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METHODOLOGY

Semantic segmentation of plant roots 
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Abstract 

Background Manual analysis of (mini-)rhizotron (MR) images is tedious. Several methods have been proposed 
for semantic root segmentation based on homogeneous, single-source MR datasets. Recent advances in deep 
learning (DL) have enabled automated feature extraction, but comparisons of segmentation accuracy, false positives 
and transferability are virtually lacking. Here we compare six state-of-the-art methods and propose two improved DL 
models for semantic root segmentation using a large MR dataset with and without augmented data. We determine 
the performance of the methods on a homogeneous maize dataset, and a mixed dataset of > 8 species (mixtures), 6 
soil types and 4 imaging systems. The generalisation potential of the derived DL models is determined on a distinct, 
unseen dataset.

Results The best performance was achieved by the U-Net models; the more complex the encoder the better 
the accuracy and generalisation of the model. The heterogeneous mixed MR dataset was a particularly challenging 
for the non-U-Net techniques. Data augmentation enhanced model performance. We demonstrated the improved 
performance of deep meta-architectures and feature extractors, and a reduction in the number of false positives.

Conclusions Although correction factors are still required to match human labelled root lengths, neural network 
architectures greatly reduce the time required to compute the root length. The more complex architectures illustrate 
how future improvements in root segmentation within MR images can be achieved, particularly reaching higher seg-
mentation accuracies and model generalisation when analysing real-world datasets with artefacts—limiting the need 
for model retraining.

Keywords Automatic image segmentation, Data augmentation, Deep learning, False positives, Fine roots, Image 
processing, Minirhizotron, Neural networks, Root segmentation, U-Net
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Background
Despite a recent increase in research on plant roots, 
studies addressing ecosystem processes below ground 
and underlying (root) traits are still relatively rare com-
pared to aboveground measurements. However, roots 
play a key role in plant function (e.g., water and nutrient 
uptake, anchorage, propagation) and affect many eco-
system processes such as chemical transformation and 
circulation of substances from the atmosphere to the lith-
osphere, and particularly the formation and stabilisation 
of soil organic matter [1–3]. In specific, information on 
root system development in time and space is critical to 
determine plants’ resource allocation patterns [4–6] and 
the soil volume explored for resource exploitation [7, 8].

Beyond the traditional destructive soil sampling and 
root washing, and with advances in (imaging) technol-
ogy, root studies have gradually become easier—allow-
ing significant advances in root phenotyping [9]. Root 
observation methods in soil, allowing for repeated meas-
urements, range from X-ray tomography [10] to Elec-
trical Resistance Tomography [11]. Among the diverse 
non-destructive techniques (mini-) rhizotrons (MR), or 
rhizoboxes, allow (periodic) collection of 2D images of 
roots growing adjacent to a transparent tube or plane 
“window”. Rhizotron systems with flat, transparent 
(plexi-)glass windows allow taking larger but structurally 
similar images than MR cameras (in tubes), at the cost of 
higher infrastructure costs, potentially greater (soil) dis-
turbance and a less flexible use for experiments. There is 
a consensus in the community that MR camera systems 
are currently the best approach for observing the tim-
ing (phenology) of root emergence, growth and decay 
(turnover) under field conditions—providing a ’window’ 
into a relatively undisturbed rhizosphere that most other 
methods do not [12]. Acrylic MR tubes are the least 
likely to affect root characteristics [13], however, being 
easily scratched during installation may already affect 
image quality. In addition, a variety of conditions (e.g., 
large gaps/voids between the MR tube and the soil) may 
affect root growth patterns and the quality of the images/
results obtained, or at least impact the analysis. The most 
common data produced by CCD- or CMOS-type (i.e., 
scanner- or camera-type) (mini-)rhizotrons are RGB 
images, while trials with multispectral MR cameras have 
started more recently [14, 15]. Due to the variety of com-
mercial MR imaging devices (Additional file  1) and "do 
it yourself" solutions [16], different sensors with distinct 
resolution, focus, and illumination produce very different 
image qualities (Fig.  1)., In addition, smartphones have 
recently been suggested as effective devices for image 
acquisition in rhizotron and “root window" settings [17].

Analysis of MR images is still a challenge, and software 
such as RootFly [18] or rhizoTrak [19], allow calculation 

of root lengths and widths, but require the user to (semi) 
manually trace roots on the image. As manual root 
identification can be very tedious, time-consuming and 
requires trained annotators, (semi-)automatic software 
tools are in high demand. All of them start in one way 
or another with semantic segmentation or identification 
of roots, or related parts such as nodules [20], from the 
RGB image. Tools such as DART [21], SmartRoot [22], 
EZ-Rhizo [23], DIRT [24], GiA-Roots [25], RootNav [26], 
GT-RootS [27] generally perform very well in detect-
ing and analysing root systems and traits in the target 
environments for which they were developed, but their 
transferability is often questioned. In particular, they are 
often reliable at segmenting roots with high contrast to a 
more homogeneous background [9]. In contrast, images 
with heterogeneous backgrounds that contain artefacts 
(e.g., petioles or plastic foils) and roots of different shapes 
and colours (some partially hidden in the soil), can be 
challenging.

