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Abstract 

Background Single‑cell RNA sequencing (scRNA‑seq) measurements of gene expression show great promise 
for studying the cellular heterogeneity of rice roots. How precisely annotating cell identity is a major unresolved prob‑
lem in plant scRNA‑seq analysis due to the inherent high dimensionality and sparsity.

Results To address this challenge, we present NRTPredictor, an ensemble‑learning system, to predict rice root cell 
stage and mine biomarkers through complete model interpretability. The performance of NRTPredictor was evaluated 
using a test dataset, with 98.01% accuracy and 95.45% recall. With the power of interpretability provided by NRT‑
Predictor, our model recognizes 110 marker genes partially involved in phenylpropanoid biosynthesis. Expression 
patterns of rice root could be mapped by the above‑mentioned candidate genes, showing the superiority of NRTPre‑
dictor. Integrated analysis of scRNA and bulk RNA‑seq data revealed aberrant expression of Epidermis cell subpopula‑
tions in flooding, Pi, and salt stresses.

Conclusion Taken together, our results demonstrate that NRTPredictor is a useful tool for automated predic‑
tion of rice root cell stage and provides a valuable resource for deciphering the rice root cellular heterogeneity 
and the molecular mechanisms of flooding, Pi, and salt stresses. Based on the proposed model, a free webserver 
has been established, which is available at https:// www. cgris. net/ nrtp.
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Background
Rice (Oryza sativa L.) is one of the most important food 
crops in the world, supporting as a staple food for more 
than half of the global population [1, 2]. The increase in 
rice production will have a significant impact on world 

food security, making it necessary to explore new strate-
gies to improve rice yield [3]. The roots are fundamentally 
important for plant growth and development, anchoring 
the plant to its growth substrate, facilitating water and 
nutrient uptake from the soil, and promoting continuous 
rice yield increase [4–6]. Understanding the cell hetero-
geneity and gene regulatory networks of rice root devel-
opment is a frontier field for improving its productivity 
[7, 8].

Single-cell RNA-seq (scRNA-seq) is gradually being 
used in plants to mine heterogeneity between tissue types 
and within cells, thus providing a more accurate and 
integrated understanding of their role in the life process 
[9–11]. For example, Liu et  al. [12] reported the single-
cell transcriptome from the root tip of rice, identifying 
most of the major cell type transcriptional landscape of 
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rice roots at the single-cell resolution. Denyer et al. [13] 
used High-throughput scRNA-seq to demonstrate the 
expression atlas of Arabidopsis roots, capturing its pre-
cise spatiotemporal information and revealing key regu-
lators across all major cell types. With the availability of 
scRNA-seq data, cell type identification is an important 
step towards various downstream analysis [14–16]. In 
some cases, we lack good markers of crucial cell popula-
tions in defining cell types. Training an effective machine 
learning prediction model to mine molecular markers 
and identify cell subpopulations based on existing single-
cell datasets is a time-saving and labor-saving approach 
[17].

To address the above limitations, we proposed an 
ensemble computing framework, named NRTPredictor, 
which enabled the model to capture cell subpopulation 
biomarkers of Nipponbare root tips and predict stages 
of cells (Fig.  1 and Additional file  1: Figure S1). NRT-
Predictor integrated recent popular three feature selec-
tion methods (MIC, F-score and CV2) and four machine 
learning models (SVM, XGBoost, Lightgbm and RFC) to 
evaluate the importance of genes on cell subpopulations 
of Nipponbare root tips prediction.

Moreover, we successfully applied our NRTPredictor 
model on data unseen during training and demonstrated 
its superior predictive performance. By performing bio-
logical analysis of the optimal genes, we detailed poten-
tial marker genes, which could help biologists better 
understand the heterogeneity of Nipponbare root tips. 
In addition, we integrated rice root single-cell marker 

genes with RNA-seq data of flooding, salt, and pi stresses 
and found that Epidermis cell subpopulations may play 
critical roles in rice stress mechanisms. Our work pro-
vides a comprehensive understanding of machine learn-
ing to mine marker genes at the single-cell level in rice 
and enhances the understanding of stress physiological 
processes, which provides insights for improving current 
rice stress tolerance strategies.

Results
Identification of significant genes using feature selection 
and machine learning
For identifying the significant genes related to subpopu-
lations of Nipponbare root tip cells, we used three feature 
selection methods (MIC, CV2 and F-score) to evaluate 
the importance of the 39,219 genes and ranked them 
according to their contribution value. Genes with impor-
tance score less than or equal to zero were excluded. The 
MIC, CV2, and F-score extracted 23,157 genes respec-
tively. Next, the machine learning models combined with 
incremental feature selection (IFS) were used to deter-
mine the optimal gene subsets. (Fig. 2A, B, and C). Based 
on five-fold cross-validation, single-cell gene expression 
matrices (Normalization of raw read count) were used as 
input features to train machine learning models (SVM, 
RFC, XGBoost and Lightgbm).

The train dataset results showed that MIC combined 
with SVM (MIC_SVM) achieved optimal prediction 
performance using top 110 genes, with the accuracy of 
97.23% (Table 1). It is worth noting that the four machine 

Fig. 1 The workflow of constructing NRTPredictor
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learning models combined with the MIC and F-score also 
obtained superior prediction performance. To avoid the 
MIC and F-score having the same gene preference, we 
selected the top 110 genes in the score ranking of the two 

feature selection methods for comparison. As observed 
from Fig.  2D, MIC and F-score have few intersections 
and sufficiently differences. Using the 110 optimal genes 
on test data, MIC_SVM also predicted the best perfor-
mance, with accuracy, precision, recall, and F1-meas-
ure of 96.72%, 95.15%, 94.84 and 94.92%, respectively 
(Table 2).

