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Plant Methods

Machine learning provides specific detection 
of salt and drought stresses in cucumber based 
on miRNA characteristics
Parvin Mohammadi1   and Keyvan Asefpour Vakilian2*   

Abstract 

Background Specific detection of the type and severity of plant abiotic stresses helps prevent yield loss 
by considering timely actions. This study introduces a novel method to detect the type and severity of stress 
in cucumber plants under salinity and drought conditions. Various features, i.e., morphological (image textural 
features), physiological/biochemical (relative water content, chlorophyll, catalase activity, anthocyanins, phenol 
content, and proline), as well as miRNA characteristics (the concentration of miRNA-156a, miRNA-166i, miRNA-399g, 
and miRNA-477b) were extracted from plant leaves, and machine learning methods were used to predict the type 
and severity of stress by having these features. Support vector machine (SVM) with parameters optimized by genetic 
algorithm (GA) and particle swarm optimization (PSO) was used for machine learning.

Results The coefficient of determination of predicting the stress type and severity in plants under both stresses 
was 0.61, 0.82, and 0.99 using morphological, physiological/biochemical, and miRNA characteristics, respectively. 
This reveals machine learning methods optimized by metaheuristic optimization techniques can provide specific 
detection of salt and drought stresses in cucumber plants based on miRNA characteristics. Among the study miRNAs, 
miRNA-477b and miRNA-399g had the highest and lowest contribution to salt and drought stresses, respectively.

Conclusions Comapred to conventional plant traits, miRNAs are more reliable features for providing us with valuable 
information about plant abiotic diseases at early stages. Using an electrochemical miRNA biosensor similar to one 
used in this work to measure the miRNA concentration in plant leaves and using a machine learning algorithm 
such as SVM enable farmers to detect the salt and drought stress at early stages in cucumber plants with very high 
accuracy.

Keywords Support vector machine, Optimization algorithms, miRNA biosensor, Image textural features

Background
Although the morphological, physiological, and biochem-
ical characteristics of plants are significantly affected by 
biotic and abiotic stresses, their variations are not spe-
cific to the stress [2]. For example, different sources of 
stress can result in similar changes in plant height and 
root and shoot weights as plant morphological features. 
For a comprehensive understanding of plant response at 
the molecular and cellular level in stress-induced stud-
ies, investigating the traits that vary almost specific to the 
stress is favorable. Today, early detection of plant biotic 
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and abiotic stresses has been studied by examining the 
expression of miRNAs in many crop plants [57].

As small non-coding RNA molecules in living organ-
isms, miRNAs are 17 to 23 nucleotides in length and have 
significant effects on gene expression [25]. The targets of 
plant miRNAs are mainly signal enzymes and proteins 
involved in physiological and biochemical processes such 
as plant growth, regulation of plant hormones, and sig-
nal transduction [43, 75]. miRNAs not only involve plant 
abiotic and biotic stress responses [44], they have cru-
cial roles in all fields of plant physiology, such as plant 
hormonal regulation [16] and developmental processes 
[8]. Light, temperature, nutrient deficiency and toxic-
ity, drought, salinity, and carbon dioxide are common 
sources of plant abiotic stresses [23].

Plant stress-involved miRNA expression is mainly both 
spatial- and temporal-specific [42]. Identifying plant 
stress-responsive miRNAs helps increase our knowl-
edge about their role in the improvement of the plant 
stress tolerance mechanism [86]. In fact, to understand 
stress tolerance in plants, it is essential to investigate 
miRNA-mediated gene regulatory networks that control 
biological processes, such as responses to the environ-
ment [22]. The roles of miRNA-target gene structures in 
regulating plant stress responses have been extensively 
reported during the last decade [21]. Studies indicate 
that conserved miRNA families such as miR156, miR159, 
miR160, miR167, miR172, miR319, miR393, miR395, 
miR398, and miR399 respond remarkably toward abi-
otic stress [86]. Recent studies have reported that some 
of these miRNAs exert an up(down-regulation behavior 
toward several plant stresses, while some miRNAs are 
influenced by only one stress or at least only one of their 
roles has been characterized [2, 60].

Salt and drought stresses are among the undesirable 
abiotic stresses that can influence crop production, and 
their severe conditions affect the physiological and bio-
chemical properties of a large number of plants signifi-
cantly [13, 50]. Plant response toward drought is studied 
considering physiological properties, e.g., relative water 
content and antioxidative enzymatic responses [11]. Salt 
stress influences plant growth and development through 
osmotic stress and ion toxicity [12]. Crops adapt to salin-
ity by inducing changes during transcription and transla-
tional levels [81].

