55

CTDout 0.66 0.44 44

CTDgz 0.8 0.02 62

CSIin 0.8 0.01 61

CSIout 0.73 0.02 62

CSIgz 0.79 0.02 60

ICWSIin 0.78 0.05 58

ICWSIout 0.86 0.02 61

ICWSIgz 0.8 0.05 57

CWSIin 0.76 0.1 61

CWSIout 0.77 0.13 60

CWSIgz 0.85 0.03 62

CWSITa_in 0.8 0.11 62

CWSITa_out 0.68 0.39 51

CWSITa_gz 0.79 0.06 65

Tdry-Tp 0.61 0.41 50

TBS-Tp 0.8 0.04 57

TRIin 0.72 0.17 60

TRIout 0.7 0.21 54

TRIgz 0.76 0.03 61
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and TIR data (Figs. 10 and 11). These models had small 
 R2 (< 0.1), high RMSE (> 1) and MAPE (> 90) values for 
certain genotypes. The high MAPE value indicated that 
the prediction error was higher than 90% of the meas-
ured value. The LASSO and stepwise selection model 
had an acceptable prediction accuracy for B104, sug-
gesting that they are not transferable to other genotypes. 

When comparing the remaining models, the RF, LASSO 
and PLSR algorithms performed better than the other 
modeling approaches for most genotypes (Figs.  10 and 
11). As the RF algorithm was trained with and without 
hyperspectral data, the contribution of this data type to 
the robustness and transferability of E prediction models 
could be evaluated. Adding hyperspectral data slightly 

Fig. 7 Relationship between measured and predicted transpiration rate (E). E was measured with a portable LICOR infrared gas analyzer. (A) The 
first row visualizes the test prediction accuracy of thermal infrared (TIR) index-based models  (CTDout,  CWSITa_out, and  Tdry-Tp), while the second 
row shows the performance of these indices when they are combined with environmental data not included in the index (Table 4). The 
third row contains two figures that show the accuracy of models that combine one TIR index  (CTDout or  CWSITa_out) with environmental data 
and hyperspectral indices  (RMP1483/1430, WBI). This type of model was not created for the  Tdry-Tp index, as hyperspectral indices did not significantly 
contribute to this model (Chi-square test, P < 0.05). (B) Prediction accuracy of the LASSO, RF and PLSR models that combine multiple TIR indices 
with hyperspectral wavelengths and/or environmental data. The semi-transparent black dots represent the predicted and measured E of the 100 
bootstrap samples, while the black line shows the one-to-one relationship. The test RMSE and  R2 are added to each scatterplot
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improved the prediction accuracy for five out of eight 
genotypes, suggesting that the additional information 
contained in these data increases the robustness of E pre-
dictions (Figs. 10 and 11). The RF model that combined 
both imaging data (TIR and hyperspectral) was fur-
ther used to compare the prediction accuracy of differ-
ent genotypes. The  R2 of all seven genotypes, other than 
B104, was lower than the  R2 of B104 (Fig. 10); however, 
the RMSE and MAPE values were more similar (Fig. 11). 
The lower  R2 values may result from the larger E range 
in B104 compared to most other genotypes (Fig. 12). The 

genotypes could be subdivided into three groups based 
on the performance of the RF E model. The first group 
contained two genotypes, NC358 and W153R, for which 
the E model performed similar to B104 with an error of 
approximately 34% of the measured value (MAPE: ± 34% 
and RMSE > 0.59, Figs.  11 and 12). The second group 
was more variable containing both low and high predic-
tion errors. H99 had a low MAPE of only 22%, but a high 
RMSE of 0.69, which may be caused by the lower predic-
tion accuracy of the higher E values (Fig. 11). In contrast, 
TZi8 and OH43 had a relatively high MAPE value (TZi8: 

Table 4 Prediction accuracy of transpiration rate prediction models that use one thermal infrared index

Median test RMSE,  R2 and MAPE were calculated from 100 bootstrap samples. The data used to create these models consisted of TIR indices (index), environmental 
data (env), and hyperspectral indices (Table 1)

RMSE R2 MAPE Selected Variables Method

Linear: single TIR index

0.56 0.55 41 Tdry-Tp,TBS,  VPDout,  interactionTdry-Tp_VPDout Linear: index + env

