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Abstract 

The 3D crop data obtained during cultivation is of great significance to screening excellent varieties in modern breed-
ing and improvement on crop yield. With the rapid development of deep learning, researchers have been making 
innovations in aspects of both data preparation and deep network design for segmenting plant organs from 3D 
data. Training of the deep learning network requires the input point cloud to have a fixed scale, which means all 
point clouds in the batch should have similar scale and contain the same number of points. A good down-sampling 
strategy can reduce the impact of noise and meanwhile preserve the most important 3D spatial structures. As far 
as we know, this work is the first comprehensive study of the relationship between multiple down-sampling strate-
gies and the performances of popular networks for plant point clouds. Five down-sampling strategies (including 
FPS, RS, UVS, VFPS, and 3DEPS) are cross evaluated on five different segmentation networks (including PointNet +  + , 
DGCNN, PlantNet, ASIS, and PSegNet). The overall experimental results show that currently there is no strict golden 
rule on fixing down-sampling strategy for a specific mainstream crop deep learning network, and the optimal down-
sampling strategy may vary on different networks. However, some general experience for choosing an appropriate 
sampling method for a specific network can still be summarized from the qualitative and quantitative experiments. 
First, 3DEPS and UVS are easy to generate better results on semantic segmentation networks. Second, the voxel-based 
down-sampling strategies may be more suitable for complex dual-function networks. Third, at 4096-point resolution, 
3DEPS usually has only a small margin compared with the best down-sampling strategy at most cases, which means 
3DEPS may be the most stable strategy across all compared. This study not only helps to further improve the accuracy 
of point cloud deep learning networks for crop organ segmentation, but also gives clue to the alignment of down-
sampling strategies and a specific network.
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Introduction
Crops are very important to human beings. Throughout 
the human history, crops have been playing an important 
role in both people’s livelihood and social development. 
Crops are indispensable to food, agriculture industry, 
husbandry, environmental protection, energy [1–4], and 
other related aspects. Observation of the changes upon 
crop phenotypes during cultivation is of great signifi-
cance to screening excellent varieties and improving crop 
yield. The crop phenotypes refer to a class of measurable 
characteristics and external traits of crops. Phenotypes 
are the result of the interaction between the intrinsic gene 
expression and the external environmental influences on 
crops, and are determined as an important factor clus-
ter that determines yield, quality, and stress resistance 
[5]. Specifically, the crop phenotypes include the struc-
ture of the crop, the shape and density of the stem and 
leaf, and the process of growth and development [6]. The 
modern tools and sensors have greatly facilitated various 
crop phenotyping applications, especially those focusing 
on automatic feature calculation. The first and the key 
task in phenotyping is to identify and segment all organ 
instances of crops, so that the automatic calculation that 
follows can work correctly. Therefore, automatic organ 
segmentation based on different data forms has becom-
ing a mainstream direction of the crop phenotyping 
research.

Since the beginning of this century, plenty of research 
on plant (including organ) segmentation based on two-
dimensional images has been published, such as methods 
based on thresholding [7–12], edge detection [13–16], 
region growing [17–19], clustering [20–25] and deep 
learning [26–33]. Although remarkable progress has 
been made in the field of crop image phenotyping, 2D 
images are intrinsically the projections of 3D shapes, 
which inevitably results in information loss. Therefore, 
recent phenotyping research based on 3D crop data has 
become a new direction. The most widely used form of 
3D data is the point cloud, and its acquisition measures 
can be roughly divided into structured light systems, 
indirect Time-of-Flight (iToF) cameras, high-precision 
direct ToF (dToF) sensors (LiDAR), and stereo vision/
multi-view stereo (MVS) [34]. The 3D point cloud data 
of plants acquired by the LiDAR has been widely used in 
3D reconstruction and phenotyping of trees, maize, cot-
ton, and other crops [35–42]. Although LiDAR has high 
precision, its data acquisition cost is high. Kinect Azure 
(Kinect V3) [43] and commercial iToF sensors take into 
account both cost and speed, and can quickly obtain 3D 
point clouds of crops at the expense of losing certain 
accuracy. The binocular stereo sensors such as ZED [44] 
can be used for 3D phenotyping tasks. The compact size 
of stereo sensors has made them to be easily applied on 

robots and UAVs, facilitating rapid and high-throughput 
plant phenotyping. The Intel RealSense D415/D435 series 
[45], which are based on the infrared structured light, can 
be used to obtain depth images and coarse point clouds 
of large crops in real time.

Accurate segmentation of plant organs on reliable 
3D plant point cloud data is both the focus and the dif-
ficulty of 3D crop phenotyping. With the breakthrough 
of machine learning and artificial intelligence in recent 
years, deep learning methods for unordered and une-
venly distributed data such as 3D point clouds have made 
great progress in performance. For point cloud seman-
tic segmentation tasks, early deep learning-based mod-
els cannot work directly on point clouds; they rely on 
multi-view representation, which usually first projects 
a point cloud onto 2D images and applies image-based 
deep neural networks to segment, and then conducts 
back-projection to map 2D results back into 3D space. 
Some representative studies include Multi-View [46–48] 
and Spherical Images [49, 50], followed by 2D CNN seg-
mentation. The main drawback of methods of this kind 
is that the geometrical 3D data is not fully exploited, and 
the projection and back-projection processes inevitably 
lose some details. In order to reduce information loss, 
several studies switch to voxelization [51–57], which 
replaces the original point cloud data with a number of 
voxels, and then carries out 3D convolution on the grid 
to extract deep crop features and perform organ segmen-
tation. However, the computation complexity of 3D con-
volution is high, and voxelization strongly smooths the 
point cloud distribution, dropping some local geometri-
cal information. Therefore, since recently, direct deep 
learning on points has become a key research direction. 
Qi et  al. [58] proposed a pioneering network PointNet 
that used shared Multi-layer Perceptron (MLP) to learn 
point-level features, and utilized max-pooling layer to 
extract the global features. PointNet realized end-to-end 
crop point cloud classification and semantic segmenta-
tion tasks at the point-level. PointNet +  + [59] used the 
encoding–decoding framework to improve the local fea-
ture learning of PointNet. Much research since then has 
been dedicated to improving the computational frame-
work of the PointNet family, and efforts are being made 
on modification of those networks to adapt the plant 
phenotyping tasks.

To improve the weakness of PointNet +  + that often 
focuses on sole point-level features but ignores the point-
point connections, Wang et  al. [60] designed Dynamic 
Graph Convolutional Neural Network (DGCNN) for 
integrating the relationship between points into point 
cloud processing, and proposed a dynamically updated 
graph convolution block called EdgeConv. Li et  al. [61] 
designed a dual-function point cloud deep learning 
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network PlantNet, which uses a dual-pathway archi-
tecture to achieve semantic segmentation and instance 
segmentation at the same time. PlantNet achieved bet-
ter plant organ segmentation results than PointNet +  + , 
SGPN [62], and ASIS [63] on a comprehensive crop 
dataset. Ghahremani et al. [64] proposed Pattern-Net to 
segment wheat point clouds. Pattern-Net used KNN to 
aggregate different features to make the network more 
robust to changes in point cloud density, distortion, and 
noise level. Gong et  al. [65] designed a 3D point cloud 
convolutional neural network based on PointConv [66] 
module to effectively segment panicles for rice point 
clouds. Li et  al. [67] designed a deep learning network 
PSegNet that can be applied to multiple types of crop 
point clouds to achieve semantic and instance segmenta-
tion simultaneously. In the network architecture, PSeg-
Net contains a dual-granularity feature fusion module, 
a mixture of the attention modules [68] that helps to 
achieve satisfactory segmentation performance.