Cucumber (Cucumis sativus L.) is strongly sensitive 
to drought and salinity, particularly at the early stages 
of growth [85]. Severe salinity and drought significantly 
affect plant growth, photosynthesis, biochemistry, and 
texture of fruits in cucumbers [58]. Various types of 
protein synthesis and gene transcription occur during 
the plant growth and development of cucumbers, which 

are affected by abiotic stresses. For instance, the bio-
synthesis and the drought resistance change greatly by 
the unconventional expression of CsCER1 in cucumber 
plants [77]. CsDCLs, CsAGOs, and CsRDRs generally 
respond to abiotic stresses in cucumbers [20]. Investi-
gating the effects of drought and salt stress on molecu-
lar regulation during seed germination and seedling 
growth has resulted in providing deep sequencing data 
of miRNA expression in cucumber plants. Du et al. [18] 
used proteomics and transcriptomics analysis to inves-
tigate the plant response toward salinity and drought 
during the post-germinative development in cucumber 
plants. They reported that the study stresses caused 
differential expression of 36 miRNAs and 768 proteins 
compared with the control, of which four miRNAs had 
similar patterns by both stresses: miR156a, miR166i, 
miR399g, and miR477b. Therefore, monitoring these 
miRNAs during exposure to drought and salinity 
stresses is capable of providing us with useful informa-
tion about the physiology of cucumbers.

Several techniques, including microarrays [82], north-
ern blotting [74], and polymerase chain reaction (PCR) 
[48], have been extensively used to investigate the influ-
ence of stress on plant miRNA functions. Nonetheless, 
these techniques suffer from various limitations, e.g., 
an unfavorable detection limit, a small linear range, and 
low sensitivity [52, 73]. Instead, sensors that have a liv-
ing biological receptor and are called biosensors have 
been developed as a reliable analytical technique for the 
accurate and sensitive detection of miRNA concentration 
[33]. Constructing low-cost and portable electrochemi-
cal biosensors for the specific and sensitive detection of 
miRNAs that are involved in the salt and drought stresses 
of cucumber seems to be useful for studying the response 
of the plant at the molecular level. Today, hundreds of 
electrochemical biosensors with acceptable specificity 
and wide linear range have been introduced to measure 
the concentration of miRNAs in attomolar and femtomo-
lar levels [17, 71]).

Supervised and unsupervised machine learning meth-
ods have been developed extensively in the field of plant 
science to model plant behavior during planting, cultiva-
tion, maintenance, harvesting, and post-harvest [19, 28, 
32]. The machine is capable of learning the complex mul-
tivariate relationships between inputs and output using 
the training data [64]. The application of machine learn-
ing for computational analysis of the role of miRNAs 
toward plant biotic and abiotic stresses is growing since 
we are faced with big data and large datasets in these 
problems. Recently, Meher et al. [51] and Pradhan et al. 
[62] offered software applications for predicting various 
abiotic stress-specific miRNAs using features derived 
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from miRNA sequences. They reported that the intro-
duced tools could be efficiently utilized for large-scale 
prediction of abiotic stress-specific miRNAs using only 
sequence information.

In case of obtaining a dataset, including morphological, 
physiological, biochemical, as well as miRNA concentra-
tions of cucumber plants under salt and drought stresses, 
there is an important question: which of these features 
should be trained to machine learning techniques for 
the reliable detection of type and severity of the stress? 
Therefore, in this study, salt and drought stresses at dif-
ferent levels are applied to young cucumber plants indi-
vidually and simultaneously, and various traits of the 
plants were measured during the experiments to create 
a dataset useful for training the machine. Then, support 
vector machine (SVM), optimized by metaheuristic opti-
mization algorithms, i.e., genetic algorithm (GA) and 
particle swarm optimization (PSO), was utilized for the 
prediction of the stress type and severity using the data-
set. Hence, the objectives of this study are: (a) to find the 
performance of each morphological, physiological, and 
biochemical trait, as well as miRNA concentrations for 
the detection of salt and drought stresses in cucumber 
plants, and (b) to determine a reliable machine learning 
algorithm optimized by sophisticated evolutionary and 
swarm-based methods for the specific detection of stress.