NRTPredictor construction and performance in validated 
datasets
To further improve the performance of the model, we 
integrated the above four basic classifiers (SVM, RFC, 
Lightgbm and XGBoost) based on different weight 
assignments, called NRTPredictor. Ensemble models 
outperform individual models, with accuracy, precision, 
recall, and F1-measure of 98.01%, 95.63%, 95.45, and 
95.95%, respectively. The receiver operating character-
istic (ROC) curve and confusion matrix further verified 
the prediction performance of the NRTPredictor in six 
rice root cell subpopulations, and the low misclassifica-
tion rate proved the demonstrated power of the NRT-
Predictor (Fig.  3A and B). To explore the scalability of 

Fig. 2 The results of feature selection. A, B and C The IFS curves show the performance of three feature selections (CV2, F‑score and MIC) 
and the four classifiers in different gene subsets. D Comparative Venn diagram of the top 110 genes in MIC and F‑score

Table 1 Performance evaluation of different feature selection 
combined with machine learning schemes (Train dataset)

Method Feature selection No. of features Accuracy %

Lightgbm F‑score 150 96.53

XGBoost F‑score 430 97.88

SVM F‑score 180 96.34

RFC F‑score 210 94.41

Lightgbm CV2 20,000 97.11

XGBoost CV2 20,000 97.59

SVM CV2 7000 94.22

RFC CV2 14,000 89.71

Lightgbm MIC 100 95.49

XGBoost MIC 100 96.59

SVM MIC 110 97.23

RFC MIC 120 93.55
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the model, we trained NRTPredictor on the Arabidopsis 
dataset, and the results showed that NRTPredictor still 
had optimal prediction performance in both the training 
and test sets (Additional file 2: Table S3).

In addition, we have carried out a performance com-
parison between the pseudobulk differential expression 
analysis and our proposed NRTPredictor method. Nota-
bly, the pseudobulk analysis identified 1216 genes (Addi-
tional file  2: Table  S4) overlapping with 98 of the 110 
genes mined by our method (Additional file 1: Figure S2). 
However, ensemble model exhibited superior predictive 
performance when using the 110 genes (Tables 1 and 2). 
Thus, while the pseudobulk analysis may identify more 
differentially expressed genes, the 110 genes identified by 
our method more accurately represented cell subpopula-
tions with less computational complexity.

Investigating NRTPredictor model interpretability
To explain the performance of the proposed model, 
NRTPredictor gene set (110 marker genes) was extracted 
and visualized. The Uniform Manifold Approximation 
and Projection (UMAP) of 3,463 single cells indicated 
that the overall performance of the 110 marker genes 
was significantly better than all genes (Fig.  3C and D). 
Specifically, samples from different categories appeared 
almost intermixed during the clustering process utiliz-
ing all genes (Fig.  3C). However, using the 110 optimal 
genes yields a clear distribution of cell subpopulations, 
showing favorable clustering results (Fig.  3D). We also 
performed a correlation analysis of 110 marker genes, 
and the same subpopulation of cells showed strong cor-
relation (Fig.  3E). These genes can be used to classify 
subpopulations of rice root tip cells. Moreover, by ana-
lyzing the expression of 110 genes in six cell subpopu-
lations, high expression was found in Stele, Root_hair, 

and Epidermis, and low expression was found in Cortex 
(Fig.  3F). Accurate capture of genes involved in lineage 
identification helps to understand the cell subpopulations 
in rice root tips. We observed that LOC_Os02g44310 and 
LOC_Os10g40520 were specifically expressed in Cor-
tex. LOC_Os07g33997, LOC_Os01g64520 and LOC_
Os06g46799 respectively exhibited high specificity and 
expression in Endodermis, Epidermis and Stele, while 
LOC_Os07g35860 and LOC_Os03g25320 were highly 
expressed in Epidermis (NRH) (Fig.  4A, Additional 
file  1: Figure S3, and Additional file  2: Table  S5). These 
highly ranked genes can be used as biomarkers to iden-
tify subpopulations of rice root cells and provide some 
support for further biological findings (Additional file 2: 
Table S5). In addition, we also successfully captured some 
reported cell subpopulation marker genes (Fig. 4B), such 
as LOC_Os03g25280, LOC_Os01g18970, and LOC_
Os07g44280 [12, 18].

Expression analysis of NRTPredictor gene set
Further, we explored the representative capacity of 110 
marker genes in the biological landscape. We utilized 
Scanpy to compare gene expression levels between the 
top 20 genes within each cell subpopulation and their 
expression levels across the remaining five clusters. For 
example, the expression levels of LOC_Os12g36210, 
LOC_Os3g26820, and LOC_Os04g31520 in the Cor-
tex cell subpopulation were higher than their sum in the 
remaining five cell subpopulations, respectively (Fig. 4C). 
For the Epidermis, LOC_Os10g32980, LOC_Os01g54620 
and LOC_Os07g44280 show high levels of expression 
and they can be potential marker genes (Additional file 1: 
Figure S4). The results demonstrated that NRTPredictor 
had irreplaceable advantages in processing scRNA-seq 
data and does not rely on a priori biological background. 