High-quality plant point cloud data usually have 
problems such as huge number of points, uneven den-
sity, and frequent occurrence of outliers; therefore 
down-sampling is usually required for data preprocess-
ing and compression. In addition, the training of the 
deep learning network requires the input point cloud to 
have a fixed scale. All point clouds in the training batch 
should have similar scale and contain the same number 
of points, which puts forward a high requirement for 
down-sampling of point clouds. Choosing an appro-
priate down-sampling method can not only reduce 
the impact of noise, but can also preserve the most 
important 3D spatial structure as much as possible. At 
present, there are several popular strategies for down-
sampling of point clouds. The Farthest Point Sampling 
(FPS) [69] is perhaps the most commonly used down-
sampling method for point clouds. It can ensure that 
the sampled points have global coverage and the num-
ber of points can be fixed. But, the FPS requires to 
traverse a distance calculation from each point to the 
rest of all points, so that the computational complexity 
approaches O(n2) in implementation (n to be the num-
ber of points). Random Sampling (RS) [70] is a sequen-
tial random sampling method. It has the advantages of 
low calculation complexity (can be as low as O(n) ) and 
fast speed in implementation. It can also strictly control 
the number of down-sampling points. However, it may 
deteriorate the non-uniformity in point cloud density, 
i.e., the sparse area becomes even sparser compared 
to other regions after sampling. The voxel-based sam-
pling first defines a three-dimensional grid on the point 
cloud, and then selects a point to replace all points in 
the voxel to achieve the goal of reducing the complex-
ity of the point cloud. The replacement point in the 

voxel can be chosen by either the gravity centroid of 
the voxel body or the original point that is closest to the 
centroid. The two corresponding voxelized down-sam-
pling strategies are called Uniformly Voxelized Sam-
pling (UVS) [71] and Voxelized Farthest Point Sampling 
(VFPS) [67], respectively. 3D Edge-Preserving Sampling 
(3DEPS) [61] draws inspiration from human sketch-
ing. In 3DEPS, the 3D Surface Boundary Filter [72] is 
first applied to divide point cloud into two parts, edge 
points and internal points, and the two parts are com-
bined into a new point cloud by artificially adjusting the 
proportion of the edge points. 3DEPS believes that by 
introducing adequately more edge points during down-
sampling can improve the training and segmentation 
performance of point cloud segmentation networks.

At present, most deep networks for 3D phenotyping 
only tried a single down-sampling algorithm such as FPS 
to prepare training sets and test sets. There is a lack of 
comprehensive evaluation on down-sampling strategies 
for point cloud deep networks in the overall research 
field. The adaptability between the sampling measures 
and those deep networks is still unclear. As far as we 
know, this paper is the first comprehensive study of the 
relationship between multiple down-sampling strate-
gies and the performances of popular networks for plant 
point clouds. This work not only helps to further improve 
the accuracy of point cloud deep learning networks for 
crop organ segmentation, but also gives clue to answer-
ing the question of what kind of down-sampling strategy 
should be applied on a specific network. In addition, this 
study may also shed new light on designing new down-
sampling algorithms for unordered data. The main con-
tributions of this paper are as follows:

(i) This paper first explores the feasibility of several 
down-sampling strategies to generate crop point cloud 
datasets for deep learning, and successfully forms crop 
point cloud datasets (containing three species) under five 
different down-sampling strategies with a fixed number 
of points, respectively. These five down-sampling strate-
gies are Farthest Point Sampling (FPS) [69], Random-
Sampling (RS) [70], Uniformly Voxelized Sampling (UVS) 
[71], Voxelized Farthest Point Sampling (VFPS) [67], and 
3D Edge-Preserving Sampling (3DEPS) [61].

(ii) The five down-sampling strategies (including FPS, 
RS, UVS, VFPS, and 3DEPS) are cross evaluated on five 
mainstream point—level deep networks (including Point-
Net +  + [59], DGCNN [60], PlantNet [61], ASIS [63], and 
PSegNet [67]) for plant organ segmentation. The over-
all experimental results show that currently there is no 
strict golden rule on selecting down-sampling strategy 
on mainstream crop deep learning networks, and also 
reveal that the optimal down-sampling strategy may vary 
among different networks.
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(iii) Though the current experiments strongly prove 
the non-existence of a “golden” down-sapling strategy, 
several broad and relaxed clues can be summarized for 
selection of suitable sampling strategies. First, 3DEPS and 
UVS tend to generate better results on semantic segmen-
tation networks. Second, the voxel-based down-sampling 
strategies may be more suitable for complex dual-func-
tion networks. Third, at 4096-point resolution, 3DEPS 
usually has only a small margin compared with the best 
down-sampling strategy at most cases, which means 
3DEPS may be the most stable strategy that obtains sub-
optimal results across all compared.

The acronyms and notations used in this paper are 
summarized in Table 1. The rest of the paper is arranged 
as follows. Methods of down-sampling and the networks 
that will be tested in this paper are explained in "Meth-
ods" section. The datasets and details in experimental 
configuration are elaborated in "Experiments" section. 
The quantitative and qualitative results are given in 
"Results" section, together with summary and sugges-
tions. Discussion on a high-precision plant dataset is pro-
vided in "Discussion" section. Finally, the conclusion is 
drawn in the last section.

Methods
This section mainly explains the methodology of our 
study. Sub-Section "Down-sampling strategies" will 
revisit the five popular down-sampling strategies evalu-
ated in the study, including the general description of 
the implementation as well as the speed and the char-
acteristics of each strategy. Sub-Section "Deep networks 
for plant point clouds" will review the five deep learning 
networks tested for plant organ segmentation. Among 
the five networks, PointNet +  + and DGCNN are single-
function segmentation networks, and can only realize 
organ semantic segmentation in crop point clouds. The 
other three networks—ASIS, PlantNet, and PSegNet 
realize organ semantic segmentation and leaf instance 
segmentation at the same time.

Down‑sampling strategies
Theoretically, the point-level deep learning network 
can accept an input of any size. But an excessively large 
number of input points will lead to an abrupt increase in 
network parameters; hence, this will significantly slow 
down the training speed. In addition, redundant input 
points have little effect on improving the training results 
and can even cause overfitting. Therefore, down-sam-
pling of point clouds is essential for current point-level 
deep learning framework. In this sub-section, we will 
mainly revisit the principles of the five down-sampling 
strategies (FPS, RS, UVS, VFPS, and 3DEPS) and their 
performances on crop point clouds. Figure  1 shows 

visualizations of five down-sampling strategies on a dense 
tomato plant point cloud, respectively.

Farthest Point Sampling (FPS)
The Farthest Point Sampling (FPS) strategy [69] repeti-
tively selects the farthest point to perform down-sam-
pling. First, it randomly selects a p0 point from the 
original point cloud P as the starting point, pushes this 
point into the point set A . Second, each time it traverses 
the point set P\A to compute the sum of the distances 
from all points in A to all points in P\A . After locating 

Table 1 Acronyms and notations

FPS Farthest Point Sampling

3DEPS 3D Edge-preserving Sampling

RS Random Sampling

UVS Uniformly Voxelized Sampling

VFPS Voxelized Farthest Point Sampling

VBS Voxel-based Sampling

SBF 3D Surface Boundary Filter

LFEOs Local Feature Extraction Operations

FFM Feature Fusion Module

LFEM Local Feature Extraction Module

DGFFM Dual-granularity Feature Fusion Module

GT Ground truth

TP True Positive

FP False Positive

FN False Negative

IoU Intersection over Union

AveDiff The average difference to the best performer

mCov Mean coverage

mWCov Mean weighted coverage

P The original point set or point cloud

M The number of points in the original P

n The number of points after down-sampling

m The number of remaining points to be sampled

N Number of points not yet visited in P

S(m,N) The random variable used in Random Sampling

F(·) A probability distribution function

A : Permutation

U, V Random variables with a uniform distribution in (0, 1)

A ← B Assign the value B to A

Pi The points contained in the i-th voxel

ci The gravity centroid in XYZ space of Pi

lx , ly,lz The length, width, and height of each voxel

C Internal point set

B Edge point set

C The number of semantic classes

Cins The number of semantic classes that have instances

IoU (·, ·) Intersection over Union calculation of two entities
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the point p that has the minimum sum of distances, then 
remove p from P\A and put it into A , and do over this 
process until the number of points in point set A satis-
fies the requirement. The algorithm has a complexity 
of O(Mn) , where n is the number of points after down-
sampling, and M is the number of points in the original 
point cloud P . FPS is widely used because of its simple 
implementation and relatively uniform sampling effect. 
The disadvantage is that after down-sampling, it is easy 
to deteriorate the non-uniformity in point distribution, 
and when the number of n is far less than M , FPS tends to 

have holes inside objects. The FPS down-sampling result 
of a tomato point cloud (Fig. 1a) is visualized by Fig. 1b.

Random sampling (RS)
Random sampling (RS), which is generally implemented 
in sequentially random sampling algorithms [70], has 
a time complexity of O(M) . The algorithm first defines 
a random variable S(m,N ) , where m is the number 
of remaining points to be sampled by RS, and N  is the 
number of points that have not been traversed in the 
original point cloud P . This random variable S represents 

Fig. 1 Qualitative demonstrations of the five down-sampling strategies studied in this paper. a An original tomato plant point cloud 
with human-labeled leaf instances and stem system, containing a total of 18,521 points. b Down-sampled point cloud with 2,000 points using 
FPS. c Down-sampled point cloud with 2000 points using 3DEPS (with a ratio of 0.2). d Down-sampled point cloud with 2000 points using RS. (e) 
Down-sampled point cloud with 2,000 points using UVS. e Down-sampled point cloud with 2,000 points using VFPS
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the number of points to be skipped before sequentially 
selecting the next point in the point cloud, the sequential 
scan can be regarded as traveling only once and one way 
on the point cloud sequence. As n represents the num-
ber of points to be sampled, then n−m represents points 
that have already been sampled, the next point index cal-
culated by RS is the (S(m,N )+ 1)th point after the cur-
rent search position in the original point cloud sequence. 
The probability distribution function of s can be defined 
by (1).