Material and methods
Figure  1 shows the flowchart of the present study. 
Morphological features, including energy, entropy, 
and homogeneity of images captured from plant 
leaves, were extracted using an image processing 
unit. Laboratory experiments were conducted to 
measure relative water content, chlorophyll, catalase 
activity, anthocyanins, phenol content, and proline in 
plant leaves. An electrochemical miRNA biosensor, 
introduced by Hakimian and Ghourchian [26], was 
used to measure miRNAs in the plant samples. In this 
scheme, a thiolated oligonucleotide probe is immobilized 
on the surface of a gold working electrode. The probe 
is then located in the sample to conduct probe-target 
hybridization. As electroactive labels, positively-charged 
polyethyleneimine-silver nanoparticles are then absorbed 
onto the hybridization product, which is negatively 
charged. The anodic peak current obtained due to the 
oxidation of silver nanoparticles will be proportional to 
the target miRNA concentration. Then, extracted features 
(as machine inputs) were trained to SVM, the parameters 
of which were optimized by GA and PSO. The machine 
outputs were the type and severity of the stress.

Plant material and experimental design
Cucumber seeds were purchased from a local store. After 
surface sterilizing with NaClO and rinsing with distilled 
water thoroughly, the seeds were located in plug trays con-
taining vermiculite: peat: perlite (3: 2: 1). After 3  weeks, 
seedlings were transferred to 5 L pots with a similar growth 
medium of plug trays. The light intensity of the growth 
room was 120 μmolm−2   s−1 with a relative humidity of 
70 ± 5%. Tap water was supplied daily for the pots to pro-
vide moisture content near the field capacity.

After two months, treatments were applied: although 
daily tap water supply was continued for the control plants 
(W0), drought-treated plants were faced with withholding 
water at 80% (W1), 60% (W2), and 40% (W3) of field capac-
ity to investigate various levels of stress severity. Salinity-
treated plants were irrigated with water containing various 
concentrations of NaCl, i.e., 0 (control, S0), 20  mM (S1), 
40 mM (S2), and 60 mM (S3). Therefore, plants were treated 
with salt and drought simultaneously, each at four levels, 
and since the experiments were performed with three rep-
lications, 4 × 4 × 3 = 48 pots were used in this study. Plant 
features were measured five times at 3 day intervals begin-
ning with applying the stress by transferring three leave, 
randomly selected from each pot, to the laboratory for fur-
ther analysis.

Morpho‑physiological and biochemical measurements
Morphological characteristics
Digital image processing was used to extract the morpho-
logical features of the leaves. A CCD digital camera and a 
200-LEDs lighting array to increase light uniformity were 
used for image acquisition. Leaves were extracted from the 
background in the captured images through Canny edge 
detection [6]. After converting the color images to gray-
scale images, the gray-level cooccurrence matrix (GLCM) 
was utilized to measure the spatial dependence of gray-
level values [7, 31]. An arbitrary element (i,j) in  GLCM 
demonstrates the number of times that the pixel with a 
gray-level value i is located adjacent to a pixel with a gray-
level value j. Recent studies have revealed that three image 
textural features, i.e., entropy (Eq.  1), energy (Eq.  2), and 
local homogeneity (Eq. 3), are useful for identifying plant 
health status [68]

(1)Entropy = −

∑

i

∑

j

p(i, j) log(p(i, j))

(2)Energy =
∑

i

∑

j

p(i, j)2
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where p(i,j) is the  (i,j)-th element of the GLCM. The 
code for image processing was written in the MATLAB 
R2018b programming environment.

(3)Local homogeneity =
∑

i

∑

j

p(i, j)

1+ (i − j)2

Physiological and biochemical characteristics
The relative water content (RWC) of the plant leaves 
was calculated according to Goñi et  al. [24] by having 
the fresh weight, turgid weight, and dry weight. The 
chlorophyll index (CI) in the leaves was measured 
using a spectral chlorophyll meter (CM1000 Spectrum 
Technologies, USA). Catalase (EC. 1.11.1.6) activity 

Fig. 1 Flowchart of the present study
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(CA), Anthocyanin content (AC), phenol content 
(PhC), and proline content (PC) in the leaf samples 
were measured according to Havir and McHale [29], 
Mancinelli [47], Singleton and Rossi [67], and Bates 
et al. [10], respectively.