0.57 0.52 39 CWSITa_out,  VPDout,  PARgz,  TBS Linear: index + env

0.60 0.57 37 CTDout,  VPDout,  PARgz Linear: index + env

0.53 0.59 35 CWSITa_out,TBS, WBI Linear: Index + env + hyperspectral index

0.51 0.62 33 CTDout,  PARgz,,  RMP1483/1430, WBI Linear: Index + env + hyperspectral index

Table 5 Accuracy of transpiration rate prediction models based on multiple thermal infrared indices

Median test RMSE,  R2 and MAPE were calculated from 100 bootstrap samples. The data used to create these models consisted of TIR indices (index, Table 1), 
environmental data (env), hyperspectral indices and the reflectance of the hyperspectral wavelength bands (hyp)

RMSE R2 MAPE Selected variables Method

Stepwise
0.58 0.57 35 ICWSIin,  CWSIdev_out,  CWSITa_gz,  TRgz,  ICWSIgz,  CTDgz,  Ta_out,  VPDout,  Ta_in,  TBS,  Tdry Stepwise: index + env

0.60 0.53 36 CTDout,  ICWSIin,  CWSIdev_out,  CSIout,  CWSITa_in,  TRout,  VPDout,  TBS, 502 nm, 520 nm, 576 nm, 727 nm, 
746 nm, 766 nm, 823 nm, 920 nm, 979 nm, 1295 nm, 1407 nm, 1445 nm, 1519 nm, 1557 nm, 
1893 nm, 1930 nm, 2451 nm, 2525 nm, 2042 nm

Stepwise: index + env + hyp

LASSO
0.47 0.63 32 CTDout,  CSIin,  CSIout,  ICWSIin,  ICWSIout,  CWSIdev_in,  CWSIdev_out,  CWSIdev_gz,  CWSITa_gz,  TBS-Tp,  TRin,  TRgz, 

 Ta_out,,  PARgz,  TBS

LASSO: index + env

0.49 0.69 33 CTDin,  CTDout,  CSIin,  ICWSIin,  ICWSIout,  CWSITa_gz,  Tdry—Tp,  Ta_out,  VPDin,  PARggz, 403 nm, 449 nm, 
468 nm, 904 nm, 1207 nm, 1213 nm, 2346 nm, 2377 nm, 2395 nm, 2426 nm, 2439 nm, 2445 nm, 
2457 nm, 2476 nm, 2482 nm, 2525 nm

LASSO: index + env + hyp

0.64 0.48 41 Tp, 492 nm, 495 nm, 526 nm, 545 nm, 576 nm, 604 nm, 610 nm, 626 nm, 645 nm, 654 nm, 658 nm, 
667 nm, 724 nm, 1002 nm, 1006 nm, 1251 nm, 1276 nm, 1382 nm, 1395 nm, 1526 nm, 1893 nm, 
2383 nm, 2426 nm, 2457 nm, 2476 nm, 2513 nm

LASSO:  Tp + hyp

0.59 0.48 40 492 nm, 508 nm, 545 nm, 576 nm, 658 nm,1238 nm, 1276 nm, 1395 nm, 1887 nm, 2506 nm, 
2513 nm

LASSO: hyp

Random forest
0.54 0.57 33 CTDout,  CSIin,  CSIout,  ICWSIin,  CWSIdev_in,  CWSIdev_out,  CWSIdev_gz,  CWSITa_gz,  TBS-Tp,  TRin,  TRgz,  Ta_out, 

 VPDgz,  PARgz,  TBS,
RF: index + env

0.59 0.61 33 CTDout,  Tdry-Tp,  TBS,  Ta_out,  Tdry,  VPDout,  PARgz, 486 nm, 2488 nm, 2494 nm, 2500 nm, 2506 nm, 
2513 nm, 2519 nm, 2531 nm

RF: index + env + hyp

Partial least squares regression
0.54 0.62 34 CTDout,  TRout,  CWSITa_out,  TBS-Tp,  CWSIdev_out,  CSIout,  Tdry-Tp,  CWSITa_gz,  CTDin,  CWSIin,  ICWSIout,  TRin, 

 ICWSIin,  CWSITa_in,  PARgz,  TBS,  Ta_out,  Tdry,  Ta_in,  Ta_gz,  VPDout,  VPDin,  VPDgz,  RHout,  RHin,  Tp, 483 nm, 
486 nm, 489 nm, 492 nm, 495 nm, 502 nm, 505 nm, 508 nm, 511 nm, 514 nm, 517 nm, 2488 nm, 
2494 nm, 2506 nm, 2500 nm, 2513 nm, 2519 nm, 2525 nm, 2531 nm,