In order to find a suitable and smooth S(m,N ) , an uni-
form random variable U between 0–1 can be used to 
make U ≤ F(s) . Considering Eq. (1), the variable U obeys 
the inequality (2):

Let V = 1− U  , and because U is a random variable 
with a uniform distribution of 0–1, V  is also a random 
variable obeying a uniform distribution of interval (0, 1). 
After rearranging inequality (2), we obtain

In the actual implementation, the integer variable s is 
cycled from 0 each time, and the random variable V  is 
regenerated in each cycle, and it is then tested if it sat-
isfies Eq.  (3). If not satisfied, s is incremented by 1 until 
satisfied. If Eq.  (3) is satisfied, the cycle then quits and 
at this time we let S(m,N ) = s , the (S(m,N )+ 1)th 
point is sampled. In the next round of calculation, let 
N ← N − S(m,N )− 1 and m ← m− 1 . At the same 
time, we let s ← 0 . The sampling ends until m = 0.

The RS down-sampling method is the fastest across all 
the strategies investigated in this paper. Its performance 
relies heavily on the density distribution of the original 
data structure. The RS down-sampling result of a tomato 
point cloud (Fig. 1a) is visualized by Fig. 1d.

UVS and VFPS
Voxel-based sampling (VBS) is to construct voxels in the 
three-dimensional space of the point cloud. The length, 
width, and height of each voxel are defined by lx , ly , and 
lz , respectively, and act as input parameters. Then select a 
selects a point to replace all points in the voxel to achieve 
the goal of reducing the complexity of the point cloud. In 

(1)

F(s) = P(S ≤ s) = 1−
A
m

N−s−1

A
m

N

= 1−
A
s+1
N−m

A
s+1
N

with 0 ≤ s ≤ N −m.

(2)U ≤ 1−
As+1
N−m

As+1
N

.

(3)As+1
N−m ≤ As+1

N V .

this paper, we focus on two different VBS strategies on 
selecting the replacement point in each voxel: Uniformly 
Voxelized Sampling (UVS) [71] and Voxelized Farthest 
Point Sampling (VFPS) [67].

Taking the i-th voxel as an example, the points con-
tained in the voxel form a set Pi . The Uniform Voxel 
Sampling (UVS) [71] replaces each cube (voxel) with the 
real point that is closest to the geometric center of the 
cube in Pi , and then filters the total number of sampled 
points to the set value with FPS. The Voxelized Farthest 
Points Sampling (VFPS) [67] replaces each cube with 
the gravity centroid ci of the set Pi , and then uses FPS 
strategy to fix the number of sampled points. The speed 
of voxelized sampling strategies are fast, because it can 
effectively reduce the complexity of the point cloud while 
maintaining the global shape and smoothing the holes 
in point clouds. However, three disadvantages still exist: 
(i) the three parameters for voxelization lx , ly , lz need to 
be manually adjusted according to the characteristics 
and distribution of different sources of point clouds; (ii) 
the number of points after the voxelization operation is 
uncertain, and needs an extra FPS step to fix the num-
ber of points later, which increases algorithm complex-
ity; and (iii) once the size of the voxel is determined, the 
structure of all point clouds after the down-sampling 
are basically similar in density, which may cause overfit-
ting during training. The UVS and VFPS down-sampling 
results of a tomato point cloud (Fig. 1a) are visualized by 
Fig. 1e and Fig. 1f, respectively.

3D Edge‑Preserving Sampling (3DEPS)
3D Edge-Preserving Sampling (3DEPS) [61] imitates 
the shape abstraction method of sketching, and effec-
tively describes complex 3D objects by outlining the 
sharp edges of objects under limited resources. 3DEPS 
first uses the 3D Surface Boundary Filter (SBF) [61] to 
divide the point cloud organ into two parts: edge points 
and internal points, and then adjusts the ratio of the two 
parts to “re-build” a new point cloud. In general, more 
edge points can be artificially introduced to make the 
restructured point cloud retain more edge information. 
Specifically, the original point cloud P is first divided 
into edge point set B and internal point set C by SBF, and 
then FPS is applied to point set B and point set C respec-
tively according to the ratio parameter set beforehand. 
Finally, the two parts of points are combined to form the 
final point cloud with an exact number of points. 3DEPS 
has two obvious advantages: (i) it can artificially adjust 
the ratio of edge points and internal points according 
to user’s need, and (ii) the introduction of FPS that fol-
lows not only control the exact number of final sampled 
points, but also bring a certain randomness to 3DEPS, 
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making it easier to perform data enhancement for the 
training of deep networks. The disadvantage is that the 
steps of the strategy are more complicated than those of 
FPS and RS, and the ratio of the edge points to the total 
number of points is a parameter to be tuned experimen-
tally. The 3DEPS down-sampling result of a tomato point 
cloud (Fig. 1a) is visualized by Fig. 1c.

Deep networks for plant point clouds
The application of deep learning on point cloud data 
has produced fruitful results, maintaining an evident 
edge in tasks such as classification, semantic segmenta-
tion, and instance segmentation over non-deep meth-
ods. In recent years, generic point cloud deep networks 
PointNet +  + [59], DGCNN [60], and ASIS [63] have 
achieved satisfactory accuracy on CAD point cloud mod-
els such as ShapeNet [73]. At the same time, some net-
works specially designed for plant point cloud data have 
also emerged, e.g., PlantNet [61] and PSegNet [67]. They 
have strong variety adaptability and can realize semantic 

segmentation and instance segmentation tasks simul-
taneously. In this sub-section, we will briefly introduce 
the basic frameworks of five popular deep learning in the 
field of crop phenotyping, respectively.

PointNet +  + [59] is a generic point-level deep network 
for segmentation and classification. It adds a hierarchical 
set abstraction on the basis of the original PointNet net-
work to extract better local features. PointNet +  + (shown 
in Fig. 2a) consists of two parts—an encoder of multiple 
feature abstractions and a decoder that can serve both 
segmentation and classification purposes. The feature 
abstraction module includes the Sampling, the Group-
ing, and the original PointNet Layer. The decoder can 
be designed to satisfy either the need of semantic seg-
mentation or the overall point cloud classification. In the 
decoder for semantic segmentation, the sparse high-level 
point-level features are gradually propagated to the origi-
nal point space by interpolation to achieve point-level 
segmentation.

Fig. 2 The structure or pipeline of the five networks evaluated in this paper. a shows the architecture of PointNet +  + ; b shows the architecture 
of DGCNN; c shows the architecture of ASIS; d shows the architecture of PlantNet; e shows the architecture of PSegNet
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DGCNN [60] (Dynamic Graph Convolutional Neu-
ral Network) uses Multi-layer Perceptrons (MLPs) to 
construct a dynamic graph convolution network, and 
extracts the deep local information association in the 
feature space by means of graph filtering. Figure 2b sum-
marizes the main architecture of DGCNN; the backbone 
of DGCNN is a simple but effective EdgeConv block, 
which takes k-nearest neighbors in the feature space to 
construct a local neighborhood graph, and aggregates 
features through convolution operations and pooling to 
update point features. By cascading the EdgeConv blocks, 
the connectivity and shape of the feature graph can be 
learned by the network itself, which improves the perfor-
mance of point cloud semantic segmentation. The state-
of-the-art performance has made DGCNN a benchmark 
network for point cloud semantic segmentation.

ASIS [63] (Associatively Segmenting Instances and 
Semantics) is a pioneering work in the field of gen-
eral-purpose dual-function point cloud segmentation 
network. As shown in Fig. 2c, it has an end-to-end dual-
function deep network for point cloud data. ASIS can 
simultaneously perform semantic segmentation and 
instance segmentation by using two pathways with inter-
connections. The semantic segmentation pathway dis-
tinguishes different semantic labels of points in a point 
cloud, while the instance segmentation pathway clearly 
distinguishes different instances in each semantic class.
Specifically, ASIS first extract features separately in the 
two task pathways, and after interconnections on the two 
pathways, the two segmentation tasks are together con-
strained by the loss functions.