miRNA concentrations
Total RNA was isolated from 0.05 g of the leaves, 
according to Yamaguchi et  al. [79]. A three-electrode 
electrochemical biosensor was used to measure the 
stress-involved miRNA concentrations in the isolated 
total RNA samples. Table 1 shows a list of the target miR-
NAs investigated in this study and their sequence. The 
working, reference, and auxiliary electrodes used in the 
biosensor were Au, Ag/AgCl, and Pt, respectively. Oligo-
nucleotide miRNAs were purchased in the form of thi-
olated capture probes. The electrochemical biosensor 
was prepared according to Hakimian and Ghourchian 
[26]. Briefly, 25 mL of 9 mM  AgNO3 and 5 mL of poly-
ethyleneimine (PEI) were stirred during an increase in 
temperature to prepare PEI-Ag nanoparticles. 8  mL of 
1  mM thiolated probe and 8  mL of phosphate-buffered 
saline (PBS) were mixed and poured onto the working 
electrode. Then, the working electrode was immersed in 
a solution of 1 M PBS buffer for 30 min, and then, 2 μL 
of the sample was mixed with 2 mL PBS and poured onto 
the electrode surface. 6 mL of positively charged PEI-Ag 
nanoparticles were poured onto the surface of the work-
ing electrode, and the adsorption process was performed 
on a negatively charged probe/sample compound. The 
electrodes were then placed in total RNA extracts of the 
leaves. To measure the electrochemical data of the bio-
sensor, cyclic voltammetry curves were obtained by scan-
ning in the range of 0.5 to − 0.5 V and a sweeping rate of 
0.2 V/s.

Machine learning method
Statistical regression models generally cannot find com-
plex relationships between input and output variables in 
high-dimension problems. However, machine learning 
techniques can learn the relationships in datasets with 
hundreds of model inputs and outputs. A dataset was 
constructed to train machine learning methods with the 
experimental data gathered at different stress levels. Since 

48 pots were used to investigate the effects of stresses and 
the data were gathered five times, the number of samples 
in the dataset was 240. Moreover, the total number of 
features was 13, including three morphological, six physi-
ological/biochemical, and four miRNA features. SVM 
was used in this study to predict the type and severity of 
plant stress by having the values of experimental data as 
inputs. Two essential variables significantly influence the 
SVM performance: kernel type and kernel parameter (γ) 
[49]. Linear, polynomial, Gaussian, and sigmoid kernels 
are conventional kernel types in SVM. The value of γ was 
optimized using sophisticated metaheuristic optimiza-
tion methods. As evolutionary-based and swarm intel-
ligence-based methods, respectively, GA and PSO were 
utilized to optimize the kernel parameter of the SVM 
machine learning method to obtain a reliable machine for 
predicting plant stress having its characteristics.

GA involves a set of random chromosomes that 
describe possible solutions for the optimization problem. 
During generations, chromosomes with better values of 
fitness function can survive and crossover to create new 
offspring in the subsequent generations that are likely 
closer to the solution. The fitness function in this study is 
minimizing the error of predicting the plant stress using 
SVM. The maximum number of iterations, population 
size, and crossover percentage of GA were considered 
500, 100, and 0.5, respectively. As another optimization 
technique, PSO includes a set of randomly-defined parti-
cles that move toward the solution in each iteration. The 
moving force of the particles in the search space is pro-
vided by a velocity vector. The particles close to the best 
positions (points with higher values of fitness function) 
will have a slow velocity, while the others will reach the 
best positions with higher velocities. After a number of 
iterations, all the particles approach the optimal point. 
The maximum number of iterations, population size, 
initial inertia weight, and cognitive acceleration in PSO 
were considered 100, 200, 1, and 1, respectively. The pro-
cedure of optimizing the SVM model using GA and PSO 
was similar to the one we used in our previous work on 
using optimization methods to tune the kernel parameter 
of SVM to obtain a reliable decision-making unit for a 
durable electrochemical nitrate biosensor [5].

