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Abstract 

Background Genomic prediction has become a powerful modelling tool for assessing line performance in plant 
and livestock breeding programmes. Among the genomic prediction modelling approaches, linear based models 
have proven to provide accurate predictions even when the number of genetic markers exceeds the number of data 
samples. However, breeding programmes are now compiling data from large numbers of lines and test environments 
for analyses, rendering these approaches computationally prohibitive. Machine learning (ML) now offers a solution 
to this problem through the construction of fully connected deep learning architectures and high parallelisation 
of the predictive task. However, the fully connected nature of these architectures immediately generates an over-
parameterisation of the network that needs addressing for efficient and accurate predictions.

Results In this research we explore the use of an ML architecture governed by variational Bayesian sparsity in its 
initial layers that we have called VBS-ML. The use of VBS-ML provides a mechanism for feature selection of impor-
tant markers linked to the trait, immediately reducing the network over-parameterisation. Selected markers then 
propagate to the remaining fully connected feed-forward components of the ML network to form the final genomic 
prediction. We illustrated the approach with four large Australian wheat breeding data sets that range from 2665 lines 
to 10375 lines genotyped across a large set of markers. For all data sets, the use of the VBS-ML architecture improved 
genomic prediction accuracy over legacy linear based modelling approaches.

Conclusions An ML architecture governed under a variational Bayesian paradigm was shown to improve genomic 
prediction accuracy over legacy modelling approaches. This VBS-ML approach can be used to dramatically decrease 
the parameter burden on the network and provide a computationally feasible approach for improving genomic pre-
diction conducted with large breeding population numbers and genetic markers.
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Introduction
Genomic Selection (GS), through genomic prediction, 
has proven to be a useful tool for achieving rapid genetic 
gain in livestock and plant breeding programmes. Since 
its inception in [1] genomic prediction approaches have 
mostly focused on using hierarchical linear models for 
assessing the relative genetic merit of lines for pheno-
typic traits of interest, with various prediction accu-
racies developed from these models [2]. Historically, 
these approaches were piecemeal, estimating proxy 
QTL effects using simple marker regression scans of the 
whole genome [1]. This was quickly extended to using 
the complete set of genetic markers in linear based mod-
els by considering the marker effects as random effects 
variables with various distributional properties [3–5]. 
When the number of markers became large, penalization 
methods such as the ones used in [3] and [4], became a 
useful tool for mechanistically pushing small marker 
random effects to zero and giving rise to various Bayes-
ian variable selection methods [6, 7]. Once the number 
of markers became routinely larger than the number 
of individuals being studied, computationally efficient 
methods were developed that re-dimensionalised the 
genetic marker information in the models into an addi-
tive genomic relationship matrix (GRM) that allowed 
direct prediction of the relative performance of lines 
[8–12]. In more complex experimental scenarios, such 
as plant breeding programmes the inclusion of a dense 
GRM in a one-stage linear model can be computationally 
challenging due to requirements to involve the GRM in 
iterative parameter estimation algorithms [13, 14]. As the 
number of breeding lines and the number of testing envi-
ronments increases the model becomes computationally 
cumbersome to solve [13] and modern computing tech-
niques such as matrix algebra parallelisation [15–17] and 
machine learning (ML) approaches [18, 19] have become 
common place in GS research.

ML has now been widely adopted in crop and livestock 
agriculture when there is sufficient data complexity or 
computationally difficult tasks that require undertaking 
[20]. In the context of genomic prediction of agricul-
tural traits, various deep learning techniques have been 
researched to understand their potential to improve pre-
diction accuracy over legacy modelling approaches [18, 
19]. These approaches use the complete set of genetic 
markers spanning the genome as input features to a neu-
ral network and the output, a trait of interest, is optimally 
learned through the network using various computation-
ally intensive statistical modelling techniques. In most 
ML based genomic prediction cases the deep learning 
architecture has consisted of a type of artificial neural 
network, called a multi-layer perceptron (MLP), due to 
its ability to learn a high level of abstraction from the 

complex connection between the phenotype and geno-
type data [21–25]. In crops, such a maize and wheat, 
where grain yield or end use quality traits are highly 
quantitative in nature the use of MLP networks has also 
been shown to improve genomic prediction accuracy 
over more conventional ML approaches, such as convo-
lutional neural networks [25–27].

Neural networks can be potentially complex and fixed 
architectural aspects of the network, such as the number 
of layers and the number of nodes (or neurons) within a 
layer, can be tuned in various ways to optimise the learn-
ing potential of the network [28]. In situations where the 
network becomes highly over-parameterised, various 
dropout techniques have been proposed for reducing 
the computational burden through the reduction of less 
important connections between layers [29, 30]. Histori-
cally, these techniques were based on random dropout 
of neurons or weights between layers [31, 32] but quickly 
expanded to more distributional based methods [33, 
34] that include the use of regularizers such as the L1 or 
Lasso. Extensions of these regularizaton techniques are 
now focussing on using appropriate Bayesian hierarchi-
cal priors [35] to conduct variable selection of important 
markers in the initial stages of the network [36].