Table 2 Performance comparison between NRTPredictor and the other algorithms (Test dataset)

Method Feature selection No. of features Accuracy % Precision % Recall % F1-measure %

Lightgbm F‑score 150 96.53 94.27 93.37 93.78

XGBoost F‑score 430 97.88 96.48 96.33 96.39

SVM F‑score 180 96.34 94.02 93.35 93.66

RFC F‑score 210 94.41 93.09 85.51 88.14

Lightgbm CV2 20,000 97.11 95.48 94.49 94.97

XGBoost CV2 20,000 97.59 96.27 95.56 95.89

SVM CV2 7000 94.22 93.45 89.92 91.27

RFC CV2 14,000 89.71 88.02 85.43 85.37

Lightgbm MIC 100 95.49 94.49 93.70 94.02

XGBoost MIC 100 96.59 94.80 94.56 94.61

SVM MIC 110 96.72 95.15 94.84 94.92

RFC MIC 120 93.55 91.18 81.17 85.18

NRTPredictor MIC 110 98.01 95.63 95.45 95.95
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Using multiple genes to characterize cell subpopulations 
of rice root tip could have greater ability to mark. We 
showed the top six specific genes with the highest expres-
sion in each cell subpopulation. As shown in Fig.  4D, 

when the co-expression of LOC_Os07g07790, LOC_
Os06g46799, LOC_Os07g07860, and LOC_Os01g15830 
is observed at high expression levels within a specific cell, 
that cell can be identified as a Stele cell.

Fig. 3 Predictive performance of NRTPredictor. A ROC curves for NRTPredictor on training set. B The confusion matrix shows the accuracy 
of NRTPredictor using 110 genes from MIC_SVM algorithm on test dataset. C and D The clustering effect on 3463 cells was evaluated using 110 
marker genes and all genes (C represents all genes, D represents the 110 marker genes). Each point represents a sample in the dataset, and different 
categories of samples are given different colors. E Correlation analysis of six rice root cell subpopulations at the level of 110 marker genes. F 
Boxplots of Mean expression levels (Normalization of raw read count) of 110 marker genes in six rice root cell subpopulations
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Single-cell expression profiles containing all genes 
and 110 genes, respectively, were used as input to con-
struct partition-based graph abstraction (PAGA) to 
describe the biological landscape (Fig. 4E). On the graph, 
the same topological structure was shown, such as the 
strong connections between Epidermis (NRH) and Root 
hair, suggesting that NRTPredictor screened for key 

molecular markers and removed redundant information 
(Fig.  4E). We performed Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis on 110 genes 
to explore their functions in key biological pathways 
and processes. (Fig.  4F and Additional file  2: Table  S6). 
The results exhibited that a large number of genes were 
enriched in the phenylpropanoid biosynthesis pathway, 

Fig. 4 Computational analysis of 110 marker genes. A UMAP shows potential marker genes for rice root cell fate determination. B The marker 
genes of rice root cell subpopulations have been reported. C Comparison of marker genes selected by MIC_SVM (110 marker genes) using split 
violin plots. The expression level of marker genes in specific cells is shown on the left (Blue), and the total expression level in the remaining five cell 
types is shown on the right (Orange). D High expression marker genes screened by Scanpy. E Expression trajectory analysis of 110 marker genes 
(downward) and all genomes (upward) of rice root cell subpopulations colored by cell type using PAGA. The thicker the line, the closer the cell 
connection. F KEGG enrichment analysis of 110 marker genes
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suggesting that these genes may be involved in the reg-
ulation of lignin and flavonoid synthesis, which played 
critical roles in plant growth and development, abiotic 
and biotic stresses [19–21].

Related studies reveal that proteins encoded by 
OsCAD2 (LOC_Os02g09490, Os02g0187800) play 
a role in monolignol biosynthesis [22]. The expres-
sion of OsCAD2 was most tightly associated with the 
transcription of genes related to lignin biosynthesis, 
indicating that OsCAD2 is primarily responsible for 
monocotyledonous lignin biosynthesis in rice [23]. In 
addition, caffeic acid O-methyltransferase (COMT, LOC_
Os08g06100, Os08g0157500), encoded in sorghum, has 
been shown to be one of the key enzymes in monolignol 
biosynthesis [24]. Result showed that LOC_Os02g09490 
(Os02g0187800) and LOC_Os08g06100 (Os08g0157500) 
are specifically expressed in Epidermis cells (Additional 
file 2: Table S4 and S7), which was closely related to the 
protective function of root tip Epidermis cells in soil.

Multi-omics data integration of scRNA-seq and Bulk 
RNA-seq
To simultaneously define expression changes at the 
global and cellular levels, we also performed bulk RNA-
seq analysis on rice root cells under stress and control 
samples in parallel. The PPRD database has curated a 
substantial collection of publicly available rice RNA-seq 
data, enabling users to query the expression levels of 
genes in various tissues, developmental stages, abiotic 
and biotic stresses conditions [25]. Based on the PPRD 
database, we revealed that all 12 genes enriched in the 
phenylpropanoid biosynthesis pathway were expressed at 
high levels in the root, demonstrating that the key core 
genes were screened (Additional file  1: Figure S5). We 
further investigated the expression profiles of these 12 
genes under stress conditions by querying PPRD data-
base, and found their aberrant expression under salt, pi, 
and flooding stress (Additional file 1: Figure S6). In addi-
tion, six of these genes were expressed at high levels in 
Epidermis cell subpopulations, suggesting that Epidermis 
cells play a major role in regulation under stress condi-
tions (Additional file  1: Figure S6). We then focused on 
the bulk RNA-seq-specific expression patterns related 
to salt stress, and the results showed that Epidermis 
cell subpopulations have a positive role in studying the 
molecular mechanism of salt stress in rice (Additional 
file 1: Figure S7).

Webserver implementation
By this research, the NRTPredictor webserver has been 
established and is freely available at https:// www. cgris. 

net/ nrtp. The home user interface of NRTPredictor 
was shown in Fig. 5. Click on the “Predictor” button to 
enter the service module. Researchers can submit sim-
ple CSV file with gene expression matrix as the input. 
Click on the “Submit”, the NRTPredictor webserver will 
process the submitted tasks, predict and return result 
file. We also provided the example file and step-by-
step guide for users, which can be seen in the ‘Tutorial’ 
module of web service.