Cooperative game theory is a reliable feature selection 
method in multivariate problems which was utilized in 
this work to determine the importance of morphological 
and physiological/biochemical features, as well as miRNA 
concentration, in the prediction of the plant stress 
response. There are variables with various importances in 
predicting the model outputs in datasets obtained from 
nature-based systems [69]. The cooperative game theory 
evaluates the amount of shared information (i.e., power 

Table 1 List of miRNAs investigated in this study

Related miRNA miRNA sequence

miRNA156a 5′—UGA CAG AAG AGA GUG AGC AC—3′
miRNA166i 5′—UCG GAC CAG GCU UCA UUC UC—3′
miRNA399g 5′—AGG GCU UCU CUC CAU UGG CAGG—3′
miRNA477b 5′—CUC UCC CUC AAA GGC UUC UG—3′
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or importance) by the model inputs using the Banzhaf 
power index [4, 70]).

A code written in the MATLAB R2018b programming 
environment was provided in this study to implement 
the machine learning and optimization algorithms. Five-
fold cross-validation was used for investigating the per-
formance of the algorithms based on the mean squared 
error (MSE) (Eq. 4) and coefficient of determination (R2) 
(Eq. 5)

where xo is the severity of the applied stress to the plant, 
xp is the predicted value of the severity using machine 
learning, and n is the number of samples.

Results and discussion
Previous studies have revealed the remarkable influence 
of salinity and drought stress on the morphological 
and physiological characteristics of cucumber plants. 
However, specific detection of the stress can be 
challenging since plant response to stress can be complex 
and results in delayed response to the source of the 
stress. According to the objectives of this study, machine 
learning is used along with some miRNAs up- or down-
regulated in cucumber plants for the specific detection 
of the source of stress shortly after applying the salinity 

(4)MSE =
1

n

n∑

i=1

(xp − xo)
2

(5)R2
= 1−

n∑
i=1

(xp − xo)
2

n∑
i=1

(xo − xo)2

and drought treatments. The characteristics are divided 
into three groups to investigate their individual effects 
on the prediction of the source and severity of the stress 
in cucumber plants: morphological, physiological/
biochemical, and miRNA concentration characteristics. 
A dataset was created to implement the machine learning 
algorithms. The raw data collected during the experiment 
is brought in Additional file 1: Table S1 in the Additional 
file information.

Performance of morphological characteristics in predicting 
plant stresses
Table  2 shows the performance of morphological 
variables in the prediction of plant stresses investigated in 
this study. As can be seen in the table, the morphological 
variables could not predict the type and severity of the 
plant abiotic stresses because of the low R2 and high MSE 
values. The highest prediction performance of the SVM 
model when both stresses were applied to the plants 
was 0.59, which was achieved for an SVM model with 
a Gaussian kernel. The morphological variables used 
in this study were image textural features examined by 
probability-density functions on GLCM. These features 
were extracted from the leaf images captured by an 
image acquisition system and transferred to a computer 
for further analysis. Although GA and PSO, as the 
metaheuristic optimization methods, could influence 
the performance of the machine in predicting the plant 
stresses, this influence was not sufficient to consider 
variables extracted from image processing useful for the 
prediction of plant abiotic stresses in cucumber plants. 
The highest prediction performance of the SVM model 
optimized with metaheuristic methods when both 

Table 2 Performance evaluation of morphological variables in the prediction of plant stress

Kernel type Stress type Model

SVM SVM‑GA SVM‑PSO

MSE R2 MSE R2 MSE R2

Linear Drought 1.52 0.56 1.43 0.59 1.46 0.58

Salinity 1.46 0.58 1.43 0.59 1.28 0.64

Drought + Salinity 1.94 0.42 1.88 0.44 1.88 0.44

Polynomial Drought 1.46 0.58 1.46 0.58 1.43 0.59

Salinity 1.64 0.52 1.61 0.53 1.58 0.54

Drought + Salinity 1.97 0.41 1.88 0.44 1.97 0.41

Gaussian Drought 1.85 0.45 1.79 0.47 1.79 0.47

Salinity 1.67 0.51 1.58 0.54 1.67 0.51

Drought + Salinity 1.43 0.59 1.37 0.61 1.43 0.59

Sigmoid Drought 1.43 0.59 1.43 0.59 1.43 0.59

Salinity 1.76 0.48 1.64 0.52 1.76 0.48

Drought + Salinity 1.94 0.42 1.85 0.45 1.88 0.44
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stresses were applied to the plants was 0.61, which was 
achieved for the SVM-GA model with a Gaussian kernel.