PLSR: index + env + hyp
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48%, OH43: 57%) combined with a relatively low RMSE 
value (TZi8: 0.62, OH43: 0.61). Figure 12 shows that the 
E model slightly overestimated the measured E values for 
TZi8 and OH43. The last group contained MS71 and 
TX303 and showed the highest variability in the scatter-
plot comparing predicted to measured E values (Fig. 12). 
The prediction accuracy of these genotypes was low with 
an RMSE of 0.78 and a MAPE of 29% for MS71 and an 
RMSE of 0.65 and MAPE of 57% for TX303.

Discussion
Thermal indices detect drought in an automated 
phenotyping platform
The use of TIR indices to detect drought is well estab-
lished under field and orchard conditions, as this 
approach has been applied in irrigation/drought studies 
of potatoes, sesame, cotton, coffee, wheat, maize, forage 

grasses, pistachio, olive, peach and apple [7, 12, 16, 19, 
73–79]. The few studies that used TIR indices in green-
house experiments [7, 19, 77, 80] showed that both the 
direct and empirical CWSI approaches, the stomatal con-
ductance index  (Ig) and CTD indices were able to detect 
drought in sesame, wheat, maize and peach trees. So far, 
the use of these indices is less common in indoor whole-
plant phenotyping platforms. Here, the CWSI index was 
not able to detect mild drought differences, which may be 
related to the lower accuracy of the non-water stressed 
baseline, as more variation was observed around the 
regression of VPD with CTD compared to the one with 
 Tp (adj.  R2

CTD_in-baseline: 0.51, adj.  R2
Tp_in-baseline: 0.66, 

Additional file  2: Fig. S1). The baseline relating VPD to 
 Tp was used to calculate the ICWSI index, which in con-
trast to the CWSI, detected treatment differences eight 
days after the onset of drought. Increasing the sample 

Fig. 8 Genotypic differences in the responses of physiological traits to drought stress. The genotypes H99, MS71, NC358, OH43, TX303, TZi8 
and W153R and four physiological traits, i.e. stomatal conductance  (gs, mol  H2O  m−2  s−1), effective quantum yield of photosystem II (φPS2), 
transpiration rate (E, mmol  H2O  m−2  s−1) and leaf water potential (ψ, MPa), were selected for this analysis. Physiological traits of well-watered (WW) 
and water-deficit (WD) maize plants were monitored from V4 (four fully developed leaves) until the silking stage. The average trends of the WW 
and WD treatments are indicated by blue solid and red dashed lines, respectively. The gray shading around the lines represents the 95% confidence 
interval of the average. Individual measurements of the plants are visualized by blue dots (WW) and red circles (WD). The black vertical line indicates 
the start of the WD treatment. The days on which significant treatment differences were observed are marked with a light gray vertical shading 
behind the average trends and dots (P < 0.05)
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size used to develop the CWSI baseline may improve its 
performance. In addition to the lower accuracy of the 
baseline, inaccurate estimations of the CTD of a non-
transpiring plant (3°C) may reduce the drought sensitiv-
ity of the CWSI. Alternative methods to estimate this 
CTD value include measuring  Ta and  Tp of a leaf covered 
with petroleum jelly or calculating CTD based on the dif-
ference between the saturated vapor pressure at  Ta and 

at the temperature of a non-transpiring plant, which can 
be estimated by adding  Ta to the intercept of the relation-
ship between VPD and CTD of a fully transpiring plant 
[7, 26, 81].

The drought sensitivity of the  CTDin index was con-
firmed in this study, as this index detected significant 
drought stress effects four days after the onset of WD. 
Nevertheless, it was outperformed by the  CSIin and  TRIin 