Subsequently, more recent approaches have already 
included techniques allowing for semi-automated root 
detection in more heterogeneous soil conditions. Adap-
tive thresholding, used by saRIA [28], differs from global 
thresholding by taking into account spatial variations in 
illumination [29]. Frangi Vesselness [30], a filtering tech-
nique capable of recognising tubular structures [31], has 
also been applied to root segmentation tasks [32, 33]. 
Yu et al. [34] achieved root segmentation using a multi-
instance support vector machine (SVM). SVM is an 
algorithm that maps the data into a feature space (i.e., a 
multidimensional space) in which a hyperplane with a 
maximum margin of separation between two classes is 
optimised [35]. However, it is the development of deep 
learning (DL) techniques [36] that has opened up the 
possibility of automated root segmentation in real-world 
conditions. In particular, convolutional neural networks 
(CNN) are considered an effective method that combines 
DL and computer vision technology to extract target 
features directly from an input image [37]. While CNN 
architectures have been explored for root image analyses 
a decade ago [26], Wang et al. [38] only recently reported 
a fully automatic, DL-based feature extraction method—
SegRoot, an artificial neural network model with a sim-
ple DL architecture of encoder-decoder. A more recent 
study using the U-Net model [33] also provided good 
segmentation, leading to the development of the versatile 
RootPainter tool [20]. However, trained DL models may 
not perform similarly under different species × soil types, 
or when using different imaging devices, if this was not 
taken into account during training. Ward and Moghadam 
[39] recently showed that the background texture in par-
ticular has a significant effect on leaf segmentation per-
formance; soil backgrounds are expected to be even more 
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heterogeneous. One way, as implemented in RootPainter, 
is to make retraining on a target dataset fast and accessi-
ble using an interactive ML process that involves simulta-
neous annotation and training, connected in a real-time 
feedback loop [17, 20]. However, to largely avoid re-train-
ing a DL model can also be trained on a diverse dataset 
to generalise root segmentation, so that the model learns 
to recognise most types of roots under different soil and 
imaging conditions. For reliable monitoring of the spatial 
distribution of root, it is essential that “false positives”, 
such as the segmentation of roots in "soil only" images, 
are limited.

Building on these recent advances, here we develop 
an improved approach to root segmentation based 
on DL and specifically U-Net architecture: a U-Net 
backboned with either EfficientNet [40] or with SE-
ResNeXt-101 (32 × 4d) [41] as encoders. Both architec-
tures have already shown impressive results in image 
recognition tasks [40, 42, 43]. A backboned model 
is a neural network architecture [either Efficient-
Net or SE-ResNeXt-101 (32 × 4d)] that serves as the 
main feature extractor in a much larger architecture 
(U-Net). A basic, default U-Net architecture consists 

of contracting and expansive paths [44], i.e. encoder 
and decoder; both of which can be modified in order to 
achieve better performance. Different architectures can 
be used as the encoder or the decoder backbone, e.g., 
U-Net + + with the EfficientNet backbone [43, 45, 46]. 
As data augmentation is considered a powerful method 
to reduce training errors and overfitting of DL models 
[39, 47], it can be used to extend regular data training 
(i.e. original images + masks)—particular when time-
consuming masking limits data availability.

Therefore, the aim of this study is on the one hand, to 
compare established techniques for root segmentation, 
i.e., image processing techniques (Frangi Vesselness, 
adaptive thresholding), machine learning algorithm 
(SVM) and deep learning segmentation models (Seg-
Root, basic U-Net) with a novel approach based on 
backboned U-Net. On the other hand, we aim to deter-
mine the generalisation potential of these techniques/
models by training on a mixed real-world dataset (> 6 
species, 4 soil types, and 3 imaging devices) and apply-
ing the models to an unseen, distinct (in terms of spe-
cies, soil type and imaging device) dataset.

Fig. 1 Example minirhizotron images illustrating the varying image qualities and properties used in this study. a and b are images (tree-grassland 
ecosystem) of the MANIP project dataset; c and d are maize (Zea mays) and olive (Olea europaea) roots from the ATT RAC T project dataset, 
respectively. Both datasets are using different cameras system, focus, resolution, and illumination (see Method section for details on projects/
datasets). Subpanels a and b present heterogeneous lighting but overall dark images with a lot of shadows. Both c and d exhibit uniform lighting 
without significant shadows, but there are distinct variations in soil moisture levels on the outer surface of the MR tubes
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Results and discussion
Simple maize data
All applied methodologies segmented roots in validation 
images of Zea mays (Table 1, Additional file 4)—illustrat-
ing the general applicability but varying performance of 
the techniques on a “simple” MR data set—i.e. holding a 
good contrast between white Zea mays roots and darker, 
homogeneous sandy soil with limited artefacts (Fig. 1c).

The SSIM metric, which indicates the image similar-
ity index between the manual and the predicted mask, 
is extremely high (~ 0.92) for the same label predictor, 
which can be explained by the fact that most of the pix-
els in the mask are “(soil) background” and not roots. 
In contrast, DSC and IoU are metrics that indicate seg-
mentation accuracy; the IoU is typically lower than DSC, 
because IoU penalises bad segmentations to a greater 
extent. However, both are strongly correlated (Tables 1–
3); in the case of the dummy classifier, DSC and IoU 
have equal scores and low values because there are no 
“soil only” images in the Zea mays validation set. For 
Frangi Vesselness, adaptive thresholding and SVM, aver-
age DSCs were higher and SSIMs were lower compared 
to the dummy classifier (Table 1). This may indicate that 
the predicted masks contain many pixels that are incor-
rectly classified as root (as illustrated in Fig.  2). In par-
ticular, Frangi Vesselness shows complex images (Fig. 2c) 
with a high diversity of pixel values between 0 and 1. This 
results in “blurred” predicted masks with a large numbers 
of tubular structures (Fig. 2c, Additional file 4).