Figure 2 shows that based on the results of cooperative 
game theory, entropy and homogeneity shared the 
highest and lowest amount of information among 
morphological variables in the prediction of plant stress, 
respectively. The leaves of the control plants that grew 
under optimal conditions were healthy and colorful, 
with high levels of entropy. Treated plants with salinity 
and drought had lower complexity in surface structure, 
and therefore, the entropy of their images decreased. 
Over time, the leaves of the control plants became darker 
green in color, and the energy of their images decreased 
[68]. In contrast, the yellowish appearance in the leaves of 
the treatment plants resulted in an increase in the energy 
levels in their images. Moreover, the local homogeneity 
of the images belonging to control plants decreased 
as they became colorful during growth, with different 
shades of green. Nonetheless, the treated plants, due to 

their uniform color, exerted higher homogeneity values 
in their images. Although the treated plants showed 
different morphological variables than the control plants, 
these differences were unreliable for specific detection of 
the type and severity of stresses using image processing 
(Table  2). Other morphological traits, e.g., plant height, 
shoot weight, and root weight, although generally 
influenced by increasing the severity of stress, this 
influence is not specific to the type of stress, as discussed 
in previous investigations [2, 35, 66].

Performance of physiological/biochemical characteristics 
in predicting plant stresses
Table 3 shows the performance of combined physiologi-
cal and biochemical variables in the prediction of plant 
stresses investigated in this study. According to the table, 
a machine with inputs containing physiological and bio-
chemical variables could perform better than one with 
morphological variables in specific detection of stress. 
In this situation, the highest prediction performance of 
the single SVM model when both stresses were applied 
to the plants was 0.79, which was achieved for a model 
with a linear kernel. Metaheuristic optimization methods 
increased this performance up to 0.82, obtained for the 
SVM-PSO model. Generally, SVM-PSO provided better 
results than SVM-GA during the modeling process.

The results of cooperative game theory revealed 
that CA (33%) and RWC (6%) shared the highest and 
lowest amount of information among physiological 
and biochemical variables in predicting plant abiotic 
stresses, respectively (Fig. 3). Other variables had scores 
between these two values. RWC is an essential indicator 

Fig. 2 The amount of information shared by morphological variables 
in predicting the plant stress

Table 3 Performance evaluation of physiological/biochemical variables in the prediction of plant stress

Kernel type Stress type Model

SVM SVM‑GA SVM‑PSO

MSE R2 MSE R2 MSE R2

Linear Drought 0.98 0.73 0.91 0.76 0.90 0.76

Salinity 1.20 0.66 1.13 0.68 1.18 0.67

Drought + Salinity 0.82 0.79 0.80 0.79 0.75 0.82

Polynomial Drought 1.37 0.60 1.31 0.62 1.30 0.63

Salinity 1.13 0.68 1.07 0.70 1.04 0.71

Drought + Salinity 1.17 0.67 1.15 0.68 1.07 0.70

Gaussian Drought 0.94 0.75 0.92 0.75 0.88 0.77

Salinity 0.92 0.75 0.87 0.77 0.90 0.76

Drought + Salinity 1.28 0.63 1.19 0.66 1.27 0.64

Sigmoid Drought 1.10 0.69 1.07 0.70 1.08 0.70

Salinity 1.13 0.68 1.07 0.70 1.04 0.71

Drought + Salinity 1.01 0.72 0.98 0.73 0.98 0.73
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for investigating plant water status and dehydration 
tolerance [41]. A remarkable decrease in the RWC of 
cucumber plant leaves might be due to the unavailability 
of water in the plant soil/root system [36, 59]. However, 
the results of this study show RWC had the lowest score 
in the prediction of stress. The possible reason is that 
various sources of stress have similar effects on RWC, 
and the prediction of the type and severity of the stress is 
challenging using only RWC as the model input.

During the experiments, the CA values in treatment 
plants were remarkably greater than those of control 
plants. [30] have reported similar results on the increased 
enzyme activity due to abiotic stresses. The complex 
enzymatic antioxidant system in plants affects oxygen 
species production during their exposure to abiotic 
stresses [27]. Similar trends were observed for AC, 
PhC, and PC, so these values were higher in the plants 

faced with stress compared to the control. Previous 
studies have shown positive correlations between abiotic 
tolerance and changes in antioxidant activity [15]. In fact, 
when plants are under stress conditions, antioxidative 
enzyme activities protect them against stress as a defense 
mechanism [63]. Studies have shown that younger plants 
express better protection against stress by increasing the 
antioxidant enzymatic activity [54].