Conclusion
A long-standing problem in scRNA-seq analysis of rice 
roots is that there are very few marker genes for cell 
types [26, 27]. Moreover, manual assignment of rice 
root cell types can result in high variability of cell anno-
tation between research groups and poor reproducibil-
ity in cell identification between experiments [27, 28].

In this study we presented NRTPredictor, an expres-
sion atlas-based ensemble learning framework for 
modeling scRNA-seq data. NRTPredictor, which uses 
three feature selection methods and four machine 
learning algorithms to access global gene expression 
patterns and molecular events in rice root cells, is the 
first study to combine single-cell rice data with artificial 
intelligence. Experimental results on test datasets and 
cluster analysis demonstrated the effectiveness of our 
proposed NRTPredictor, which allowed researchers to 
perform automatic annotation of cells of interest. With 
NRTPredictor, we also identified a set of genes that 
could be robust cell-type markers for subpopulations of 
rice root tip cells. Visualization of the expression pat-
terns of the optimal gene set showed that the optimal 
gene set retained the main patterns of the original biol-
ogy and has great potential to annotate rice scRNA-seq 
datasets. We integrated the scRNA-seq and bulk RNA-
seq to reveal that Epidermis cell subpopulations play 
a central role in rice response to flooding, salt and pi 
stress.

While this study provides valuable insights, it is 
important to acknowledge its limitations. One major 
constraint is the small sample size and the lack of exter-
nal datasets to validate the model. The collaborative 
effort in data collection may facilitate improving the 
model. Despite this potential limitation of the current 
study, our work provides a resource to study the physi-
ological functions of rice root cell types at the molecu-
lar level and at single-cell resolution and to reveal the 
unique molecular events that drive the development of 
resistant cells in rice. We hope that NRTPredictor will 
be a powerful bioinformatics tool providing insight 
into the genetic basis of cell fate decisions in rice roots, 

https://www.cgris.net/nrtp
https://www.cgris.net/nrtp
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which is indispensable for interpreting cell-specific 
functions.

Methods and materials
Dataset construction and Preprocessing
Single-cell transcriptome data from root tips of Nip-
ponbare containing 3463 cells were collected from 
the National Center for Biotechnology Information 
(GSE146035) [12]. The dataset covers specific rice root 
cell subpopulations of interest and is easily accessible, 
ensuring transparency and verifiability. In addition, the 
dataset has a moderate sample size and high-quality 
sequencing data, and was therefore selected for our 
analysis. Based on the same processing method used by 
Liu et  al. [12], the scRNA-seq data was aligned to the 
Nipponbare reference genomes [29], respectively, and 
counted using the Cell Ranger pipelines (version 2.0, 
10 × Genomics), resulting in 39,219 genes. The data-
set has six different cell subpopulations, which are 
Root hair (121), Epidermis (1000), Stele (1000), Cortex 
(1000), Epidermis (NRH) Near_root (131), Endodermis 
(211). To benefit the model evaluation, the dataset used 
in this research was split into training and test datasets 
according to 7:3. More dataset details are provided in the 

Supporting Information (Additional file 2: Table S1). The 
Python packages, Numpy (version 1.21.6), Pandas (ver-
sion1.3.5) and Scanpy (version 1.9.1) were used to read 
and process the data.

In addition, we constructed an Arabidopsis root tips 
scRNA-seq dataset containing a total of 4130 cells, and 
available from the National Center for Biotechnology 
Information (GSE152766) [30]. Based on the same strat-
egy, the scRNA-seq data were aligned to an Arabidopsis 
genome BSgenome object (“BSgenio.Athaliana.TAIR.
TAIR9”) with an annotation file for the TAIR10 gene 
and counted using the Cell Ranger pipelines, resulting 
in 25,261 genes [30]. The dataset, including six different 
cell subpopulations, Endodermis (546), Lateral Root Cap 
(832), Atrichoblast (564), Trichoblast (721), Cortex (696) 
and Procambium (771), is split into a 70% training data-
set and a 30% test dataset. More dataset details are pro-
vided in the Supporting Information (Additional file  2: 
Table S2).

Bulk RNA-seq data of rice root tissues were collected 
from the National Center for Biotechnology Informa-
tion (PRJNA639386) [31]. We used root and Nipponbare 
as parameters to filter in the PPRD database and com-
bined publication time and academic impact to select 

Fig. 5 NRTPredictor model web server platform
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PRJNA639386 for further study. Yu et al. [25] described 
dataset processing, which included raw read alignments 
to Nipponbare reference genomes (Os-Nipponbare ref-
erence IRGSP-1.0) using HISAT2 (version 2.1.0) with 
parameters (“-max-intron-length = 20,000 -k 1 -dta 
–n-ceil -L,0,0.15”) and removed duplicated reads using 
SAMtools rmdup (version 1.4.1) (See references for more 
details). The data contain transcriptional expression pro-
files of root tissues of Nipponbare seedlings collected at 
0.5 h and 48 h after NaCl (140 mm) treatment. Six uni-
form seedlings were selected for each group.

F-score
F-score is a simple and effective feature selection method, 
which estimates the weight of each feature by detecting 
the balance between quantity and quality, to eliminate 
redundant and noisy information contained in features 
[32, 33].

where xi represents the average of the i th feature of the 
whole. x(+)

i  is the number of positive samples, x(−)
i  is the 

number of negative samples. x(+)

k ,i , x
(−)
i,i  are the i-th feature 

of the k-th positive and negative instances, respectively. 
The larger the F-score value, the stronger the distinguish-
ing degree of the feature among different categories.