Fig. 9 Responses of thermal infrared indices to drought. The H99, MS71, NC358, OH43, TX303, TZi8 and W153R maize plants were imaged daily 
and thermal infrared indices, including canopy temperature depression  (CTDin), canopy stress index  (CSIin), simplified stomatal conductance index 
 (Tdry-Tp), temperature ratio index  (TRIin), Idso’s crop water stress index  (ICWSIin), crop water stress index  (CWSITa_in,  CWSIdev_in) and  TBS-Tp, were 
calculated using the formulas described in Table 1. The averages of the well-watered (WW) and water-deficit (WD) treatments are indicated by blue 
and red dashed lines, respectively. The blue and red shading represents the standard deviation around the mean. The black vertical line indicates 
the start of the WD treatment. The grey vertical shading indicates the days on which significant treatment differences were observed (P < 0.05, 
n=19)
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indices, which showed significant differences on the 
second day. The performance of the  CSIin index may be 
related to the diurnal changes in VPD that were created 
in the greenhouse, and that induced a larger range in E. 
As a consequence,  Tp values could not be normalized 
by  Ta alone. The  CSIin index incorporated the required 
correction for RH by normalizing CTD with VPD [50]. 
It was originally developed to detect drought stress in 
wheat fields and was shown to capture physiological 
responses both at the single-plant leaf and population-
field level [54].

Transpiration rate prediction based on thermal indices 
or an energy balance approach
Plant temperature and TIR indices have been related to 
different water-use behavior traits, such as  gs, E, relative 
water content, and stem and leaf water potential [12, 13, 
15, 19, 23, 28, 29, 77, 82]. One of the drought-sensitive 
indices in this study, CSI, has been correlated with  gs and 
E in the field [54], but this was not confirmed in this study 
under greenhouse conditions.  CSIin was not correlated 
with the gas exchange measurements, while  CSIout was 
non-linearly related to these traits. A negative relation-
ship between  CSIout and  gs and E was observed when the 
index values exceeded -1.5, which corresponds with the 
results observed by Rodriguez et al. [54]. Points that devi-
ated from this negative relationship  (CSIout < − 1.5) had E 

values < 2 mmol  m−2  s−1 and were collected in the morn-
ing when stomata were not yet  completely open (Addi-
tional file 2: Fig. S3). The opening of stomata is triggered 
by light [83] and it requires some time for all stomata to 
open and for E to reach its maximal value. During this 
time period, the relationship between VPD and  Tp is less 

Fig. 10 R-squared accuracy of transpiration rate prediction 
models for different genotypes. Eight genotypes were compared: 
B104, H99, MS71, NC358, OH43, TX303, TZi8 and W153R. The test 
prediction accuracy of the 100 bootstrap samples was used for B104, 
while for the other genotypes, the accuracy was determined 
with a test set that was not included in the training of the models. 
The shading in this figure represents the  R2 value with darker blue 
colors corresponding to higher accuracies

Fig. 11 Accuracy of transpiration rate prediction models for different 
genotypes. Eight genotypes were compared: B104, H99, MS71, 
NC358, OH43, TX303, TZi8 and W153R. The test prediction accuracy 
of the 100 bootstrap samples was used for B104, while for the other 
genotypes the accuracy was determined with a test set that was not 
included in the training of the models. The prediction accuracy 
shown in this figure are (A) the root-mean square error (RMSE) 
and (B) the mean absolute percent error (MAPE). The shading in this 
figure represents the value of the accuracy measure with darker red 
colors corresponding to higher values and lower accuracies
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strong or even absent [50], which may explain the lower 
performance of the  CSIout index during these timepoints. 
The TIR indices CTD,  CWSITa and  Tdry-Tp  (rCTD_out: 
−  0.63–−  0.64,  rCWSI_Ta_out: −  0.58–−  0.61,  rTdry-Tp: 0.5–
0.61) did have a relatively strong correlation with the gas 
exchange measurements. Negative relationships between 
CTD or CWSI and  gs have been observed in olive trees, 
sesame, strawberry, grapevine, both in field and green-
house setups [13, 19, 23, 28, 84]. Maes and Steppe [26] 
simulated the relationship between  gs, CTD and the 
direct CWSI approach for different environmental con-
ditions and observed a non-linear relationship between 
these indices and  gs. Nevertheless, several studies have 
described a linear or almost linear relationship of CTD 
and CWSI with  gs [19, 23, 57, 84]. Some of these more lin-
ear relationships may have resulted from a low  gs range, 
because  gs is almost linearly related with  Tp and CWSI, 
as long as its value is smaller than < 0.5 mol  m−2  s−1 [18]. 
The other strongly correlated index  Tdry-Tp had a posi-
tive relationship with  gs and E. It is a simplified version of 
the stomatal conductance index  (Ig,[57]) and describes an 

almost linear relationship with  gs, which was also visible 
in this study (Additional file 2: Fig. S3).