CI, which is an essential plant physiological charac-
teristic, decreased at severe stress levels. CI is positively 
correlated with photosynthetic activity [45, 72], and its 
decrement under abiotic stresses is considered an indi-
cator of oxidative stress [53]. CI exerted an increasing 
trend in the control plant leaves as they became darker 
green in color over time, while CI in the treatment plants 
decreased, which was indicated by the yellowish appear-
ance due to water deficiency.

Performance of miRNA concentration characteristics 
in predicting plant stresses
As can be seen in Tables 2, 3, the prediction performance 
of machines trained by plant morphological and 
physiological/biochemical characteristics is not suitable 
for actual field situations since a reliable machine with 
high R2 and low MSE values is required by the farmers and 
agricultural specialists to determine the type and severity 
of stress correctly. Several studies have shown that the 
expression of miRNA156a, miRNA166i, miRNA399g, 
and miRNA477b changes in a tissue-specific behavior 
when cucumber plants are under abiotic stresses [18]. To 
encounter the problem during the prediction of stress, we 
tried to develop an intelligent model in which machine 
learning methods link the leaf miRNA concentration 

Fig. 3 The amount of information shared by physiological/
biochemical variables in predicting the plant stress

Table 4 Performance evaluation of miRNA concentrations in the prediction of plant stress

Kernel type Stress type Model

SVM SVM‑GA SVM‑PSO

MSE R2 MSE R2 MSE R2

Linear Drought 0.31 0.96 0.21 0.99 0.25 0.98

Salinity 0.65 0.84 0.62 0.85 0.60 0.86

Drought + Salinity 0.31 0.96 0.23 0.99 0.24 0.98

Polynomial Drought 0.59 0.86 0.51 0.89 0.55 0.88

Salinity 0.68 0.83 0.64 0.85 0.66 0.84

Drought + Salinity 0.64 0.85 0.59 0.86 0.56 0.87

Gaussian Drought 0.43 0.92 0.42 0.92 0.39 0.93

Salinity 0.51 0.89 0.51 0.89 0.46 0.91

Drought + Salinity 0.58 0.87 0.53 0.88 0.57 0.87

Sigmoid Drought 0.30 0.96 0.22 0.99 0.24 0.98

Salinity 0.44 0.91 0.35 0.94 0.42 0.92

Drought + Salinity 0.47 0.90 0.45 0.91 0.40 0.93
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(or, in other words, expression) measured by an 
electrochemical biosensor to the stress. In this situation, 
portable electrochemical biosensors introduced in the 
literature that are capable of measuring the concentration 
of miRNAs at fM levels can be helpful for the accurate 
prediction of plant stresses. Moreover, features selection 
methods that determine the importance of each input 
in the prediction of model outputs can determine the 
contribution, i.e., effectiveness, of miRNAs to the plant 
stresses. This means that these methods provide us with 
valuable information about the miRNAs that should be 
measured by the biosensor to detect plant stress at early 
stages.

Table  4 shows the performance of miRNA concentra-
tions in the prediction of plant stresses investigated in 
this study. Based on the table, miRNA concentrations 

were able to predict the type and severity of the stress 
with acceptable performance. The table also shows the 
type of optimization method to optimize the parameters 
of the SVM model has significant effects on the model 
performance. The most promising results (R2 = 0.99 and 
MSE = 0.23) were obtained by SVM-GA for the predic-
tion of the type and severity of stress when the plants 
are faced with both salinity and drought conditions 
simultaneously.

As expected, the miRNA concentrations altered toward 
the stresses. If not, the machine was unable to predict the 
stress with reliable performance. Some of the miRNAs 
were induced toward the stress conditions, while others 
were inhibited. From the perspective of machine learning 
approaches, it does not matter which miRNA is up-reg-
ulated and which one is down-regulated. What matters 
is that their response to the stress is specific, and the 
machine can discover this specificity. Similarly, various 
miRNAs are reported to act specifically toward metabolic 

activities in plants and animals [1, 80, 83]. Moreover, 
although a search in the literature shows that investiga-
tions on miRNA concentration using biosensors mainly 
belong to studies on humans [38, 55], studies on using 
biosensors for plant miRNA concentration have been 
growing rapidly since 2015s [3, 14, 40, 56].