MIC
The core idea of MIC is: if there is a relationship between 
two variables, there will be a grid that can split the scat-
ter graph of the two variables to encapsulate this rela-
tionship, and then normalize these mutual information 
values to ensure a fair comparison between grids of dif-
ferent dimensions [34–36]

where I(X;Y ) representing Mutual Information Entropy, 
is a measure of the information about variable X (or Y  ) 
contained in variable Y  (or X).

Pseudobulk differential expression analysis
Recent studies have demonstrated the superior perfor-
mance of pseudobulk differential expression analysis in 
single-cell RNA-sequencing analysis [37]. Bioconductor’s 
SingleCellExperiment class was used to store single-cell 
assay data [38]. Differential expression analysis was per-
formed on the scRNA-seq data (3463 cells, 39,217 genes) 
using DESeq2 [39], and shrinkage estimation was applied 
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to the dispersion and fold change to improve the stability 
and interpretability of the estimates (log2Foldchange > 2 
or < − 2, P value < 0.05, and pAdjustMethod = “BH”). The 
DESeq2 package is available at http:// www. bioco nduct or. 
org/ packa ges/ relea se/ bioc/ html/ DESeq2. html.

Mean gene expression profiles in different cell sub-
populations were analyzed using a scRNA-seq dataset of 
Nipponbare root tips. The raw read count was first nor-
malized (Log2(count + 1)), and then the data was mean 
valued. The Python package Matplotlib (version 3.5.3) 
was used to plot boxplots.

Biological analysis and visualization
We conducted a more comprehensive analysis and evalu-
ation of the predictive power of the 110 marker genes in 
cell subpopulation identification. The Clustering analy-
sis software implemented in Scanpy (version 1.9.1) was 
used to determine specific cell subpopulations of marker 
genes, with all parameters selected by default. Using Pan-
das (version 1.4.4), perform Pearson correlation analysis 
on six rice root cell populations at the level of 110 marker 
genes. PAGA analysis was performed using Scanpy, and 
UMAP visualization utilized the python package umap-
learn version 0.3.9, with all parameters set to default. 
Specifically, cell trajectory analysis was performed using 
PAGA implemented on Scanpy for both the original fea-
ture dataset and the dataset with only 110 genes, with 
default parameters. We used the enrichKEGG function 
in the clusterProfiler package (version 4.6.2) to perform 
functional enrichment analysis. We employed the “org.
Osativa.eg.db” software package (https:// github. com/ 
xuzho ugeng/ org. Osati va. eg. db) to facilitate the conver-
sion between MSU and RAP-DB.

Model construction of NRTPredictor
Nipponbare root cell subpopulation gene expression 
profiles were used as input features to train the machine 
learning model. In exploratory data analysis, essential 
relationships and weights between features can be used 
to filter out weaker or less interesting information. MIC 
[34–36], CV2 [40], and F-score [41, 42] were used to 
score and rank the weights of each gene in the training 
model, respectively. The genes with weight scores less 
than or equal to zero were also removed.

The incremental feature selection (IFS) [43, 44] was 
applied to train XGBoost [45], SVM [46], Lightgbm [47], 
and RFC [48] base models, and 110 optimal genes were 
identified by comparing their predictive performance. 
The ensemble methods in MLxtend cover the majority 
of voting, stacking, and stacked generalization. Based on 
the 110 optimal gene features and model performance, 
the above four models were integrated to construct the 
ensemble model (NRTPredictor) through the weight 

http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
https://github.com/xuzhougeng/org.Osativa.eg.db
https://github.com/xuzhougeng/org.Osativa.eg.db
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voting strategy. Regarding the estimation of the voting 
weights, we determined the weights based on the pre-
dictive performance of each individual model (SVM: 1.0, 
RFC: 1.0, Lightgbm: 1.0 and XGBoost: 1:0). MLxtend is 
available at https:// github. com/ rasbt/ mlxte nd.

Model evaluation
The four classic metrics were used to quantify the perfor-
mance of model predictions, including Accuracy (Acc), 
Recall (Re), Precision (Pre), and F1 measure (F1), defined 
as [49–54]:

where TP,TN , FPandFN  represent the numbers of true 
positives, true negatives, false positives and false nega-
tives, respectively. In addition, ROC was used to evaluate 
the performance of the NRTPredictor [55].

Abbreviations
scRNA‑seq  Single‑cell transcriptome
XGBoost  EXtreme Gradient Boosting
MIC  Maximal information coefficient
IFS  Incremental feature selection
SVM  Support vector machine
RFC  Random Forest Classifier
UMAP  Uniform Manifold Approximation and Projection
PAGA   Partition‑based graphical abstraction
KEGG  Kyoto Encyclopedia of Genes and Genomes
ROC  The receiver operating characteristic curve
MIC_SVM  MIC combined with SVM

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13007‑ 023‑ 01092‑0.

Additional file 1: Figure S1. The workflow of constructing NRTPredictor. 
Figure S2. Comparative Venn diagram of the top 110 genes of MIC and 
1216 genes of Pseudobulk. Figure S3. UMAP shows potential marker 
genes for rice root cell fate determination. Figure S4. Comparison of 
marker genes selected by MIC_SVM using split violin plots. The expression 
level of marker genes in specific cells is shown on the left (Blue), and the 
total expression level in the remaining five cell types is shown on the right 
(Orange). Figure S5. Expression levels of 12 genes in different tissues. 
Figure S6. Association of cell subpopulations with different stress condi‑
tions. Small circles represent genes and marker cell subpopulations, large 
circles represent stress states. Based on the PPRD database, we obtained 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Recall =
TP

TP + FN

(5)Precision =
TP

TP + FP

(6)F1 measure =
2 ∗ (precision ∗ recall)

precision+ recall

RNA‑seq data statistics for rice under stress conditions when searching for 
the keywords “Nipponbare” and “root tips”. Subsequently, we annotated 
the 12 genes we unearthed to understand their associations with different 
cell subpopulations and their relationships with various stress conditions. 
Figure S7 Transcript levels of root tissues collected from Nipponbare 
seedlings treated with NaCl for 0.5 h and 48 h.