Within the DL models, SegRoot is outperformed by 
both the U-Net models, SVM and even adaptive thresh-
olding, based on IoU or DSC indices. Within the U-Net 
architectures presented here, backboned U-Net archi-
tectures have higher average SSIM, DSC and IoU com-
pared to the native encoder of UNetGNRes. All DL 

models compared here have a similar architecture: an 
encoder and a decoder, joined by a bottleneck. Based 
on the encoder-decoder concept many other architec-
tures have been derived, such as SegNet [48] or U-Net 
[44],which additionally include some skipping connec-
tions—“skipping” the bottleneck. SegRoot for instance 
is a modification of SegNet [38]. The SE-ResNeXt-101 
(32 × 4d) architecture, which acts as an encoder here, has 
previously demonstrated high accuracies with a relatively 
small number of operations in image recognition tasks 
[42]. Alternatively, EfficientNet is a more recent architec-
ture for image recognition that has also shown remark-
ably high accuracies with “fewer” parameters (43 million, 
Additional file  3) compared to architectures such as 
SENet (146 million parameters) [40]. Thus, the combina-
tion of powerful encoders with a segmentation architec-
ture such as U-Net may underlie the higher performances 
observed (Table 1) and reported previously [45, 46].

Adaptive thresholding has earlier shown satisfactory 
results for root segmentation and posterior root length 
calculation, with a mean DSC of 0.82 and an  R2 of 0.849 
for the regression of predicted vs. human-labelled length 
[28]. However, here, the application of the technique on 
high quality images of Zea mays roots resulted only in a 
moderate DSC of 0.50; considering that the best model 
showed a DSC of 0.72 (Table 1). This highlights the chal-
lenge of identifying roots when high quality and close 
focused images are available; the presence of a few white 
and bright artefacts (mostly little rocks and water drops, 
but also mycelium) can severely restrict root segmenta-
tion. Another possible explanation regarding the low 
DSC and IoU may, however, be the reduced size of the 
images which lost information that could be valuable for 
some methods such as artificial neural networks [49].

Mixed dataset composed of different species, soils 
and artefacts
The Zea mays dataset discussed above (Table  1) repre-
sents a situation as commonly used for method develop-
ment in automating root segmentation, i.e., one species 
in one soil type [33, 37, 38]. However, the here compiled 
mixed dataset represents a more challenging situation—
containing images with various types of roots in different 
soils and artefacts (Additional file  4). A complex data-
set will reveal the generalisation potential of the meth-
ods; however, to the best of our knowledge, no similar 
attempts have been published yet. Here, all methods 
were evaluated on a “test” subset of the mixed dataset 
(Table 2).

The dummy classifier used on the mixed dataset shows 
higher average DSC/IoU scores compared to the Zea 
mays dataset due to the presence of “soil only” images 
in the mixed set—corresponding to approximately 30% 

Table 1 Performance of different techniques/models (see 
Table 4 for details) on the homogeneous Zea mays (ATT RAC T 1) 
validation set

The best scores for the evaluation metrics average structural similarity index 
(SSIM), average Sørensen–Dice similarity coefficient (DSC), and average Jaccard 
index/Intersection over Union (IoU) are given in bold

Technique/model SSIM DSC IoU

Dummy classifier 0.9154 0.0032 0.0032

Frangi Vesselness 0.4222 0.2634 0.1639

Adaptive thresholding 0.8076 0.5033 0.3664

SVM 0.8326 0.5804 0.4271

SegRoot 0.9203 0.4460 0.3122

UNetGNRes 0.9498 0.6708 0.5380

U-Net SE-ResNeXt-101 (32 × 4d) 0.9534 0.6968 0.5607

U-Net EfficientNet-b6 0.9551 0.7213 0.5860



Page 5 of 15Baykalov et al. Plant Methods          (2023) 19:122  

of the total. Frangi Vesselness performed worse than all 
other methods, making it the least applicable of all meth-
ods. In contrast, Adaptive thresholding performed better, 
but did not reach the minimal accuracy of the dummy 
classifier when applied to the mixed data set. Surpris-
ingly, SegRoot performed similar to the dummy classifier. 
While the performance of SegRoot on the mixed data-
set was thus limited, an  R2 of nearly 0.98 was previously 
reported for a root length determination task on 42 more 

homogeneous images [38]. Similarly, the SVM performed 
worse compared to the higher index values obtained on 
the Zea mays dataset. For the SVM algorithm, SegRoot 
and adaptive thresholding, this indicates that they are 
less applicable to more diverse MR datasets while per-
forming better on homogeneous data (Tables  1, 2). In 
contrast, the UNetGNRes model of the well-established 
RootPainter tool [20] performed well and improved fur-
ther when augmented data were added. However, the 

Fig. 2 Masks of prediction examples on the ‘unseen’ test data of the Cichorium intybus (RootPainter) dataset; models e-i were trained on the Mixed 
dataset. Original image from a rhizotron a, manually labelled mask b, and masks derived using the techniques/models: Frangi Vesselness c, Adaptive 
thresholding d, Support Vector Machine (SVM) e, SegRoot f, UNetGNRes g, U-Net SE-ResNeXt-101 (32 × 4d) h, and U-Net EfficientNet-b6 i. Only 
the best DL models (f–i; Table 3), i.e., trained with augmented data (+ aug), are displayed; see Table 4, Additional file 2 and text for details
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backboned U-Net models had the highest performance 
metrics when trained on original data and improved fur-
ther when trained with augmented data (Table 2, Figs. 3, 
4).