PlantNet [61] is a dual-function segmentation net-
work specialized for multi-species crop point clouds; it 
can simultaneously conduct organ semantic segmenta-
tion and leaf instance segmentation. PlantNet also adopts 
a dual-pathway architecture (the main architecture is 
shown in Fig.  2d), which integrates a shared encoder, a 
biologically inspired double-stream decoder, several 
Local Feature Extraction Operations (LFEOs) based on 
EdgeConvs, a Feature Fusion Module (FFM), and a net-
work backend based on the spatial attention mechanism. 
On a crop point cloud dataset of three species, PlantNet 
claimed better results than several other networks.

PSegNet [67] is also a dual-function deep learning net-
work designed for segmenting point cloud data of multi-
ple crop species. It achieved satisfactory organ semantic 
segmentation results and leaf instance segmentation 
results for tomato, tobacco, and sorghum plants. The net-
work (shown in Fig. 2e) begins with a shared encoder, the 
key of which is a component called Local Feature Extrac-
tion Module (LFEM) for local feature extraction. A Dual-
Granularity Feature Fusion Module (DGFFM) is designed 

to blend two feature streams in the middle part. The third 
part features a typical dual-pathway structure, in which 
the calculation incorporates both spatial attention and 
channel attention. The two different pathways ultimately 
achieves semantic and instance segmentations under dif-
ferent loss functions, respectively.

Experiments
This section explains the details of the comprehensive 
experiments. Sub-section "Dataset" shows how we form 
the plant point cloud dataset for training and testing, and 
explains the data augmentation procedures for different 
down-sampling strategies. Sub-section "Network train-
ing and testing" shows the details of the network training 
and testing. Sub-section "Quantitative evaluation met-
rics" defined the quantitative evaluation metrics in the 
experiments.

Dataset
The crop point cloud dataset used in this study originates 
from [72, 73]. The dataset is obtained by imaging plant 
samples with a non-contact 3D scanner, and has a high 
scanning accuracy (error less than 1  mm). The dataset 
contains point clouds of tomato, tobacco and sorghum in 
3 to 5 growth stages for about 20 days, including a total 
of 312 tomato point clouds, 105 tobacco point clouds 
and 129 sorghum point clouds. Tomato and tobacco are 
dicotyledonous plants, sorghum is monocotyledonous 
plant, and the three kinds of crops have different shapes. 
The diversity and difference in 3D plant shape pose big 
challenges for conducting organ segmentation task on 
this dataset.

Since the original data set does not have point-level 
labels, we continue to use the labeling tool from [74] to 
label the dataset with semantic and instance labels. Our 
manually labeled dataset is also used in [61] and [67]. 
Each species in the dataset has two semantic classes: the 
leaves and the stem system, and the leaves class has an 
separate instance label for each single leaf, respectively. 
Thus, for the final dataset, a total of 6 organ seman-
tic classes were set for 3 species of crops, which means 
C = 6 . There are no instances of the stems on the crops, 
because all stem segments of each plant are fully con-
nected. The leaf instance labels of the three varieties are 
set on the basis of leaf semantic labels. We divide the 
dataset into a training set and a testing set according to 
a ratio of 2:1. In order to strengthen the training of the 
segmentation network, we designed different data aug-
mentation strategies for five down-sampling methods, 
respectively. The training data and testing data are aug-
mented by 10 times with randomness. The down-sam-
pled dataset after each sampling strategy has 5460 point 
clouds (i.e., the total dataset includes 5460*5 = 27300 
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point clouds), and each point cloud is fixed at 4096 
points. Taking FPS as an example, the first point of each 
FPS iteration is randomly chosen and FPS is indepen-
dently applied on each original point cloud for 10 times, 
introducing high diversity for the training process.

Network training and testing
All experiments in this research were carried out on a 
server running the Ubuntu 20.04 operating system, with 
a 24-core AMD 3960X CPU, 128 GB DDR4 memory, and 
three paralleled NVIDIA RTX 2080Ti GPUs. In order to 
achieve the optimal training effect for each point cloud 
segmentation network, we deploy all networks by the 
TensorFlow 1.13.1/1.9.1 environment.

In order to assure fair comparisons, we tried our best 
to use the same set of hyperparameters in all network 
training. During the training phase, the batch size was set 
to 10, the initial learning rate was 0.002, and the learning 
rate dropped by 30% every 10 Epochs. The networks were 
all optimized using the Adam solver, and the Momentum 
was fixed to 0.9. All networks uniformly trained for 200 
epochs, and the model weights with the lowest validation 
loss in the last 100 epochs was selected as the adopted 
model. The batch size was fixed at 1 for all network test-
ing processes. For the three dual-function segmentation 
networks—ASIS [63], PlantNet [61] and PSegNet [67], 
they also needs the Meanshift process (bandwidth = 0.6) 
to cluster the feature space for instance loss calculation. If 
the number of points in an instance feature cluster is less 
than 1% of the average number of points in an instance, 
the instance cluster is discarded to avoid over-segmenta-
tion. Other hyperparameters and configurations in these 
networks that are not explicitly introduced are the same 
as those in the respective original papers or source codes.

Quantitative evaluation metrics
In the experiments of this paper, we use PointNet +  + and 
DGCNN to perform semantic segmentation tasks 
on three types of crops, and use ASIS, PlantNet, and 
PSegNet networks for both semantic and instance seg-
mentation tasks. For the semantic segmentation task, 
we compute four fundamental quantitative metrics: 
Precision、Recall、F1 and Intersection over Union 
(IoU). For these four semantic metrics, higher scores 
mean better segmentation performance. Precision is 
used to measure the proportion of true points in the pre-
dicted points (True Positive, TP) in a certain category 
to the total predicted points of the same category (True 
Positive + False Positive). Recall measures the proportion 
of the true points in the predicted points (TP) in a cer-
tain category to the total true points in that category. all 
points belonging to a certain category that the network 
can correctly predict (True Positive + False Negative). 

Precision and Recall are sometimes contradictory. Nei-
ther of them can make an overall and complete evalua-
tion of the semantic segmentation performance alone. 
They must be combined with other evaluation measures 
to form a comprehensive evaluation. F1 is the harmonic 
mean of Precision and Recall with a value ranging from 
0 to 1, so it is a commonly used comprehensive evalua-
tion. For each semantic category (class), IoU is a standard 
comprehensive performance measure for segmentation. 
It is used to measure the degree of overlap between the 
network prediction results and the Ground Truth (GT); 
its value also ranges from 0 to 1, a higher value indicates 
a better alignment between the predicted results and GT. 
The equation definitions of these four semantic quantita-
tive metrics are as follows:

For the instance segmentation task, we first choose 
mean coverage (mCov), mean weighted coverage 
(mWCov) [75–77] as comprehensive evaluation criteria 
at the point level. The value range of mCov is between 0 
and 1, where a higher value indicates better performance. 
mWCov is a weighted version of mCov. On the basis of 
mCov, mWCov performs weighted calculation according 
to its percentage of the instance points in the total class. 
The equations of the two coverage metrics are as follows:

where Im denotes the number of points contained in the 
region of the m-th Ground Truth instance. Pn represents 
the n-th predicted instance region, and |I | is the number 
of all instances contained in a true semantic category. In 

(4)Precision =
TP

TP + FP
,

(5)Recall =
TP

TP + FN
,

(6)F1 = 2 ·
Precision · Recall

Precison+ Recall
,

(7)IoU =
TP

TP + FP + FN
.

(8)mCov(I ,P) =
1

|I |

|I |
∑

m=1

max
n

IoU(Im,Pn),

(9)mWCov(I ,P) =

|I |
∑

m=1

ωmmax
n

IoU(Im,Pn),

(10)ωm = Im/

|I |
∑

k=1

Ik ,
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addition to the above two point-level evaluation criteria, 
mPrec and mRec are also used to evaluate the complete-
ness of the network to predict the instance. They are 
defined as follows:

where 
∣

∣TPins
i

∣

∣ is the number of instances predicted by 
the network that belong to the i-th semantic class and 
has an IoU greater than 0.5; 

∣

∣Pins
i

∣

∣ is the total number of 
instances contained in the i-th semantic class predicted 
by the network. 

∣

∣Gins
i

∣

∣ is the number of instances con-
tained in the i-th semantic category in GT. Cins means 
the number of semantic classes that have instances. In 
the dataset adopted in this paper, only the leaves of three 
species have instance labels, so Cins in Eqs. (11, 12) is 3.