Additional file 2: Table S1. The cell subpopulations of Nipponbare root 
tips data composition. Table S2. The cell subpopulations of Arabidopsis 
root tips data composition. Table S3. Performance comparison between 
NRTPredictor and the other algorithms (Arabidopsis dataset). Table S4. 
Pseudobulk differential expression analysis of rice root scRNA‑seq data 
(3463 cells，39,217 genes) using DESeq2. Table S5. Marker genes and 
cell states. Table S6. Results of Kyoto Encyclopedia of Genomes (KEGG) 
enrichment analysis of 110 marker genes. Table S7. Annotation form for 
110 marker genes.

Acknowledgements
We thank the Biotechnology Research Institute, Chinese Academy of Agricul‑
tural Sciences provided resources in performing these studies. We also thank 
Pengfei Liang for his contribution to the revision of the manuscript.

Author contributions
YC and WF directed the research design. YC collected the data. HW, YL and SY 
designed the models and tested the model performance. JH completed the 
main coding work of the web server. HW and JT analyzed the results. HW, YL 
and SY drafted the manuscript, and YC, WF and YC commented on and revised 
drafts.

Funding
This work was supported by the National Nature Scientific Foundation of 
China (32371996), and the Central Public‑interest Scientific Institution Basal 
Research Fund (Y2022LM14) of China and the Agricultural Science and Tech‑
nology Innovation Program (CAAS‑ASTIP‑2021‑ICS01).

Availability of data and materials
All data generated or analyzed during this study are included in this published 
article.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
I would like to declare on behalf of my co‑authors that the work described 
was original research that has not been published previously and is not under 
consideration for publication elsewhere, in whole or in part. No conflict of 
interest exists in the submission of this manuscript.

Received: 14 April 2023   Accepted: 15 October 2023

References
 1. Takehisa H, Sato Y, Igarashi M, Abiko T, Antonio BA, Kamatsuki K, Minami 

H, Namiki N, Inukai Y, Nakazono M, et al. Genome‑wide transcriptome 
dissection of the rice root system: implications for developmental and 
physiological functions. Plant J. 2012;69(1):126–40.

 2. Lin Y, Wang H, Chen Y, Tan J, Hong J, Yan S, Cao Y, Fang W. Modelling 
distributions of Asian and African rice based on MaxEnt. Sustainability. 
2023;15(3):2765.

 3. Qian Q, Guo L, Smith SM, Li J. Breeding high‑yield superior quality hybrid 
super rice by rational design. Natl Sci Rev. 2016;3(3):283–94.

 4. Rebouillat J, Dievart A, Verdeil JL, Escoute J, Giese G, Breitler JC, Gantet P, 
Espeout S, Guiderdoni E, Périn C. Molecular genetics of rice root develop‑
ment. Rice. 2008;2(1):15–34.

https://github.com/rasbt/mlxtend
https://doi.org/10.1186/s13007-023-01092-0
https://doi.org/10.1186/s13007-023-01092-0


Page 11 of 12Wang et al. Plant Methods          (2023) 19:119  

 5. Garg T, Singh Z, Chennakesavulu K, Mushahary KKK, Dwivedi AK, Varap‑
parambathu V, Singh H, Singh RS, Sircar D, Chandran D, et al. Species‑
specific function of conserved regulators in orchestrating rice root 
architecture. Development. 2022;149(9):dev200381.

 6. Meng F, Xiang D, Zhu J, Li Y, Mao C. Molecular mechanisms of root devel‑
opment in rice. Rice. 2019;12(1):1.

 7. Benkova E, Hejatko J. Hormone interactions at the root apical meristem. 
Plant Mol Biol. 2009;69(4):383–96.

 8. Iyer‑Pascuzzi A, Simpson J, Herrera‑Estrella L, Benfey PN. Functional 
genomics of root growth and development in Arabidopsis. Curr Opin 
Plant Biol. 2009;12(2):165–71.

 9. Shaw R, Tian X, Xu J. Single‑cell transcriptome analysis in plants: advances 
and challenges. Mol Plant. 2021;14(1):115–26.

 10. Hammond TR, Dufort C, Dissing‑Olesen L, Giera S, Young A, Wysoker A, 
Walker AJ, Gergits F, Segel M, Nemesh J, et al. Single‑cell RNA sequenc‑
ing of microglia throughout the mouse lifespan and in the injured brain 
reveals complex cell‑state changes. Immunity. 2019;50(1):253.

 11. Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, Turco GM, 
Zhu Y, O’Malley RC, Brady SM, et al. High‑throughput single‑cell transcrip‑
tome profiling of plant cell types. Cell Rep. 2019;27(7):2241‑2247 e2244.

 12. Liu Q, Liang Z, Feng D, Jiang SJ, Wang YF, Du ZY, Li RX, Hu GH, Zhang 
PX, Ma YF, et al. Transcriptional landscape of rice roots at the single‑cell 
resolution. Mol Plant. 2021;14(3):384–94.

 13. Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. 
Spatiotemporal developmental trajectories in the Arabidopsis root 
revealed using high‑throughput single‑cell RNA sequencing. Dev Cell. 
2019;48(6):840‑852 e845.

 14. Kiselev VY, Andrews TS, Hemberg M. Publisher correction: challenges 
in unsupervised clustering of single‑cell RNA‑seq data. Nat Rev Genet. 
2019;20(5):310.