Both models with non-default encoders show very sim-
ilar metrics, with the EfficientNet-b6 encoder perform-
ing slightly better than the SE-ResNeXt-101 (32 × 4d) 
encoder. Root length predictions thus reach  R2 of 0.95–
96 in the backboned U-Net models. The UNetGNRes 
model achieves a good  R2 of 0.89 when trained with aug-
mented data (Fig. 4). This is similar to [33], where an  R2 
of 0.9217 was achieved for approximate root lengths (grid 
counts) when trained on 29 images.

Application of models to new data
Ultimately, the general applicability and robustness of ML 
approaches can be assessed by applying models trained 
on one dataset are applied to another. Here, we tested 
the models trained on the mixed dataset on unseen and 
distinct Cichorium intybus (RootPainter) data (Fig.  2, 
Table 3). Our results show in particular a robust perfor-
mance of the complex U-Net encoders (Table 3)—achiev-
ing only slightly lower evaluation scores compared to the 
mixed data (Table 2) and outperforming the dummy clas-
sifier. While the good performance is generally confirmed 
by the ROC curves, they also show that all techniques 

have greater difficulty in predicting on unseen Cicho-
rium data (Fig.  3c), compared to predicting on the test 
subset of the mixed data (Fig. 3b). The dummy classifier 
appearing in the diagonal indicates that true negatives 
are predicted, i.e., those corresponding to soil. In general, 
the best performance was again observed for the models 
trained on the augmented dataset, suggesting that the 
generalisation potential and robustness of a model is sub-
stantially improved by additional training data. However, 
pre-training the models with ImageNet may have con-
tributed substantially. Pre-trained SegRoot was unable 
to cope with the diverse dataset, whereas UNetGNRes, 
which did not include pre-training, was able to keep good 
performance. This suggests that differences in the model 
architectures, rather than pre-training, played a major 
role in fitting the data.

Regarding the root length prediction on unseen data, 
the best models trained with augmented data are shown 
in Fig.  5. All models are, however, predict overall fewer 
roots compared to the ground truth. Thus, all tested 
methods require manually labelled masks to determine 
correction factors. However, converting the segmenta-
tion output into an accurate root length estimate by skel-
etonisation can also lead to different length estimates 
depending on the approach and root orientation [50], 
but this was not the focus of this study. In addition, the 
performance of models and the evaluation of any seg-
mentation technique depends on annotation quality [51]. 
Due to the complexity of root systems and the partial 
coverage of roots at the root-soil interface, even expe-
rienced annotators may introduce errors. Although we 
manually checked all images for severe masking errors 
prior to applying the methods, more correct annota-
tions are likely to further improve the accuracy of the 
segmentation.

False positives
An important aspect of accurate segmentation is false 
positives at the image level. Even if only a few pixels of 
a root-free soil area are incorrectly segmented as a root, 
this has severe consequences when analysing MR images 
for root system architecture. While reliably identifying 
the locations of root tips / end points remains a bottle-
neck in automated root system analysis of larger rhizo-
tron (or rhizobox) images (which often contain complete 
root systems) [52], the approximate to these “end points” 
of a root system on often considerable smaller MR 
images is the presence or absence of single root seg-
ments. Thus, false positives on small MR images will lead 
to an overestimation of the spatial extent of root sys-
tems, e.g. expressed as convex hull [53], and thus to an 
overestimation of the soil (volume) explored. Our com-
parison highlighted that there are significant differences 

Table 2 Performance of different techniques/models (Table 4) 
on a test data subset of the mixed data set, which was not used 
during the training on the mixed data set

The best scores for the evaluation metrics average structural similarity index 
(SSIM), average Sørensen-Dice similarity coefficient (DSC), and average Jaccard 
index/intersection over union (IoU), and the lowest false positive rate (FPR) are 
shown in bold; Number of images used: Training: 557/augmented Training: 
2228, Validation: 62, Testing: 69. Models trained with augmented data are 
indicated by + aug
a No differences in model performance were found using + aug in the SegRoot 
model
b EXCLUDED from FPR determination as not predicting roots. indicate methods 
where the labels are zero or do not predict roots

Technique/model (+ aug) SSIM DSC IoU FPR

Dummy  classifierb 0.9173 0.3250 0.3250 -

Frangi Vesselness 0.3665 0.1009 0.0626 1.0

Adaptive thresholding 0.8348 0.2367 0.1804 0.8636

SVM 0.7617 0.1744 0.1341 0.9090

SegRootab 0.9173 0.3250 0.3250 -

SegRoot +  augab 0.9173 0.3250 0.3250 -

UNetGNRes 0.9246 0.4399 0.3585 0.6363

UNetGNRes + aug 0.9313 0.5326 0.4452 0.4545

U-Net SE-ResNeXt-101 (32 × 4d) 0.9352 0.5708 0.4800 0.3636

U-Net SE-ResNeXt-101 
(32 × 4d) + aug

0.9360 0.6217 0.5299 0.2272

U-Net EfficientNet-b6 0.9375 0.6418 0.5498 0.1363

U-Net EfficientNet-b6 + aug 0.9381 0.6848 0.5920 0.0454
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between the methods in terms of image-wide false 
positive rates (Tables  2, 3). While neither the dummy 
classifier nor SegRoot predicted any roots and were 
therefore excluded from the FPR analysis, it is striking 
that Frangi Vesselness, Adaptive thresholding and SVM 
have very high image-wide FPRs, indicating that some 
roots were wrongfully predicted in the majority of “soil 
only” images (Tables 2, 3). Similarly, and surprisingly, the 
applied UNetGNRes model also had high FPRs ranging 
from 0.45–0.68, with higher values when predicting on 