The relationship between physiological traits and TIR 
indices can be used to develop empirical prediction mod-
els, but this was done in only a few studies for  gs, and 
stem and leaf ψ [12, 27, 85, 86]. Environmental factors 
such as  Ta, PAR, wind speed and VPD, affect the relation-
ships between water-use behavior traits and TIR indi-
ces [26]. Their variation within and between days under 
field conditions reduces the reliability of these models. 
In indoor phenotyping platforms, environmental condi-
tions are semi-controlled, making the use of these types 
of models more feasible. Here, TIR index-based mod-
els had higher prediction accuracies when indices were 
combined with environmental data such as VPD and 
PAR. The best performing model was the RF model that 
incorporated TIR indices and environmental variables 
collected directly or indirectly  at the three monitoring 
positions. Environmental monitoring outside the growth 
zone of the platform is not required in phenotyping plat-
forms with mobile imaging systems in which the cameras 
move to the plants. In these platforms, imaging is per-
formed in a less controlled light environment and plants 
are often grown in a canopy structure to simulate field 
conditions, which will increase the influence of shading 
on  Tp and E predictions. Within-canopy illumination 
variation will induce leaf temperature variation that is 
unrelated to changes in  gs and E, and leads to scatter in 
the canopy temperature-physiology relationships. Sun-
lit pixels, which have a more pronounced slope between 
CTD and  gs [26, 87], can be extracted from the images 
[88, 89] to reduce the non-biological variation in temper-
ature. The potentially higher variability in  Tp and  gs may 
nevertheless mask subtle differences in the plant water 
status [89, 90]. More research is needed to elucidate the 
effects of illumination variation in indoor thermography 
applications and to develop optimal approaches that can 
remove these effects.

Empirical models are platform-specific and cannot be 
transferred to the field, where meteorological conditions 
are more variable [91].The energy balance approach does 
not have this limitation. This mechanistic model has been 
evaluated in field studies [30, 31, 92], but its use in indoor 
phenotyping platforms is less common because of the 
difficulty of distinguishing longwave radiation from the 
surrounding environment [93]. The need of measuring 
net isothermal radiation can be eliminated using a sim-
plified version of the energy balance approach that incor-
porates the temperature of a non-transpiring leaf (dry 
reference surface). Here, this approach had a lower accu-
racy compared to the empirical models due to incorrect 
model assumptions (Figs.  10 and 11). Additional file  1 
provides a detailed discussion of the issues observed in 

Fig. 12 Relationship between measured and predicted 
transpiration rate for different genotypes. The Random Forest 
models that combined thermal, hyperspectral and meteorological 
data were used to predict transpiration rate (E). Genotypes 
were grouped based on the prediction accuracy of the model. 
The accurate group contained three genotypes (B104, NC358 
and W153R) and is indicated by a light blue header. The moderately 
accurate group has an orange header and contains H99, OH43 
and TZi8, while the less accurate group is marked with a red header 
and contains MS71 and TX303. The dots represent the predicted 
and measured E of individual plants, while the black line shows 
the one-to-one relationship. For B104, leave-one-out cross-validation 
predictions are shown, while the predictions of the other genotypes 
were created using a test set
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the implementation of the energy balance approach and 
suggestions for optimization. One important aspect of 
the energy balance approach is the steady-state assump-
tion, which states that the environmental conditions are 
stable during imaging and that leaf temperature is at 
equilibrium with its environment. This assumption is dif-
ficult to maintain in the field because the environmental 
conditions are constantly changing. Indoor phenotyping 
systems with semi-controlled environments seem more 
appropriate in this sense, but here as well, factors such 
as plant transportation, changing light levels, and diur-
nal temperature and VPD trends, influence the acclima-
tization of the plants to the imaging environment and 
to reach the steady-state condition. Vialet-Chabrand 
and Lawson [93] propose a method that predicts  gs and 
E under dynamic environmental conditions by applying 
an energy balance model with a built-in dynamic model 
of  gs, which is fitted on observed temperature measure-
ments. The method derives  gs under a fluctuating light 
environment and detects temporal response variations 
within and between wheat leaves [18, 93].