In order to better quantitatively evaluate the effects of 
different down-sampling strategies on different main-
stream point cloud deep learning networks, respectively, 
it is still difficult to make a comprehensive judgment 
based solely on the quantitative evaluation metrics men-
tioned above. This is because the mixture of multiple 
crop types, down-sampling strategies, networks, and 
quantitative metrics will result in a very complicated data 
table, which hinders us from making a clear comparison. 

(11)mPrec =
1

Cins

Cins
∑

i=1

∣

∣TPins
i

∣

∣

∣

∣Pins
i

∣

∣

,

(12)mRec =
1

Cins

Cins
∑

i=1

∣

∣TPins
i

∣

∣

∣

∣Gins
i

∣

∣

,

Therefore, we designed a scoring method to comprehen-
sively leverage the quantitative measures obtained by 
each down-sampling strategy under different deep learn-
ing networks. Our scoring rules are as follows:

(i) We ran cross-tests for five down-sampling strategies 
on the five different networks. The scores are cal-
culated according to the values of the quantitative 
measures calculated by Eqs. (4–12).

(ii) For semantic segmentation under the same net-
work, we first rank the 5 down-sampling strategies 
in each single quantitative metric. Then, corre-
sponding scores are assigned based on the rankings. 
The assignment of scores only focuses on the top 
three quantitative measures. For Precision and 
Recall, since neither of them provide a comprehen-
sive evaluation of network semantic segmentation, 
their scores are set lower than F1 and IoU. For each 
comparison, Precision and Recall are scored 3, 2, 
and 1 points for the top three in the five strategies, 
while the F1-score and IoU are scored 6, 4, and 2 for 
the top three, respectively.

(iii) For instance segmentation under the same network, 
the approach is similar to semantic segmentation. 
For mPrec and mRec , since neither of them provide 
a comprehensive evaluation of network semantic 
segmentation, their scores are set lower than mCov 
and mWCov . For each comparison, mPrec and 
mRec are scored 3, 2, and 1 points for the top three 

Table 2 Quantitative comparison of the semantic segmentation performance across five down-sampling strategies on PointNet +  + 

PointNet +  + Semantic Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU

FPS 85.38 84.62 84.96 75.77 0 1.10

RS 85.29 84.81 85.01 76.00 2 1.01

UVS 86.07 86.15 85.90 77.03 18 0.00
VFPS 85.55 84.95 85.08 75.91 4 0.71

3DEPS 85.64 86.05 85.74 76.80 12 0.50

Table 3 Quantitative comparison of the semantic segmentation performance across five down-sampling strategies on DGVNN

DGCNN Semantic Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU

FPS 92.03 90.50 91.22 84.85 0 1.71

RS 93.23 92.09 92.64 87.04 16 0.11
UVS 92.53 91.75 92.13 86.25 5 0.70

VFPS 91.98 92.10 92.04 86.11 2 0.81

3DEPS 92.67 92.56 92.60 86.93 13 0.17
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in the five strategies, while mCov and mWCov are 
scored 6, 4, and 2 for the top three, respectively.

(iv) After steps (ii) and (iii) are completed, under each 
network, we add up the separate scores of each 
down-sampling strategy to get the total score. There 
are two situations for the five types of networks. 
First, PointNet +  + and DGCNN are single-func-
tion semantic segmentation networks. Therefore, 
we only compare the scores of the two networks 
added up from four semantic quantitative metrics, 
and the total score for each down-sampling strat-
egy is only discussed in the semantic segmentation 
context. Second, for dual-function networks includ-
ing ASIS, PlantNet, and PSegNet, the total score of 
each down-sampling strategy is added up from the 
four semantic segmentation metric scores and four 
instance segmentation metric scores. And the total 
score of the second situation reveals both semantic 
and instance segmentation performances.

(v) Except from the above steps, we also calculate 
the difference of each quantitative metric value 
of a strategy with the best value of that metric, 
and then calculate the average difference across 
all quantitative metrics. This average difference 
is denoted by AveDiff. For example, given the RS 
strategy on PointNet +  + network obtains Preci-
sion, Recall, F1, IoU at 85%, 84%, 86%, and 84%, 
respectively; and the best performance values 

across all strategies are 86%, 84%, 87%, and 85%, 
respectively; the AveDiff for RS on PointNet +  + is 
(1% + 0% + 1% + 1%)/4 = 0.75%. The Score value can 
intuitively represent the ranking of segmentation 
performance, and the AveDiff value can show the 
real difference in performance between each down-
sampling strategy and the best individual, which 
helps to reflect the performance stability.

Results
This section gives the experimental results. The compara-
tive quantitative results are given in sub-section "Quan-
titative results". The qualitative results are visualized in 
sub-section "Qualitative results". The summary and sug-
gestions regarding to the experiments are given in the 
last sub-section.

Quantitative results
The quantitative experiments in this sub-section first 
evaluate the performances of down-sampling strategies 
on two point cloud semantic segmentation networks—
PointNet +  + and DGCNN. Then, the comparative 
experiments on the other three dual-function segmenta-
tion networks—ASIS, PlantNet, and PSegNet are carried 
out. Finally, we summarize the experimental results and 
observations for both types of the networks.

Table 4 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the ASIS network

ASIS Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 79.77 81.44 79.62 67.24 63.46 70.37 69.58 58.41 14 1.96

RS 82.67 82.09 82.04 70.28 62.85 70.34 67.73 53.56 13 1.88

UVS 83.97 81.09 81.93 70.18 61.29 69.10 68.73 52.15 3 2.14

VFPS 84.33 81.03 82.08 70.66 62.20 69.88 67.90 51.73 13 1.92

3DEPS 83.33 82.48 82.34 70.24 64.01 71.92 71.45 54.62 29 0.64

Table 5 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the PlantNet network

PlantNet Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 91.83 89.56 90.63 83.22 77.27 83.23 81.89 76.19 3 2.54

RS 93.38 91.87 92.60 86.66 79.38 86.25 85.43 75.97 12 0.33

UVS 93.66 92.35 92.99 87.21 79.72 86.44 84.83 75.17 25 0.22

VFPS 93.67 91.84 92.77 86.88 77.90 85.55 81.61 73.70 7 1.28

3DEPS 93.61 92.45 93.02 87.29 79.22 86.25 85.10 75.60 25 0.20
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Table 2 shows the quantitative semantic segmentation 
results on the PointNet +  + network under five down-
sampling strategies. The results not only include the four 
fundamental semantic segmentation metrics, but also 

include the final scores and AveDiffs. The best result of 
each measure is highlighted in bold, and the second-best 
is underlined. Each semantic metric value in Table  2 is 
obtained by averaging of four independent experiments 

Table 6 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the PSegNet network

PSegNet Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 90.03 89.38 89.68 81.90 79.63 85.50 84.30 78.18 7 2.12

RS 91.71 91.04 91.35 84.62 78.79 85.67 83.54 72.80 0 2.01

UVS 93.10 92.62 92.67 86.78 80.12 86.77 85.37 74.99 35 0.39
VFPS 92.26 92.14 92.18 85.99 78.21 85.67 85.05 72.27 15 1.48

3DEPS 92.24 91.86 92.04 85.74 79.03 85.92 84.37 73.48 15 1.36

Fig. 3 Comparison of the best and worst down-sampling strategies for qualitative segmentation results on the PointNet +  + network. The first 
row shows the segmentation results of 3 types of crop samples using UVS, and the second row shows the plant segmentation results of the same 
samples using FPS. Each crop point cloud segmented by PointNet +  + is contrasted with its corresponding Ground Truth, and the red boxes are 
zoomed in areas for better visualization
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on the complete dataset. From Table 2, it is evident that 
UVS achieves the best result across all strategies in the 
semantic segmentation task of PointNet +  + , with a sig-
nificant advantage. The overall performance of 3DEPS 
ranks second, with an AveDiff of 0.5%. The strategy with 
the lowest score is FPS, which has a 1.10% average per-
formance difference with UVS.

Table  3 shows the quantitative comparison of the 
semantic segmentation results on the DGCNN network 
under five different down-sampling strategies. In Table 3, 
the RS strategy achieves the best on most of the met-
rics in the semantic segmentation task of DGCNN. The 
3DEPS ranks second on the overall performance, with 
only a little difference on performance from RS. On the 
AveDiff index, RS and 3DEPS have significant advantages 

(See figure on next page.)
Fig. 5 Comparison of the best and worst down-sampling strategies for qualitative segmentation results on the ASIS network. The first and second 
rows show the semantic segmentation and instance segmentation results, respectively, of three different samples using the 3DEPS strategy on ASIS. 
The third and fourth rows show the semantic segmentation and instance segmentation results, respectively, of the same three plant samples using 
the UVS strategy on ASIS. Each segmented plant point cloud is compared with its corresponding Ground Truth, and the red boxes are zoomed 
in areas for better visualization. Please note that for the instance segmentation, different colors are only used to distinguish between different 
adjacent leaf organ instances, and there is no correspondence between leaf color and leaf index

Fig. 4 Comparison of the best and worst down-sampling strategies for qualitative segmentation results on the DGCNN network. The first row 
shows the segmentation results of 3 types of crop samples using RS, and the second row shows the plant segmentation results of the same 
samples using FPS. Each crop point cloud segmented by DGCNN is contrasted with its corresponding Ground Truth, and the red boxes are zoomed 
in areas for better visualization
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Fig. 5 (See legend on previous page.)
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in segmentation stability compared to the other three 
strategies.