unseen data. This pattern is illustrated in Fig. 5a, showing 
a range of root lengths predicted when manually anno-
tated images contained no roots. As a workaround, this 
problem has recently motivated the definition of mini-
mum root length thresholds, e.g. to determine rooting 
depth [54]. We suggest that the improvements in FPR for 
the custom U-Net approaches tested are due to the use 
of pre-trained weights, architectural innovations present 
in the more modern EfficientNet backbone and the use 
of a learning rate scheduler, which is likely to help avoid 

Fig. 3 Receiver operating characteristic (ROC) curves of true vs false positive rates (FPR) on MR images of a training data set of Zea mays roots 
(“ATT RAC T 1” project), without augmentation, b the mixed validation data set with augmentation (+ aug), and c the unseen Cichorium intybus 
(RootPainter) data set (Additional file 2). A diagonal dashed line indicates the dummy classifier, values above the line are better, values below are 
worse than a random classifier. The “elbow” on the left indicates a more “conservative” classifier, such as Adaptive Thresholding, while being 
on the right indicates a more “liberal” classifier, such as Frangi Vesselness. The closer the “elbow” is to the upper left corner (0,1), the better the model. 
ROCs of all methods are shown in different colours; SegRoot + aug is not shown for clarity (it largely overlaps with the dummy classifier)



Page 8 of 15Baykalov et al. Plant Methods          (2023) 19:122 

Fig. 4 Regression of total root length (mm) per image as derived from manually human labelled masks and as predicted by U-Net models 
(Table 4) on the mixed test dataset. a, c and e are U-Net models with default (UNetGNRes), SE-ResNeXt-101 and EfficientNet-b6 decoders trained 
without augmented data, respectively; b, d and f are the corresponding models trained with augmented data (+ aug). Formulas indicate the slope 
and offset of linear regressions; shaded areas represent 95% confidence interval. Models predict less root length than manually labelled masks. The 
1:1 line is shown as a dashed line; R.2 values indicate goodness of fit (n = 69)
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getting stuck in difficult regions of the training process, 
leading to slow or no improvement in model perfor-
mance [55]. Learning rate schedulers also allow the use of 
a larger initial learning rate, which can have a smoothing 
effect on the model parameters, preventing overfitting 
and potentially further improving models generalisation 
[56]. In contrast to UNetGNRes, the U-Net model with 
EfficientNet-b6 backbone had a very low image-wide FPR 
of < 0.05 when trained on augmented data (Table 2); error 
rates increased to ~ 0.12 when the model was applied to 
unseen data (Table 3, Fig. 5c). Our results emphasise that 
high FPR is an intrinsic factor of established methods. 
While image-wide FPR is currently not evaluated in rela-
tion to root segmentation tasks, to the best of our knowl-
edge, and potentially because of the rather minor effects 
on the overall root length prediction, the consequences 
for the correct spatial mapping of the root system using 
small MR images are serious and thus deserve further 
attention.

Conclusions
To compare the performance of different established 
techniques for segment roots on (mini-) rhizotron 
images we assembled three datasets, a standard homo-
geneous Zea mays dataset, a unique mixed MR dataset 

composed of different soils, plant roots, artefacts, and 
image qualities, and a dataset of Cichorium intybus 
roots. While previous approaches have often excluded 
images without roots or containing artefacts from the 
training and validation datasets [33], this generally lim-
its the applicability of models to real-world MR data-
sets, which also contain root free soil and artefacts. We 
therefore suggest following the approach taken here, 
reducing the number of artefacts and root-free images 
to a level where these non-root elements are not the 
dominant image type, but still retaining these stand-
ard image situations for model development. While 
open questions remain about the impact of artefacts 
on model training, the performance of deep learning 
models on these more realistic datasets was found to 
be significantly better than “classic” image processing 
techniques. The adaptive thresholding technique per-
formed well on the homogeneous Maize dataset, while 
the Frangi Vesselness filter was not found to be use-
ful for root segmentation under the given conditions. 
The SVM algorithm evaluated was found to offer only 
marginal benefits over regular adaptive thresholding. 
The best techniques for root segmentation were artifi-
cial neural networks, with the novel models achieving 
the highest scores for root detection and length calcu-
lation. While the default U-Net showed good results, 
the novel complex and larger backboned U-Net mod-
els were more consistent and robust enough to predict 
on unseen, distinct rhizotron Cichorium images. We 
can only hypothesize that the inclusion of “soil only” 
images and images with artefacts in the mixed dataset 
may underlie the partially different performance of the 
established models, in particular the SegRoot model. 
All models, however, detected less roots compared to 
the manually annotated “ground truth”, and therefore 
require the application of a correction factor. More 
problematically, certain techniques exhibit high rates of 
false positives, which can impede the accurate spatial 
characterisation of root system architecture on small 
MR images. Finally, it is important to consider the hard-
ware limitations of our study, as the accordingly limited 
image sizes are likely restricting the performance of the 
DL models [49, 57]. Larger images would contain more 
pixel information and more context for the DL models, 
which could lead to better performance, and probably 
improve the average accuracy of all models compared 
here. It remains open how the inclusion of distinct 
root classes within the same image set (e.g., white and 
dark roots) will affect the performance of different 
model architectures. The establishment of a standard-
ized benchmark dataset of annotated (mini-)rhizotron 
images is key to facilitate the development of generalis-
able root image analysis pipelines.