Hyperspectral data to improve transpiration rate 
prediction models
Hyperspectral reflectance in the near-infrared (NIR, 
700–100  nm) and short-wave infrared (SWIR, 1000–
2500 nm) region has been related to leaf cuticle thickness, 
water content and anatomy [72, 94]. Cuticular transfer, 
intercellular space,  gs and mesophyll cell wall conduct-
ance determine total leaf conductance and therefore 
directly or indirectly affect E [2]. Gas exchange methods 
are often used to measure E and  gs, also in this study, and 
actually measure total leaf conductance, which is most 
strongly influenced by  gs, but also by the aforementioned 
factors. Hyperspectral data may be able to capture infor-
mation on these other factors and consequently improve 
E and  gs prediction models. The relationship between  gs 
or E and hyperspectral reflectance was confirmed in this 
study and in Mertens et  al. [42]. Both studies showed 
significant relationships with blue-green (523–532  nm) 
and the NIR water-absorption trough (976–992  nm) 
reflectance. The number of significant correlations was 
higher in this study, as additional wavelengths located 
in the SWIR water absorption troughs (1407, 1881 and 
2346 nm) also correlated with E and  gs. The diurnal rela-
tionship between red reflectance and E was the only one 
described by Mertens et  al. [42] that was not detected 
here. The reason may be the limited number of E meas-
urements collected within one day and/or the interaction 
between drought and diurnal effects, which increased 
the changes in red reflectance and decreased E varia-
tion. Overall, several studies have used the relationships 
between reflectance and E to develop hyperspectral 

indices that can be used to monitor this trait [42, 58, 95]. 
The WBI index was originally created to monitor water 
content in plants, but Marino et al. [95] observed correla-
tions with  gs and whole-plant E, which were also found 
in this study  (rWBI-E = -0.52). This correlation differs from 
the results observed by Mertens et  al. [42], where WBI 
was not significantly related to E. These differing results 
may be caused by dissimilarities in the time between 
imaging and measurements, which ranged up to 1  h in 
the study of Mertens et al. [42] and was limited to 10 min 
in this study. The other two indices that had relatively 
high correlations with E were  SR1440/1460 (r = − 0.49) and 
 RMP1483/1430 (r = 0.53). These indices included (SWIR) 
water absorption regions, suggesting that these parts of 
the spectrum may contain information about E.

The combination of TIR and hyperspectral indices in 
empirical models has mainly been used to predict yield, 
chlorophyll content and relative water content [15, 37]. 
These studies observed a slight improvement in  R2 when 
TIR and hyperspectral indices were combined in a PLSR 
or stepwise multiple linear regression model. Adding 
hyperspectral information to predict E was only ben-
eficial here for the single TIR indices-based models that 
used  CWSITa and CTD. In these models, the water con-
tent WBI and  RMP1483/1430 indices replaced the VPD 
variable, suggesting that they may contain additional 
information about the relationship between leaf water 
content, E and VPD. When hyperspectral reflectance 
was combined with multiple TIR indices and environ-
mental data, a slight improvement was visible; however, 
this combination performed better for some of the other 
inbred lines, especially W153R. This improvement sug-
gests that hyperspectral data can capture genotypic dif-
ferences in water-use behavior, but more research is 
needed to determine the contribution of this data type to 
E prediction models. The most robust approach to pre-
dict E was the energy balance model (Additional file 1), 
which had similar, albeit low  (R2 = 0.32, RMSE = 0.68 and 
MAPE = 45%) prediction accuracies for all eight inbred 
lines. The accuracy of this approach can be improved 
by refining the  Tdry estimate, which may make this a 
viable method to monitor E in automated phenotyping 
platforms.

Thermal indices detect genotypic differences in drought 
sensitivity
Genotypic differences in  Tp or TIR indices have been 
observed in several heat tolerance or drought sensitiv-
ity studies in rice, wheat and maize [17, 24, 96–98]. They 
noted larger CWSI differences between WW and WD 
treatments in drought stress-sensitive genotypes com-
pared to tolerant ones. In this study, genotypic differ-
ences in drought sensitivity were observed in both TIR 