From the experimental results of the two single-func-
tion networks, the down-sampling strategy with the high-
est score on PointNet +  + is UVS, and the strategy with 
the highest score on DGCNN is RS. The FPS performs 
worst on both networks. The second-best performers in 
score of the two networks are both 3DEPS, and according 
to the AveDiff value, 3DEPS has only a small gap with the 
best performer in both cases. The UVS method requires 
parameter tuning on the size of voxelization, which may 
not suitable for automated processing. Although the RS 
method performs well in DGCNN, it is not quite suitable 
for PointNet +  + . In summary, 3DEPS can achieve high-
quality and stable results on the single-function seman-
tic segmentation networks, and the commonly used FPS 
down-sampling tends to have the worst result across the 
five strategies.

Table  4 shows the quantitative semantic and instance 
segmentation results of five down-sampling strategies 
on the ASIS network. The 10 quantitative metrics listed 
in Table  4 include four semantic segmentation meas-
ures and four instance segmentation measures listed in 
"Experiments" section and also include the total score 
and AveDiff on both segmentation tasks. The best result 
for each metric in the table is in bold and the second 
best is underlined. Each semantic segmentation metric 
in Table  4 is the average value of six different semantic 
classes of stems or leaves in the dataset obtained from 
four independent experiments, and each instance seg-
mentation metric is the average of leaf instances of all 
species in the dataset obtained from four independent 
experiments (the stem system is treated as a whole with-
out instance concept). The score and AveDiff cover the 
results of all semantic and instance metrics.

Based on Table 4, 3DEPS has the best performance on 
ASIS. Although FPS has achieved the second place in the 
total score, it has a big gap with 3DEPS according to the 
AveDiff. On ASIS network, UVS has the lowest score. All 
other down-sampling strategies have significant perfor-
mance gaps compared to 3DEPS, with all their AveDiff 
values above 1.80%. The experiment shows that 3DEPS 

may be the most suitable down-sampling strategy for the 
ASIS dual-function segmentation network.

Table  5 shows the quantitative semantic and instance 
segmentation results of five down-sampling strategies on 
the PlantNet network. In Table 5, 3DEPS and UVS obtain 
the highest score. On the semantic segmentation task, 
3DEPS achieves the best results, and UVS ranks second. 
UVS performs the best on the task of instance segmenta-
tion, followed by RS and 3DEPS. In total, both UVS and 
3DEPS can achieve satisfactory results on the PlantNet 
network. Although RS ranks third, the gap with the best 
is not obvious (the AveDiff of RS is only 0.33%).

Table  6 shows the quantitative semantic and instance 
segmentation results of five down-sampling strategies 
on the PSegNet. In Table 6, UVS achieves overwhelming 
advantages on both semantic and instance segmentation 
tasks. VFPS and 3DEPS are tied for second place for the 
score metric, but both have a significant gap with UVS. 
The FPS has the lowest score across all strategies. The 
voxel down-sampling strategies (UVS and VFPS) seem to 
be more suitable for the PSegNet network.

Based on the quantitative experimental results of the 
three dual-function networks, 3DEPS achieves satisfac-
tory scores on both ASIS and PlantNet. UVS achieves 
high scores on PlantNet and PSegNet. In general, 3DEPS 
performs best on dual-function networks across all strat-
egies compared; but its advantage over the second best is 
not significant, given UVS’s big advantage on the state-
of-the-art PSegNet. Therefore, for the state-of-the-art 
dual-function segmentation networks, carefully select-
ing an appropriate down-sampling strategy can further 
improve the segmentation performance. However, the 
process of manual parameter tuning and selection of the 
down-sampling strategy can be quite time-consuming. 
If one does not pursue the optimal ceiling of the seg-
mentation performance on a particular network, 3DEPS 
may be a good choice due to its sub-optimal and stable 
performance.

Qualitative results
Figure 3 compares the qualitative semantic segmentation 
results from different strategies on three different plant 
species upon the PointNet +  + network. According to 

Fig. 6 Comparison of the best and worst down-sampling strategies for qualitative segmentation results on the PlantNet network. The first 
and second rows show the semantic segmentation results and instance segmentation results, respectively, of three different samples using 
the 3DEPS strategy on PlantNet. The third and fourth rows show the semantic segmentation results and instance segmentation results, respectively, 
for the same three plant samples using the FPS down-sampling strategy on PlantNet. Each segmented crop point cloud is contrasted with its 
corresponding Ground Truth, and the red boxes are zoomed in areas for better visualization. Please note that for the instance segmentation, 
different colors are only used to distinguish between different adjacent leaf organ instances, and there is no correspondence between leaf color 
and leaf index

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Table 2, the overall best down-sampling strategy for the 
PointNet +  + network is UVS, while the worst is FPS. In 
order to clearly demonstrate the difference in seman-
tic segmentation performance between down-sampling 
strategies, we specifically compare the segmentation 
results of the best down-sampling strategy (UVS) and 
the worst down-sampling strategy (FPS). The qualitative 
comparison in Fig. 3 shows that there is an evident dif-
ference between the results obtained with UVS and FPS. 
The test samples after FPS down-sampling tends to pro-
duce segmentation errors at the intersection of leaves 
and stems and at the tips of long leaves.

Figure  4 compares qualitative results of semantic seg-
mentation from different strategies on three different 
plant species upon the DGCNN network. According 
to Table  3, the overall best down-sampling strategy for 
DGCNN is RS, and the worst is FPS. We then compare 
the best result (RS) and the worst result (FPS) for each 
test sample in Fig. 4, it can be clearly seen that the test 
samples after RS down-sampling show much better qual-
itative segmentation results than FPS with few segmenta-
tion errors. FPS tends to generate errors under DGCNN 
at the leaf edges and the connection between leaf and 
stem.

Figure 5 shows the qualitative results of semantic seg-
mentation and instance segmentation of 3 different types 
of plants on the ASIS network. From Table  4 it can be 
seen that the overall best down-sampling strategy under 
ASIS is 3DEPS, and the worst is UVS. To clearly visual-
ize the gap in segmentation performance across differ-
ent strategies, we only compare the best down-sampling 
segmentation result (3DEPS) and the worst down-sam-
pling segmentation result (UVS) for the same test sam-
ples on both segmentation tasks. From Fig.  5, it can be 
observed that there is a evident difference between the 
3DEPS results and the UVS results. The plant samples 
after 3DEPS down-sampling show satisfactory semantic 
and instance segmentation results by ASIS, and the plant 
samples after UVS down-sampling have multiple seman-
tic and instance segmentation errors at some leaf tips, 
small leaves, and leaf-stem connections.

Figure 6 shows the qualitative results of semantic seg-
mentation and instance segmentation of 3 different types 
of plants on the PlantNet network. According to Table 5, 

the overall best down-sampling strategy on this network 
is 3DEPS, while the worst is FPS. In order to clearly dem-
onstrate the gap across different down-sampling strat-
egies, we compare the results of the same test sample 
from the best down-sampling segmentation (3DEPS) and 
the worst down-sampling segmentation (FPS) for both 
semantic segmentation and instance segmentation tasks, 
respectively. In Fig.  6, the 3DEPS shows satisfactory 
results on PlantNet on both segmentation tasks, while 
FPS tends to have segmentation errors at leaf tip (espe-
cially the sorghum leaf ) and at small leaves.

Figure 7 shows the qualitative results of semantic seg-
mentation and instance segmentation of 3 different types 
of plants on the PSegNet network. According to Table 6, 
the overall best down-sampling strategy in this network 
is UVS, while the worst is RS. We compare the results of 
the same test sample from the best down-sampling seg-
mentation (UVS) and the worst down-sampling segmen-
tation (RS) for both semantic segmentation and instance 
segmentation tasks, respectively. From Fig.  7, it can be 
observed that the plant samples after UVS exhibit sat-
isfactory results in terms of both semantic and instance 
segmentation on PSegNet. The plant samples after RS 
down-sampling tend to exhibit segmentation errors, par-
ticularly at the end tip of tomato leaves and in the middle 
of long organs.