Table 3 The performance of different techniques/models 
(Table 4) trained on mixed data (incl. different species, soil types 
and imaging devices), predicting a different, unseen Chicory/
RootPainter dataset

a No differences in model performance were found using + aug in the SegRoot 
model
b Excluded from FPR determination as not predicting roots. Indicates methods 
tghat do not predict roots. The best scores for the evaluation metrics average 
structural similarity index (SSIM), average Sørensen-Dice similarity coefficient 
(DSC), and average Jaccard index/intersection over union (IoU), and the lowest 
false positive rate (FPR) are shown in bold. Number of images: Training: 557/
augmented Training: 2228, Validation: 62, Testing: 1537. Models trained with 
augmented data are indicated by + aug

Technique/Model (+ aug) SSIM DSC IoU FPR

Dummy  classifierb 0.9732 0.4103 0.4103 –

Frangi Vesselness 0.3361 0.0054 0.0042 0.9984

Adaptive thresholding 0.9408 0.1506 0.1199 0.8814

SVM 0.8260 0.0845 0.0775 0.8862

SegRootb 0.9732 0.4103 0.4103 –

SegRoot +  auga,b 0.9732 0.4103 0.4103 –

UNetGNRes 0.9611 0.2489 0.2276 0.5769

UNetGNRes + aug 0.9623 0.3707 0.3022 0.6858

U-Net SE-ResNeXt-101 (32 × 4d) 0.9764 0.4750 0.4156 0.3125

U-Net SE-ResNeXt-101 
(32 × 4d) + aug

0.9780 0.5676 0.5043 0.1442

U-Net EfficientNet-b6 0.9771 0.5350 0.4739 0.1827

U-Net EfficientNet-b6 + aug 0.9784 0.6103 0.5411 0.1233
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Methods
(Mini‑)rhizotron datasets: Species, soil types and image 
properties
Four different (mini-)rhizotron datasets, covering > 8 spe-
cies (mixtures), 6 soil types, and 4 imaging systems (as 
detailed below and in Additional file 2), were used in this 
study.

ATT RAC T project—commercial minirhizotron camera 
data (Zea mays; Solanum lycopersicum, Vitis vinifera, Olea 
europaea)
The MR data from Sde Boker Campus, Israel, collected 
at Ben-Gurion University of the Negev (BGU) facilities, 
consists of maize (corn; Zea mays) in a coarse sandy 

red-coloured soil (“ATT RAC T 1”; Fig.  1), and tomato 
(Solanum lycopersicum) in a coarse sandy yellow soil, 
grapevine (Vitis vinifera) and olive (Olea europaea) 
in a beige loess soil (“ATT RAC T 2”). A manual MR 
camera was used to capture high-resolution images 
of 2340 × 2400 pixels (UHD), with a very close focus 
of 23 × 23 mm (VSI MS-190; Vienna Scientific Instru-
ments GmbH, Alland, Austria). The images contained 
limited amounts of artefacts such as water droplets and 
small (often white) stones. Roots on 222 images were 
masked; 115 soil images (i.e., images without annota-
tor-detected roots) were also included in the final data-
set. In total, 337 images were used, covering three soil 
colours and textures, holding roots of one of four spe-
cies or no roots (“Soil only”) were used.

Fig. 5 Regression of total root length (mm) per image as derived from manually, human labelled masks and as predicted by the best models, all 
trained on augmented mixed data (Table 2), predicting on unseen, different Cichorium intybus (RootPainter) dataset a, b and c are U-Net models 
with default (UNetGNRes), SE-ResNeXt-101 and EfficientNet-b6 decoders trained on augmented data, respectively. Formulas indicate the slope 
and offset of linear regressions; shaded areas represent confidence interval at 95%. Models predict less root length than manually labelled masks. 
The 1:1 line is shown as a dashed line.  R2 values indicate goodness of fit (n = 1537). See Table 3 for evaluation metrics
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MANIP project—custom minirhizotron camera data 
(tree‑grass ecosystem)
The Majadas de Tiétar (MANIP experiment) MR 
dataset was collected from 10 custom-built auto-
mated MR prototypes in a semi-arid tree-grass eco-
system in central Spain [58, 59]. The original dataset 
used here comprises 250 images (2592 × 2944 pixels; 
Fig. 1) accompanied by masks created by student assis-
tants. Images were collected using a miniature auto-
focus camera (DFK AFU050-L34; The Imaging Source 
GmbH, Bremen, Germany) which was modified with 
a custom fisheye lens to shorten the field of view. The 
images were collected during a Mediterranean autumn 
and winter (2019–2020), and show a variety of illumina-
tion/contrast patterns as the soil rewets after the sum-
mer drought. There is also a large amount of root litter, 
making it difficult for human annotators to identify 
roots. After filtering, 25 images were selected and these 
were cropped into 6 overlapping images of 972 × 972 
pixels each to approximate a similar zoom as the ATT 
RAC T data—increasing the image set to 150 images.