Page 21 of 25Mertens et al. Plant Methods          (2023) 19:132  

indices and physiological traits. The strongest physiologi-
cal differences were present in the leaf ψ measurements, 
in which the drought-induced decrease was signifi-
cantly less pronounced in TX303 than OH43, NC358 
and W153R. This partially corresponded with the avail-
able drought sensitivity data, in which plant height and 
leaf length of OH43 and W153R were more affected by 
drought compared to TX303 (data not shown). These 
genotypic differences diverged from the  CSIin and  TRIin 
results, in which TX303 was more affected by drought 
compared to OH43, W153R and H99. The index results 
seemed to correspond with the  gs and E measurements, 
which showed slightly larger (but not significant) treat-
ment differences in TX303 compared to the other three 
genotypes. These results suggest that TX303 might close 
its stomata more quickly at a less negative leaf ψ, which 
corresponds with a water-conservative type of drought 
response. The limited number of significant differences 
observed in the genotype comparison analysis may have 
resulted from confounding factors. Measurements and 
images were grouped based on how long the plants had 
received the WD treatment, which started at the V5 
stage. This procedure was chosen to facilitate the com-
parison of genotypes that differed in developmental tim-
ing and thus the date at which the drought started. This 
resulted, however, in combining and comparing data 
collected on different measurement days. The potential 
difference in environmental conditions may have cre-
ated additional variation in the E and  gs measurements. 
To make this analysis more robust, a larger number of 
physiological E and  gs measurements are required, or the 
start of the WD treatment should be synchronized for all 
the genotypes. Consequently, more research is needed to 
elucidate the genotypic differences in physiology and TIR 
indices of these eight inbred lines.

Conclusions
Thermal infrared imaging has been a popular tool 
to detect drought and estimate  gs or E in the field for 
many years. The use of thermography in indoor auto-
mated phenotyping platforms has been less investi-
gated and is mainly limited to comparing  Tp or CWSI 
between drought-stressed and well-watered plants. In 
addition, the advantages of combining different imag-
ing systems, such as TIR  and hyperspectral imaging, 
to predict E has not been evaluated before in indoor 
phenotyping setups. In this study, the accuracy of TIR 
indices developed under field conditions were investi-
gated in an indoor automated phenotyping platform. 
The added value of combining TIR and hyperspectral 
data in empirical E prediction models was determined 

and compared to mechanistic models. The results dem-
onstrated that TIR indices that corrected  Tp for VPD 
and/or  Ta (CSI, TRI), were most sensitive to drought 
and were able to detect genotypic differences but were 
not strongly correlated with E and  gs. Instead, E and  gs 
were correlated with the commonly used indices CWSI 
and CTD, which could be used to develop empirical E 
prediction models. Model performance was the highest 
when TIR indices were combined with environmental 
data and hyperspectral indices or wavelengths. Empiri-
cal models had the highest prediction accuracies for the 
genotype on which they were trained (B104), but their 
performances were inconsistent for other genotypes, 
indicating that the genotypic differences should be con-
sidered during model development. In addition, it is 
important to monitor environmental data at multiple 
positions on a phenotyping platform with fixed camera 
positions, as transportation will influence the acclima-
tization of the plant to its environment and E predic-
tion accuracy.

Abbreviations
At  Actual transpiration rate
CSI  Canopy Stress Index
CTD  Canopy Temperature Depression
CWSI  Crop Water Stress Index
CWSIdev  CWSI corrected for development
CWSITa  CWSI corrected for non-constant air temperature conditions
DR  Drought experiment
dSR660/1040  1St derivative Simple Ratio index of 660 and 1040 nm
E  Transpiration rate
Ft  Fitted transpiration rate
Fv’/Fm’  Energy harvesting efficiency by oxidized PSII
gs  Stomatal conductance
gz  Growth zone
ICWSI  Idso’s Crop Water Stress Index
in  Inside cabin
LED  Light emitting diode
MAPE  Mean absolute percent error
ND1425/2145  Normalized Difference index of 1425 and 2145 nm
NDI1407/1862  Normalized Difference Index of 1407 and 1862 nm
NDWI  Normalized Difference Water Index
out  Outside cabin
PAR  Photosynthetically active radiation
PLSR  Partial Least Squares Regression
R2  R-squared
R953/492  Ratio index of 953 and 492 nm
RF  Random forest
RGB  Red–green–blue
RH  Relative humidity
RMP1483/1430  Relative Moisture Percentage of 1483 and 1430 nm
RMSE  Root mean square error
SDD  Stress Degree Days
SR1440/1460  Simple Ratio index of 1140 and 1460 nm
T  Temperature
Ta  Air temperature
TBS  Black sphere temperature
Tdry  Dry reference leaf temperature
Tdry-Tp  Simplified stomatal conductance index
TF  Transferability experiment
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TIR  Thermal infrared
Tp  Plant temperature
TRI  Temperature Ratio Index
Twet  Wet reference leaf temperature
VPD  Vapor pressure deficit
WBI  Water Band Index
WCI  Water Content Index
WD  Water deficit
WPI2  Water Potential Index 2
WW  Well-watered
φPS2  Effective quantum yield of photosystem II
ψ  Water potential
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Additional file 1. Energy balance transpiration rate model. Detailed 
description of the simplified energy balance transpiration rate model 
formulas, results and critical discussion of the implementation in 
PHENOVISION.