The main hypothesis that its correctness was proved in 
this study was that the concentration of some miRNAs 
extracted from cucumber plant leaves using a biosensor 
combined with the results of machine learning methods 
might be a specific marker of plant stress. However, the 
role of all miRNAs is not similar in the prediction task. 
As shown in Fig. 4, miRNA-477b concentration exerted 
the greatest contribution to the correct prediction of salt 
and drought stresses using machine learning. Therefore, 
among the miRNAs that are involved in plant abiotic 
stress, miRNA-477b concentration had the highest 
correlation with stress severity in cucumber plants. After 
that, miRNA-156a and miRNA-166i had rather similar 
importance in the prediction of stress, and miRNA-399 g 
had the lowest contribution.

miRNA-477 is associated with zeatin-O-glycosyltrans-
ferase regulation in leaf tissue. Expression of this miRNA 
is antagonistic to the respective gene under stress con-
ditions. Previous studies have also reported that under 
mild and severe stress conditions, miRNA-477 and its 
target gene are both up-regulated and down-regulated, 
respectively. Zeation-O-glucosyltransferase is involved 
in cytokinin homeostasis and maintains the auxin/cyto-
kinin ratio for plant growth regulation [61].

miRNA-156 is one of the well-studied plant miRNAs. 
It has essential functions in plant development, especially 
in leaf and flower development [84]. It targets Squamosa 
promoter-binding protein-like (SPL) transcription fac-
tors and, therefore, affects plant developmental timing 
[76]. Overexpression of this miRNA results in the fast 
establishment of rosette leaves and a rather delay in the 
flowering stage [65]. Besides, nitrogen deficiency in the 
environment induces the expression of miRNA-156 in 
plants [39].

An essential miRNA that controls leaf development in 
a wide variety of plants is miRNA-166 [46]. miRNA-166 
mediates leaf morphogenesis by targeting the gene family 
that involves the class-III homeodomain leucine zipper 
transcription factor [34]. Overexpression of miRNA-
166-resistant PHABULOSA mutants causes unusual 
changes in the leaf developmental stage. Furthermore, 
the overexpression of plant miRNA-166 results in vas-
cular cell differentiation, followed by the production of a 
more vascular system with expanded xylem tissue [37].

Fig. 4 The amount of information shared by miRNA concentrations 
in predicting the plant stress
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miRNA-399 is an essential miRNA in plants that is 
highly induced in plant tissues under phosphate stress 
[9]. miRNA399 expression in transgenic seedlings results 
in suppressing the putative ubiquitin-conjugating enzyme 
transcript under high inorganic phosphate conditions 
[78]. Since miRNA-399 g had a negligible contribution to 
stress prediction compared to the other three miRNAs 
using machine learning algorithms, it was omitted from 
the dataset, and SVM-GA was used to predict the type and 
severity of the study stresses by having only the concentra-
tion of miRNA-156a, miRNA-166i, and miRNA-477b. The 
results showed that the R2 and MSE of prediction when 
both stresses were applied to the cucumber plants were 
0.98 and 0.25, respectively. This indicates that developing 
a biosensor that measures the concentration of these three 
miRNAs is reliable for in-field stress determination.

Conclusions
An effort to introduce a novel method to detect the 
type and severity of two main abiotic stresses, i.e., salin-
ity and drought, in cucumber plants is reported in this 
paper. Treatments were selected in levels to apply a range 
of mild to rather severe stress conditions. The results 
proved that in all stress conditions, the miRNA biosensor 
equipped with a machine learning algorithm optimized 
by metaheuristic methods, that can measure the con-
centration of miRNAs shown effective in the plant stress 
response based on previous studies, is suitable to detect 
stress in cucumber plants (R2 = 0.99). This reveals that 
compared to plant morphological and physiological fea-
tures, miRNA concentrations are more reliable features 
for providing us with valuable information about plant 
abiotic diseases at early stages. Therefore, extracting the 
plant morphological and physiological features, which 
are usually time-consuming and require transferring the 
samples to well-equipped laboratories, to provide a reli-
able understanding of plant stress status will no longer be 
needed if a miRNA biosensor is available to measure the 
miRNA concentrations.

As a sensor based on a three-electrode platform, the 
biosensing method to measure the concentration of miR-
NAs is portable and can be easily used by farmers and 
agricultural specialists. The biosensor can be connected 
to a laptop in which the machine learning algorithm is 
running. Even internet-of-things (IoT) solutions to wire-
lessly transfer the electrochemical data of the biosensor 
to a host computer can be implemented to increase the 
functionality of the method described in this study for 
real in-field applications.
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