 15. Zou G, Lin Y, Han T, Ou‑Yang L. DEMOC: a deep embedded multi‑omics 
learning approach for clustering single‑cell CITE‑seq data. Brief Bioinform. 
2022;23(5):bbac347.

 16. Zhang Z, Cui F, Cao C, Wang Q, Zou Q. Single‑cell RNA analysis reveals the 
potential risk of organ‑specific cell types vulnerable to SARS‑CoV‑2 infec‑
tions. Comput Biol Med. 2021;140:105092.

 17. Jin S, Zeng X, Xia F, Huang W, Liu X. Application of deep learning methods 
in biological networks. Brief Bioinform. 2021;22(2):1902–17.

 18. Zhang TQ, Xu ZG, Shang GD, Wang JW. A Single‑cell RNA sequencing 
profiles the developmental landscape of Arabidopsis root. Mol Plant. 
2019;12(5):648–60.

 19. Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant 
development and plant‑environment interactions. J Integr Plant Biol. 
2021;63(1):180–209.

 20. Yuan L, Grotewold E. Plant specialized metabolism. Plant Sci. 
2020;298:110579.

 21. Jiang N, Doseff AI, Grotewold E. Flavones: from biosynthesis to health 
benefits. Plants. 2016;5(2):27.

 22. Tobias CM, Chow EK. Structure of the cinnamyl‑alcohol dehydrogenase 
gene family in rice and promoter activity of a member associated with 
lignification. Planta. 2005;220(5):678–88.

 23. Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding C, 
et al. Nitrogen fertilizer application affects lodging resistance by altering 
secondary cell wall synthesis in japonica rice (Oryza sativa). J Plant Res. 
2017;130(5):859–71.

 24. Saluja M, Zhu F, Yu H, Walia H, Sattler SE. Loss of COMT activity reduces 
lateral root formation and alters the response to water limitation in sor‑
ghum brown midrib (bmr) 12 mutant. New Phytol. 2021;229(5):2780–94.

 25. Yu Y, Zhang H, Long Y, Shu Y, Zhai J. Plant public RNA‑seq database: a 
comprehensive online database for expression analysis of ~45 000 plant 
public RNA‑Seq libraries. Plant Biotechnol J. 2022;20(5):806–8.

 26. Li G, Xu A, Sim S, Priest JR, Tian X, Khan T, Quertermous T, Zhou B, Tsao 
PS, Quake SR, et al. Transcriptomic profiling maps anatomically pat‑
terned subpopulations among single embryonic cardiac cells. Dev Cell. 
2016;39(4):491–507.

 27. Galdos FX, Xu S, Goodyer WR, Duan L, Huang YV, Lee S, Zhu H, Lee C, Wei 
N, Lee D, et al. devCellPy is a machine learning‑enabled pipeline for auto‑
mated annotation of complex multilayered single‑cell transcriptomic 
data. Nat Commun. 2022;13(1):5271.

 28. Stegle O, Teichmann SA, Marioni JC. Computational and analytical chal‑
lenges in single‑cell transcriptomics. Nat Rev Genet. 2015;16(3):133–45.

 29. Zhang Q, Liang Z, Cui X, Ji C, Li Y, Zhang P, Liu J, Riaz A, Yao P, Liu M, 
et al. N(6)‑Methyladenine DNA methylation in japonica and indica rice 
genomes and its association with gene expression, plant development, 
and stress responses. Mol Plant. 2018;11(12):1492–508.

 30. Shahan R, Hsu CW, Nolan TM, Cole BJ, Taylor IW, Greenstreet L, Zhang S, 
Afanassiev A, Vlot AHC, Schiebinger G, et al. A single‑cell Arabidopsis root 
atlas reveals developmental trajectories in wild‑type and cell identity 
mutants. Dev Cell. 2022;57(4):543‑560 e549.

 31. Cheng X, He Q, Tang S, Wang H, Zhang X, Lv M, Liu H, Gao Q, Zhou Y, 
Wang Q, et al. The miR172/IDS1 signaling module confers salt tolerance 
through maintaining ROS homeostasis in cereal crops. New Phytol. 
2021;230(3):1017–33.

 32. Liang P, Zheng L, Long C, Yang W, Yang L, Zuo Y. HelPredictor models 
single‑cell transcriptome to predict human embryo lineage allocation. 
Brief Bioinform. 2021. https:// doi. org/ 10. 1093/ bib/ bbab1 96.

 33. He S, Guo F, Zou Q, Ding H. MRMD2.0: a python tool for machine learning 
with feature ranking and reduction. Curr Bioinform. 2020;15(10):1213–21.

 34. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh 
PJ, Lander ES, Mitzenmacher M, Sabeti PC. Detecting novel associations in 
large data sets. Science. 2011;334(6062):1518–24.

 35. Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C. 
Minerva and minepy: a C engine for the MINE suite and its R python and 
MATLAB wrappers. Bioinformatics. 2013;29(3):407–8.

 36. Zhou X, Wang X, Dougherty ER, Russ D, Suh E. Gene clustering based on 
clusterwide mutual information. J Comput Biol. 2004;11(1):147–61.

 37. Murphy AE, Skene NG. A balanced measure shows superior performance 
of pseudobulk methods in single‑cell RNA‑sequencing analysis. Nat 
Commun. 2022;13(1):7851.

 38. Todorovic V. Orchestrating single‑cell analysis with bioconductor. Nat 
Methods. 2020;17(2):242–242.

 39. Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA‑seq data with DESeq2. Genome Biol. 2014;15(12):550.