SegRoot—commercial minirhizotron scanner data (Glycine 
max)
The SegRoot’s MR dataset includes 65 images of 
2550 × 2273 pixels and the same number of masks. 
Images held soybean (Glycine max) roots in a mix-
ture of potting soil and calcined clay gravel, grown in 
a greenhouse (Department of Botany and Plant Pathol-
ogy, Purdue University, West Lafayette, USA). The large 
images were taken using a scanner-based rhizotron 
imaging system (CI-600, CID Bioscience, Camas, WA, 
USA). The images were cropped into 64 smaller sec-
tions each to match the focus of other datasets. The 
resulting 4160 images were filtered to 200 images to 
reach a balanced mixed image set.

RootPainter—rhizotron compact camera data (Cichorium 
intybus)
RootPainter’s rhizobox dataset consists of 48 images 
and same number of masks of chicory (Cichorium inty-
bus) roots; images with a size of 3991 × 1842 pixels were 
taken in the summer 2016 at a rhizotron/large rhizobox 
facility at the University of Copenhagen, Taastrup, 
Denmark [33]. A compact camera (Olympus Tough TG 
860) was used for imaging. Due to the different focus 
and rectangular shape of the images, each image was 
divided of each image into 32 smaller images, resulting 
in a data set of 1536 images.

Data pre‑processing, masks, compilation of image sets 
for testing, validation, and training
Root images from all datasets were accompanied by 
masks where a pixel identified as a root was marked as 
1 and background as 0. The background included pix-
els that were fine soil, stones or non-soil artefacts such 
as petioles/branches, worms, plastic debris, scratches, 
and deep voids. Images that were obviously inaccurately 
masked were removed from the datasets by manual 
screening all images for unmasked root segments prior 
to analysis. In addition, images containing predomi-
nantly non-soil artefacts, such as scratches on the acrylic 
surface or black plastic foil, were reduced in number to 
achieve a balanced design; the majority of images in 
the latter category were present in the SegRoot dataset. 
All images and masks from the different datasets were 
rescaled to 256 × 256 pixels, normalised between 0 and 1 
and stored as arrays. The image size was set according to 
the (limited) hardware capacity of the NVIDIA GeForce 
RTX 2080 Max-Q Design used as GPU.

Three image sets were generated for the analyses: 
(i) an image set consisting only of Zea mays data (ATT 
RAC T  1), which contained 165 images, and presents 
bright, focused images of white roots in one soil type; 
(ii) a mixed image set, which containing three different 
MR datasets in roughly balanced amounts (ATT RAC T 2, 
MANIP, SegRoot) and totalling 687 images; and (iii) the 
RootPainter Cichorium data (1536 images; Additional 
file 2).

The Zea mays image set was divided into training 
and validation subsets (90% and 10%, respectively). 
The mixed image set, on the other hand, was created to 
contain a variety of difficulty levels. The majority of the 
images (~ 50%) were derived from the ATT RAC T dataset 
as it contains high quality images of 2 soil types and three 
plant species. The smallest proportion (~ 20%) came 
from the MANIP dataset, which contained lower quality 
images that were considered more difficult to segment; 
SegRoot data contributed around 30%. Before apply-
ing the prediction methods, the mixed image set was 
divided into three subsets: training, validation and test 
data. Recurrent splitting was performed, first between 
test and training-validation subsets (1:9 ratio), and then 
splitting the training-validation subset into validation 
and training subsets (1:9 ratio). To create a larger training 
set for the four DL models (Table 4), data augmentation 
was performed on the training subset of the mixed data 
set. This entailed rotating the images by flipping them 
horizontally and vertically, and flipping the RGB channel. 
In addition, random Gaussian blur, vertical movement 
blur, brightening and darkening were applied to simulate 
real-world conditions (e.g., unfocused, captured while 
moving, different illumination levels). Combined, these 
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augmentations multiplied the number of samples in the 
mixed training subset by 4 (one original plus three aug-
mentations (i.e., horizontally flipping, vertical flipping 
and RGB channel flipping)). Finally, iii) the Cichorium 
intybus (RootPainter) image set was used as is for testing 
purposes only (Additional file 2).

Image processing, machine learning and deep learning 
techniques
As a baseline for comparison, we use a dummy classi-
fier [60] that predicts the most frequent class—in this 
case, the zero label for the absence of roots (= “soil only 
“). This simple predictor can reveal the true performance 
of a method when compared to it, so that the imbalance 
in labelling that might occur in the data does not inter-
fere with the evaluation of the methods. We then com-
pared two image processing techniques (which require 
no training), one machine learning technique, and three 
DL models.

The first image processing technique is Frangi Ves-
selness [61]—a filtering technique that recognises tubu-
lar structures and has previously been evaluated for root 
segmentation [33]. In this work, the scikit-image imple-
mentation of Frangi Vesselness was used on the root 
images pre-processed with a bilateral filter and the differ-
ence between green and blue filters. The second method 
used is adaptive thresholding, which considers the illumi-
nation of parts of the image as opposed to global thresh-
olding [29]. The adaptive thresholding implementation of 
the OpenCV library [63] was used on greyscale images 
to directly predict the mask. Thresholds were determined 
empirically on maize data by selecting the highest dice 
coefficient on the validation set.

To train the support vector machine (SVM) algorithm, 
the data were reduced to two dimensions by transform-
ing each image into a matrix consisting of spatial dimen-
sions flattened (i.e. height and width vectorised into one 

dimension) by colour channels (another dimension), and 
then reversing the transformation for evaluation. The 
used SVM algorithm used is from the scikit-learn pack-
age [64], and its performance is influenced by the maxi-
mum iterance, the regularisation parameter C and the 
kernel hyperparameters, which were determined empiri-
cally, by testing it 100 times and selecting the best perfor-
mance on validation data.