By analyzing the qualitative segmentation results under 
the down-sampling strategies, one can observe that the 
areas including the tip of the leaf, the stem-leaf connec-
tion, and the leaf edge are easy to produce errors. Though 
we can always select an appropriate down-sampling 
strategy to effectively avoid some segmentation errors on 
a specific model, it is still difficult to eliminate them all, 
i.e., it is still hard to pin down a down-sampling strategy 
that is universally perfect on all deep networks for crop 
point clouds.

Summary and suggestions
Based on the overall quantitative and qualitative exper-
imental data, it is difficult to pin down a golden down-
sampling strategy that performs best for all crop point 
cloud segmentation networks. Sometimes we can only 
find a sub-optimal down-sampling strategy based on 
experience and comparative experiments within a 

(See figure on next page.)
Fig. 7 Comparison of the best and worst down-sampling strategies for qualitative segmentation results on the PSegNet network. The first row 
and the second row are the semantic segmentation results and instance segmentation results of the three samples using the UVS down-sampling 
strategy on PSegNet, respectively. The third and fourth rows show the results of semantic segmentation and instance segmentation, respectively, 
for the same three samples using the RS strategy on PSegNet. Each segmented crop point cloud is contrasted with its corresponding GT, 
and the red boxes are zoomed in areas for better visualization. Please note that for the instance segmentation, different colors are only used 
to distinguish between different adjacent leaf organ instances, and there is no correspondence between leaf color and leaf index
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Fig. 7 (See legend on previous page.)
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certain parameter range and application conditions. From 
Fig. 8a, b, it can be observed that for single-task deep net-
works, UVS, 3DEPS, and RS are relatively suitable down-
sampling strategies. For dual-function segmentation 
networks, 3DEPS, UVS, and VFPS are considered better 
choices for sampling. 3DEPS has shown the most stable 
performance (and also satisfactory at most cases) in the 
experiments conducted in this paper. Even in cases where 
3DEPS does not achieve the highest score, the margin 
(can be reflected from AveDiff) between 3DEPS and the 
top performer is not significant. Therefore, in most cases, 
directly applying the 3DEPS as the down-sampling strat-
egy for networks seems to be a good choice. But 3DEPS 
also has two disadvantages. The first disadvantage is that 
for point cloud data of certain plant species and certain 
type of plant structure, the segmentation by 3DEPS is yet 
to be improved. Figure  9 shows that if the dataset only 
contains a monocotyledonous plant like Sorghum, the 

score obtained by 3DEPS can be far lower than the aver-
age 3DEPS score from the original dataset that comprises 
three species on the three different dual-function seg-
mentation networks. This fact reveals that 3DEPS is more 
suited to dicotyledonous plants than the monocotyledon-
ous crops that usually have long and slender leaves. The 
second disadvantage is that the ratio parameter of 3DEPS 
that controls the proportion of edge points requires extra 
parameter tuning experiments. Figure  10 qualitatively 
shows the impact of different ratio values of 3DEPS on 
PSegNet, and Fig. 11 quantitatively shows how the ratio 
of 3DEPS has clear impact on the semantic and instance 
segmentation performances of PSegNet. According to 
Fig. 11, it is currently believed that the optimal value of 
the ratio for a network should be between 0.1 and 0.5.

It is also interesting to notice that the five evaluated 
networks performed differently on the same dataset. 
For the single-function networks (not perform semantic 
segmentation), DGCNN has an evident edge over Point-
Net +  + on almost all quantitative metrics. And we also 
have compared PointNet with PointNet +  + , the most 
recognizable two members from the PointNet Family, 
on the same dataset used in this paper (the comparison 
is not shown in this study); PointNet +  + showed evident 
better segmentation performance than PointNet. If the 
phenotyping task is only organ semantic segmentation on 
a dataset containing more than two species, we suggest 
practioners using DGCNN instead of PointNet family. 
The case on dual-function network is much complicated 
than the single semantic segmentation. Currently, almost 
all dual-function networks are trained under a combined 
loss function that seeks a balance between the semantic 
segmentation task and the instance segmentation task. 
The direct comparison between Table  5 (PlantNet) and 
Table 6 (PSegNet) is hard to tell which is better, because 
the version of PlantNet trained under our dataset and 

Fig. 8 The line charts showing the Scores and AveDiff values obtained from experiments using the five down-sampling strategies on different 
networks. The horizontal axes of the two subgraphs both represent the types of networks. The vertical axis in a represents the Scores obtained (the 
higher the better); the vertical axis in b represents obtained AveDiffs, which is the lower the better

Fig. 9 Comparison of two different plant datasets sampled by 3DEPS 
using segmentation score. The “ALL_3DEPS” line represents the scores 
obtained on the original dataset, and the “Sorghum_3DEPS” line 
represents the scores obtained on the dataset that only contains 
sorghum crops. The horizontal axis in the figure indicates the network 
types, and the vertical axis indicates the 3DEPS scores
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parameter setting seems to have an edge over PSegNet 
on the semantics; but conversely on the instance seg-
mentation task. A fair comparison needs fine tuning and 
repetitive testing on one of the network to make both 
networks output similar semantic segmentation results, 
and then compare their instance segmentation results 
to decide which one is better. According to the compre-
hensive comparative experiments in the original paper 

of PSegNet, PSegNet performs slightly better than Plant-
Net, and both of the networks are evidently superior to 
ASIS.

In conclusion, in order to maximize the performance 
of point cloud deep networks for plant phenotyping, it 
is important to choose a down-sampling strategy that is 
suitable for the network. To the best of our knowledge, 
there is currently no strict golden rule on down-sampling 
strategy for deep learning of crop point clouds.

Fig. 10 Qualitative comparison of the instance segmentation results under different 3DEPS ratio parameters on the PSegNet network. The 
first and the second rows are the GT and instance segmentation results of the same tobacco plant, respectively. The third and the fourth rows 
are the GT and segmentation results of the same tomato plant, respectively. The fifth and the sixth rows are the GT and network segmentation 
results of the same sorghum plant, respectively. The direction of the arrow below the figure shows the increasing direction of the ratio parameter, 
and segmentation results with ratios at 0.1, 0.3, 0.5, 0.7, and 0.9 are compared
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Discussion
Each single plant model in the dataset used in the pre-
vious section contains around 10,000–100,000 points, 
which are already accurate enough for applying deep 
learning methods. However, the performances of the 
evaluated down-sampling strategies and segmentation 
networks on very high-precision plant models are still 
unknown. In this section, we introduce a new high-preci-
sion point cloud dataset of Soybean plants, Soybean-MVS 
[78], for a further comparative evaluation. Soybean-MVS 

contains 102 soybean plant samples of 5 different varie-
ties scanned using Multi-View Stereo (MVS) technique, 
and the data was collected during a long growth period. 
Because high-resolution DSLR cameras were used dur-
ing image collection, the reconstructed soybean samples 
all have high accuracy in point density. A sample plant in 
Soybean-MVS can contain as much as 60,000,000 points. 
Due to the pure background used during data collec-
tion and the careful post-processing steps, the noise of 

Fig. 11 Quantitative comparison of the instance segmentation results under different 3DEPS ratio parameters on the PSegNet network. a 
represents the semantic segmentation results, and b represents the instance segmentation results. The horizontal dotted lines in the figure are 
the results of the FPS strategy (as the benchmark). It can be seen that the overall segmentation performance is affected by the ratio value. The 
optimal ratio parameter of the PSegNet network should not exceed 0.5

Table 7 Quantitative comparison of the semantic segmentation performance across five down-sampling strategies on 
PointNet +  + for the Soybean-MVS dataset

PointNet +  + Semantic Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU

FPS 72.42 70.18 71.33 58.91 11 1.91

RS 73.82 69.85 70.31 42.63 6 5.97

UVS 73.11 73.27 72.98 60.44 17 0.17
VFPS 71.19 68.66 69.56 57.42 2 3.42

3DEPS 70.04 66.63 67.62 53.26 0 5.74

Table 8 Quantitative comparison of the semantic segmentation performance across five down-sampling strategies on DGCNN for 
the Soybean-MVS dataset

DGCNN Semantic Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU

FPS 90.93 88.58 89.68 82.00 0 2.73

RS 91.51 91.68 91.59 84.62 12 0.68

UVS 90.95 89.03 89.93 82.36 5 2.46

VFPS 91.08 86.93 88.83 80.77 1 3.62

3DEPS 92.13 92.20 92.16 85.63 18 0.00
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the dataset is suppressed to a low level. With the help 
of the original labels provided in the dataset, we set the 
semantic labels of soybean plants into two classes—stem 
system and leaves ( C = 2 ), and meanwhile we also set 
instance labels for each single leaf. Ten soybean samples 
at final growth stages lost almost all leaves; thus, we only 
keep the rest of 92 samples from the original dataset for 
network training and testing. For the 92 samples, 74 of 
them are used to form the training set, and the rest 18 
point clouds are for testing purpose. All plant samples 
are augmented 10 times to increase data diversity, and 
each point cloud is fixed at 4096 points. Like the experi-
mental design on the dataset in Sect.  "Dataset", we ran 
cross-tests for five down-sampling strategies on the five 
different networks trained on the Soybean-MVS dataset. 
We also used the same quantitative metrics to evaluate 

the network segmentation results, and all metrics were 
average on three independent repeats. Therefore, the final 
training set of Soybean-MVS has 74*10*5 = 3700 point 
clouds, and the final testing set contains 18*5*3 = 270 
point clouds.