Additional file 2: Figure S1. Baselines of the crop water stress indices. 
This figure illustrates the baselines used to calculate the Idso crop water 
stress index (ICWSI), development-corrected crop water stress index 
 (CWSIdev) and air temperature  (Ta) corrected crop water stress index 
 (CWSITa) inside the imaging cabin. Similar baselines were created for the 
other monitoring positions (outside the cabin, growth zone). In A and B, 
the baselines of young and mature plants are represented by a black and 
yellow line, respectively, while the individual measurements are indicated 
with black and yellow dots. A baselines of the  ICWSIin index, which relates 
plant temperature  (Tp) to vapor pressure deficit (VPD). Separate baselines 
were created for the different genotypes and young/mature plants. This 
baseline was used to estimate plant temperature  (Tp) of a fully transpiring 
plant. B the baselines of the  CWSIdev_in, which relates canopy temperature 
depression (CTD =  Tp-Ta) to VPD. This function is used to estimate the 
CTD of a fully transpiring plant. Separate baselines for genotypes and 
developmental stages were also created for this index. C, representation 
of the baselines used to calculate the  CWSITa_in. The model of this baseline 
has CTD as the dependent variable and VPD,  Ta and its interaction term 
as independent continuous variables. This figure illustrates what the 
relationship between CTD and VPD would look like if  Ta was constant. The 
relationships between CTD and VPD for eight different temperatures are 
indicated by solid lines. The measurements are visualized by slightly trans-
parent dots. Each temperature has received a unique color, which is used 
for both the line and dots. Separate baselines were developed for each 
genotype. Figure S2. Environmental data. The daily mean air temperature 
(Ta, A), relative humidity (RH, B) and vapor pressure deficit (VPD, C) of the 
three monitoring positions (gz, in and out) are represented by a solid light 
gray line, dashed dark gray line and dotdashed black line, respectively. D 
shows the measurements of the black sphere temperature  (TBS), PAR mon-
itored in the growth zone, and the dry reference temperature  (Tdry) that 
was measured inside the imaging cabin. The daily mean of  TBS and PAR 
are indicated by a thin and thick light gray line, respectively, while  Tdry is 
represented by a dashed dark gray line. Figure S3. Relationship between 
thermal infrared indices and transpiration rate. Individual measurements 
are represented with colored dots showing the  VPDout at the time of sam-
pling. A blue-red gradient is used to visualize the time range. The linear or 
polynomial relationships between the indices are indicated with a black 
line, while non-linear (spline) relationships are represented by a blue line. 
The gray shading around the lines show the 95% confidence interval of 
the relationship. Transpiration rate (E, mmol  m−2  s−1) versus (A)  CSIout, (B) 
 CTDout, (C)  CWSITa_out, and (D)  Tdry-Tp (°C). Table S1. Temperature and pho-
tosynthetically active radiation ranges in the growth zone. The ranges are 
calculated by averaging temperature  (Ta, °C) and photosynthetically active 
radiation (PAR, µmol  m−2  s−1) measurements for each weather station. The 
table provides the average temperature and PAR ranges (including stand-
ard deviations) at 10.00, 13.00 and 15.00 for each experiment. Table S2. 
Measurement details including frequency, time of day, developmental 

stage and duration, for imaging and physiological measurements in the 
drought and transferability experiment. Exp experiment, DR drought 
experiment, TF transferability experiment,  n number of plants, Start 
and End developmental stage at which the first and last measurement, 
respectively, took place, expressed in V stage, Duration duration of the 
experiment expressed in number of days, na not applicable; *: depending 
on the genotype, see Table S3. Table S3. Developmental stages expressed 
in V stages at which physiological measurements were performed for the 
different genotypes in the drought and transferability experiment. DR 
drought experiment, TF transferability experiment, na not applicable.
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