 40. Liang P, Zheng L, Long C, Yang W, Yang L, Zuo Y. HelPredictor models 
single‑cell transcriptome to predict human embryo lineage allocation. 
Brief Bioinform. 2021;22(6):bbab196.

 41. Liang P, Yang W, Chen X, Long C, Zheng L, Li H, Zuo Y. Machine learn‑
ing of single‑cell transcriptome highly identifies mRNA signature by 
comparing F‑score selection with DGE analysis. Mol Ther Nucleic Acids. 
2020;20:155–63.

 42. Wang H, Liang P, Zheng L, Long C, Li H, Zuo Y. eHSCPr Discriminating the 
cell identity involved in endothelial to hematopoietic transition. Bioinfor‑
matics. 2021;37:2157.

 43. Wang H, Zhang ZY, Li HC, Li JZ, Li HS, Liu MZ, Liang PF, Xi QLMG, Xing 
YQ, Yang L, et al. A cost‑effective machine learning‑based method for 
preeclampsia risk assessment and driver genes discovery. Cell Biosci. 
2023;13(1):41.

 44. Zhang ZY, Yang YH, Ding H, Wang D, Chen W, Lin H. Design powerful 
predictor for mRNA subcellular location prediction in homo sapiens. Brief 
Bioinform. 2021;22(1):526–35.

 45. Ester M, Kriegel HP, Xu X. XGBoost: a scalable tree boosting system. In: 
proceedings of the 22Nd ACM SIGKDD international conference on 
knowledge discovery and data mining. Geogr Anal, 2022;785:2016.

 46. Chang C‑C, Lin C‑J. Libsvm: a library for support vector machines. ACM 
Trans Intell Syst Technol. 2011;2(3):1–27.

 47. Yan J, Xu Y, Cheng Q, Jiang S, Wang Q, Xiao Y, Ma C, Yan J, Wang X. 
LightGBM: accelerated genomically designed crop breeding through 
ensemble learning. Genome Biol. 2021;22(1):271.

 48. Scornet E. Random forests and kernel methods. Ieee T Inform Theory. 
2016;62(3):1485–500.

 49. Joshi P, Masilamani V, Ramesh R. An ensembled SVM based approach for 
predicting adverse drug reactions. Curr Bioinform. 2021;16(3):422–32.

 50. Geete K, Pandey M. Robust transcription factor binding site prediction 
using deep neural networks. Curr Bioinform. 2020;15(10):1137–52.

 51. Ao C, Zhou W, Gao L, Dong B, Yu L. Prediction of antioxidant proteins 
using hybrid feature representation method and random forest. Genom‑
ics. 2020;112(6):4666–74.

 52. Fu X, Zhu W, Cai L, Liao B, Peng L, Chen Y, Yang J. Improved pre‑miRNAs 
identification through mutual information of pre‑miRNA sequences and 
structures. Front Genet. 2019;10:119.

https://doi.org/10.1093/bib/bbab196


Page 12 of 12Wang et al. Plant Methods          (2023) 19:119 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 53. Fu X, Liao B, Zhu W, Cai L. New 3D graphical representation for RNA struc‑
ture analysis and its application in the pre‑miRNA identification of plants. 
RSC Adv. 2018;8(54):30833–41.

 54. Liu MZ, Zhou J, Xi QLMG, Liang YC, Li HC, Liang PF, Guo YT, Liu M, 
Temuqile T, Yang L, et al. A computational framework of routine test 
data for the cost‑effective chronic disease prediction. Brief Bioinform. 
2023;24(2):bbad054.

 55. Zeng X, Zhang X, Zou Q. Integrative approaches for predicting microRNA 
function and prioritizing disease‑related microRNA using biological 
interaction networks. Brief Bioinform. 2016;17(2):193–203.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Hao Wang  is a doctor student of the Institute of Crop Sciences 
at Chinese Academy of Agricultural Sciences. His research interests 
include bioinformatics.

Yu-Nan Lin  is a master student of the Institute of Crop Sciences 
at Chinese Academy of Agricultural Sciences. His research interest is 
system engineering.

Shen Yan  is a doctor of the Institute of Crop Science at Chine‑
ses Academy of Agricultural Sciences. His research interests include 
bioinformatics.

Jing-Peng Hong  is software engineer of the Institute of Crop 
Sciences at Chinese Academy of Agricultural Sciences. His research 
interest is system engineering.

Jia-Rui Tan  is a Research Assistant of the Institute of Crop Sciences 
at Chinese Academy of Agricultural Sciences. His research field is 
bioinformatics.

Yan-Qing Chen  is an Assistant Researcher of the Institute of Crop 
Sciences at Chinese Academy of Agricultural Sciences. Her research 
interests include crop germplasm information.

Yong-Sheng Cao  is a Professor of the Institute of Crop Sciences at 
Chinese Academy of Agricultural Sciences. His research field is crop 
germplasm information.

Wei Fang  is a Researcher of the Institute of Crop Sciences at Chi‑
nese Academy of Agricultural Sciences. His research field is crop 
germplasm information.


	NRTPredictor: identifying rice root cell state in single-cell RNA-seq via ensemble learning
	Abstract 
	Background 
	Results 
	Conclusion 

	Background
	Results
	Identification of significant genes using feature selection and machine learning
	NRTPredictor construction and performance in validated datasets
	Investigating NRTPredictor model interpretability
	Expression analysis of NRTPredictor gene set
	Multi-omics data integration of scRNA-seq and Bulk RNA-seq
	Webserver implementation

	Conclusion
	Methods and materials
	Dataset construction and Preprocessing
	F-score
	MIC
	Pseudobulk differential expression analysis
	Biological analysis and visualization
	Model construction of NRTPredictor
	Model evaluation

	Anchor 23
	Acknowledgements
	References