Table 7 shows the quantitative semantic segmentation 
results on the PointNet +  + network under five down-
sampling strategies for Soybean-MVS dataset. The best 
result of each metric is highlighted in bold, and the sec-
ond-best is underlined. Table  8 shows the quantitative 
semantic segmentation results on the DGCNN network 
under five down-sampling strategies. Table  9 shows the 
quantitative segmentation results on the ASIS network 
under five down-sampling strategies. Table  10 shows 
the quantitative segmentation results on the PlantNet 
under five down-sampling strategies. Table 11 shows the 

Table 9 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the ASIS network for the Soybean-MVS dataset

ASIS Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 91.47 85.05 87.81 79.27 28.83 35.12 37.79 10.69 27 1.45
RS 89.66 85.27 86.95 77.32 33.07 33.25 35.74 11.72 15 1.83

UVS 89.30 85.04 86.94 77.97 28.22 33.85 37.21 10.29 6 2.35

VFPS 88.36 80.29 83.53 73.49 27.02 34.06 36.64 10.38 6 4.23

3DEPS 89.32 88.83 89.06 80.60 28.52 29.34 31.72 09.06 18 2.65

Table 10 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the PlantNet network for the Soybean-MVS dataset

PlantNet Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 86.79 87.30 87.03 78.04 45.06 51.52 51.27 27.08 19 1.37
RS 88.95 88.89 88.92 80.27 45.54 45.75 46.32 24.70 19 1.97

UVS 86.23 86.87 86.54 77.31 43.56 50.93 49.82 25.03 8 2.35

VFPS 86.80 86.55 86.69 77.61 38.95 46.35 45.41 19.89 3 4.60

3DEPS 89.61 89.36 89.48 81.26 45.37 46.21 44.36 24.70 23 1.84

Table 11 Quantitative comparison of both semantic segmentation and instance segmentation performances across five down-
sampling strategies on the PSegNet network for the Soybean-MVS dataset

PSegNet Semantic Segmentation (%) Instance Segmentation (%) Score AveDiff (%)

Precision Recall F1 IoU Cov WCov mPrec mRec

FPS 86.75 86.76 86.75 77.65 45.40 51.19 48.76 26.65 15 2.11

RS 89.13 89.01 89.06 80.50 46.40 46.54 47.33 27.31 24 1.43

UVS 85.82 86.81 86.30 76.96 44.01 50.93 49.17 25.14 7 2.70

VFPS 85.13 86.16 85.61 76.08 38.68 45.52 43.67 20.10 0 5.73

3DEPS 88.64 88.31 88.47 79.67 47.99 48.96 50.27 29.64 26 0.60
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quantitative segmentation results on the PSegNet under 
five down-sampling strategies. From the above tables, it 
can be seen that for the Soybean-MVS dataset, 3DEPS 
obtains the best quantitative results on 3 networks out 
of 5 in total; RS and FPS also perform well on multiple 

networks. In order to reduce redundancy in visualization, 
we choose one representative network (PointNet + +) 
on semantic segmentation task and one representa-
tive network (PSegNet) on instance segmentation task 
to show qualitative results. The PointNet +  + semantic 
segmentation results of UVS (the best strategy on Point-
Net + +) and 3DEPS (the worst strategy) are compared in 
Fig. 12, in which the UVS result has fewer errors than the 
3DEPS counterpart. The PSegNet segmentation results 
on 3DEPS (the best strategy) data and VFPS (the worst 
strategy) data are contrasted in Fig. 13, 3 DEPS has fewer 
errors.

Though 3DEPS tends to obtain the best result on evalu-
ated networks, it is still not assertive that 3DEPS is the 
most suitable down-sampling strategy for high-precision 
plant models. Soybean-MVS is a single-species dataset 
that contains only 102 samples, and its only two seman-
tic classes in training could result in overfitting, which 
further causes instability in learning. Given a network 
learned with increasing instability and decreasing gener-
ality, even 3DEPS did obtain the best on Soybean-MVS, 
there is no firm guarantee that 3DEPS can still obtain 
the best on future high-precision multi-species data-
set. In addition, the strategies 3DEPS, UVS, and VFPS 
contain multiple steps on which manual parameter tun-
ing and operation are needed, and the values of param-
eters are different from the case of the previous dataset. 
On the previous dataset, the algorithmic time costs of 
five strategies have no big differences; all of them run-
ning on real time or quasi-real time. However, on the 
Soybean-MVS dataset, the differences in speed start 
to appear. Considering the algorithmic time in auto-
mated processing only, the time cost comparison result 
is RS < VFPS≈UVS < 3DEPS < FPS; but if adding manual 
processing time into consideration, the time compari-
son result is RS < FPS < 3DEPS < VFPS≈UVS. The fact 
that FPS strategy becomes the slowest in pure algorith-
mic time cost comparison is not hard to imagine, as its 
complexity O(Mn) quickly becomes formidable on a 
Soybean-MVS sample with more than 60,000,000 points. 
The data augmentation on FPS for the total training data-
set even costs hours. Therefore, in practical FPS sampling 
on high-precision dataset, we recommend to first sample 
a very dense point cloud with RS to a scale of less than 
1, 000,000 points, and then conduct FPS. The high time 
costs of UVS and VFPS are due to their voxelization tun-
ing tests; fixing the suitable voxel size costs a lot of time, 
even running automatically by well-programed code. 
3DEPS comprises a boundary detection program that 
needs parameter tuning, and two separate rounds of FPSs 
on smaller point sets; therefore, 3DEPS has restricted 
efficiency on high-precision datasets.

Fig. 12 Comparison of the best and worst down-sampling strategies 
for qualitative segmentation results on the PointNet +  + network 
for Soybean-MVS dataset. Each point cloud segmented 
by PointNet +  + is contrasted with its corresponding Ground Truth 
(SemGT), and evident segmentation errors are highlighted by dotted 
red circles for better visualization

Fig. 13 Comparison of the best and worst down-sampling strategies 
for qualitative segmentation results on the PSegNet for Soybean-MVS 
dataset. Each point cloud segmented by PSegNet is contrasted 
with its corresponding Ground Truth (SemGT or InsGT), and evident 
segmentation errors are highlighted by dotted red circles for better 
visualization. Please note that for the instance segmentation, different 
colors are only used to distinguish between different adjacent leaf 
organ instances, and there is no correspondence between leaf color 
and leaf index
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Conclution
Currently, most deep networks for 3D plant phenotyp-
ing have only tested a single down-sampling algorithm 
such as FPS to prepare training sets and test sets. As 
far as we know, this research is the first comprehensive 
study of the cross relationship between multiple down-
sampling strategies and the performances of popular net-
works for plant point clouds. The experiments show that 
there is currently no strict golden rule on down-sampling 
strategy for deep learning of crop point clouds; however, 
we have still summarized several suggestions on how to 
select a most suitable down-sampling strategy. First, for 
the networks that only carry out the semantic segmenta-
tion task, 3DEPS and UVS are easy to obtain satisfactory 
segmentation results. Second, on complex dual-function 
point cloud segmentation networks, 3DEPS, UVS, and 
VFPS usually generate satisfactory segmentation per-
formance. Third, by comparing the differences on quan-
titative segmentation metrics, we have found out that 
the 3DEPS working under the optimal parameters is the 
most stable down-sampling strategy in experiments. 
Even if 3DEPS is not the best, it usually has very close 
performance metrics against the top performer.

In future, we are going to focus on the design of new 
down-sampling strategies that compute efficiently and 
perform effectively on advanced networks. Moreover, we 
are also trying to increase the diversity of species and the 
number of samples in our plant point cloud dataset.
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