SegRoot is a deep-learning (DL) model based on Seg-
Net [38], an image segmentation model with VGG16 as 
encoder and decoder. The pre-trained VGG16, trained 
on ImageNet data, was used for the weights in the encod-
ing part of the SegRoot-64-5-trans, the model used in 
this study. The loss function of this model is a 1-Dice 
coefficient; a learning rate of 0.01, Adam optimizer and 
a reduce on plateau scheduler was used. Another estab-
lished DL-model used is UNetGNRes from RootPainter 
[20, 33]. Its loss function is a combination of the Dice 
coefficient and the cross entropy function, a learning rate 
of 0.01, and an SGD optimiser with Nesterov momentum 
[65] as specified by Smith et al. [33]. However, the Root-
Painter model was slightly modified by adding a sigmoid 
activation function at the end. To allow a more consistent 
comparison with other models, the input image size was 
reduced from the original 572 × 572 pixels to 324 × 324 
pixels, and the output mask was reduced from the origi-
nal 388 × 388 pixels to 260 × 260 pixels, which is close to 
the 256 × 256 pixel output used for the other DL mod-
els. Thus, the data used for this model was modified by 
not only padding the input and output already resized 
arrays, but also by adding an extra array to the mask out-
put. This results in the mask having 2 channels: the mask 
and its negative image. The padding was removed dur-
ing evaluaation, so all images were 256 × 256 pixels when 
evaluated.

Finally, the DL models used in this study are U-Net 
models implemented in PyTorch with two different 

Table 4 Imaging processing techniques/models tested or developed in this work, source of the methodology and application to root 
segmentation tasks

Encoders are only present in U-Net models; augmented data has been added for model training only

Technique/Model Encoder Method source Adapted to root 
segmentation

Augmented 
data

Dummy classifier – [60] – No

Frangi Vesselness – [61] [32] No

Adaptive thresholding – [29] [28] No

Support Vector Machine (SVM) – [35] [34] No

SegRoot – [38] [38] Yes

UNetGNRes Default U-Net [44] [20, 33] Yes

U-Net SE-ResNeXt-101 (32 × 4d) [62] This paper Yes

U-Net EfficientNet-b6 [62] This paper Yes
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encoders as backbones, loaded from the segmentation 
models’ package [62]. These two U-Net models have con-
siderably more parameters than the previous SegRoot 
and RootPainter models. The backbones used here are (i) 
SE-ResNeXt-101 (32 × 4d) and (ii) EfficientNet-b6. These 
encoders were pre-trained on ImageNet data [62]. The 
loss function used to train this model is the structural 
similarity index (SSIM) as suggested by He et  al. [66] 
for road extraction task. The learning rate was 0.0001, 
Adam [67] was used as optimiser, and Cosine Annealing 
learning rate as a scheduler [68]. Characteristics of the 
architectures of the four DL models are summarised in 
Additional file 3.

All four DL models are trained on the augmented data 
as described above. All DL models were implemented in 
the PyTorch library. They were trained for 100 epochs 
(Additional file 5), and the best model was selected based 
on the performance obtained on the validation set; this 
performance is the combination of the structural similar-
ity index (SSIM) and the Jaccard index evaluation met-
rics (see below). An overview of all methods is given in 
Table 4.

Evaluation of the performance
Receiver operating characteristic (ROC) curves and 
three indices were used to evaluate image segmentation: 
Sørensen-Dice similarity coefficient (Dice or DSC), Jac-
card index or intersection over union (IoU) and struc-
tural similarity index (SSIM). The DSC is a simple and 
useful summary measure of the spatial overlap between 
two segmentations, A and B target regions, that can 
measure the accuracy of an image segmentation task 
[69]; it is defined as

where ∩ is the intersection [70]. Using the same terminol-
ogy as DSC, IoU can be defined as

where ∩ is the intersection and ∪ is the union. The SSIM 
index calculates the similarity between two images in 
terms of three features: luminance, contrast and image 
structure [71]. SSIM is defined as

where l, c and s correspond to luminance, contrast, and 
structure respectively. All three metrics have values 
between 0 and 1, higher values indicating better perfor-
mance. Averages of DSC, IoU and SSIM are given.
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ROC curves are another way to evaluate the perfor-
mance of the predictions made by different techniques. 
We used ROC to visualise the true positive rate vs. the 
false positive rate of each technique`s predictions [72]. 
These plots show not only how good the prediction is 
(the closer to the (0,1) position in the top left corner, the 
better), but also how “conservative” (i.e. classifying as 
positive only with strong evidence) or “liberal” (i.e. clas-
sifying as positive even with weak evidence) each method 
is [72]. ROC curves are insensitive to class imbalance 
[72], which is a characteristic of our data set as most of 
the pixels are background and very few pixels are roots.

False positive rate (FPR) was defined as

where FP are false positives, and TN are true negatives. 
In this study, this metric will reflect the error percentage 
of “soil only” images falsely classified as containing roots.

Finally, the predicted total root length was evaluated 
by skeletonising the masks using the scikit-image library 
[73] and the posterior sum of the pixels and multiplied 
by the pixel-mm relation, with each MR dataset having 
a different one (data not shown). Total root length was 
calculated on the mixed test set and on the unseen Cicho-
rium intybus test set. The predictions of the best meth-
ods were compared with the original segmentation based 
on human-labelled roots, and  R2 was calculated from the 
regression between the two variables.
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