The objectives of this study were to evaluate the accu-
racy of a cutting edge ML based approach for conducting 
genomic prediction that involves the variational Bayesian 
sparsity (VBS) technique derived in [35] and L1-regular-
ization for reducing the over-paramaterisation burden 
on the proposed MLP deep learning network. We have 
called this VBS-ML and to illustrate the effectiveness of 
the approach we conducted VBS-ML genomic predic-
tion of grain yield collected from a large wheat breed-
ing panel phenotyped for four years and genotyped with 
a high quality set of SNP markers. We compared the 
results of the newly proposed ML deep learning network 
with a more naive ML network as well as a more classical 
genomic prediction using linear mixed models (LMMs) 
and Bayesian regression methods BayesA and BayesB. In 
nearly all cases the VBS-ML network showed a marked 
improvement in genomic prediction accuracy compared 
to the naive ML network or other approaches. In addi-
tion, the genetic marker features selected from a given 
year or combined years were also shown to more accu-
rately predict subsequent years compared to other pre-
diction methods used in this research. This suggests the 
VBS-ML approach may potentially be a useful genomic 
selection tool for plant breeding programmes.

Material and methods
Plant material and phenotype data
Plant material used within this study consists of early and 
advanced generation breeding lines from within Australian 
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Grain Technologies’ wheat breeding programmes. This 
material was spread across four field trials in the years 
2014, 2016, 2017 and 2018. The 2014 field trial contained 
early and advanced breeding lines, comprised of material 
adapted for southern Australia (early and advanced lines) 
as well as material adapted for western and eastern Aus-
tralia (advanced lines). A total of 10,375 genotypes were 
included in the trial and were planted in non-replicated 
randomised design with randomised grid checks (1 check 
per 11 plots). Further details of this trial can be found in 
[13]. Trials in 2016, 2017 and 2018 contained advanced 
breeding lines adapted to southern Australia. A total of 
2869, 2869 and 2665 genotypes were included in the 2016, 
2017 and 2018 trials respectively, with each of these trials 
planted in a completely randomised design with partial 
replication at a 1.25x level. All trials were sown as small-
scale yield plots of 3  m2 at Roseworthy, South Australia ( −
34.52, 138.69), and managed according to best local prac-
tices. Phenotype data was collected as plot level grain yield 
from a mechanical small-scale plot harvester.

Genotype data
In this research we used a whole genome set of genetic 
markers from a custom 20K SNP Affymetrix array that 
spanned the 21 chromosomes of the wheat genome. 
These markers are known to be of high quality and 
have been used as the basis for several published grains 
research articles [13, 14, 37]. To simplify the usage of 
the markers, we have used imputed markers only where 
missing alleles have been imputed using the k-NN near-
est neighbor algorithm developed in [38] and used exten-
sively in [39] [see 42, norm17]. For all methods below we 
define the genetic marker matrix for a set of lines in any 
given year as M = [m1 . . .mp] of dimension r lines by p 
markers spanning the complete 21 wheat chromosomes.

Adjusted yield derivation
Preceding genomic prediction using linear based models 
and ML we derive an adjusted yield prediction for each 
set of lines within a year using a spatial LMM that par-
titions and estimates genetic and non-genetic sources of 
variation. We specify this model in a general manner to 
allow for independent modelling of each trial conducted 
at Roseworthy. Let ye = [ye1, . . . , yen] be the n raw yield 
observations from a field trial within a year. The LMM 
was then of the form

where µ is the fixed grand mean parameter and 1n is 
an n length vector of ones. The u is a vector of random 
effects partitioned as u = [uT

1 . . .uT
s ]

T with conform-
ably partitioned indicator matrix Ze = [Z1 . . .Zs] . This 

(1)ye = 1nµ+ Zeu+ Zgg + e,

partitioning is typically the result of including multi-
ple random effect terms in the LMM that are required 
to account for non-genetic sources of variation, such as 
design induced effects or non-linear variation that may 
be occurring across the Rows or Range of the experi-
ments. The complete set of random effects follow the 
distribution u ∼ N (0,G) where G = ⊕s

i=1Gi where ⊕ is 
the so-called direct sum structure that generates a block 
diagonal matrix and Gi is typically simplified to σ 2

eiIni . 
Similarly the residual error term, e , was partitioned to 
e = [eT1 . . . eTt ]

T and distributed as e ∼ N (0,R) where 
R = ⊕t

i=1Ri . Here, Ri = σ 2
i �

(ro)
i ⊗�

(ra)
i  containing a 

paramaterization for a separable AR1 by AR1 (AR1 = 
autoregressive process of order 1) correlation process 
that adequately captures the similarity of the observa-
tions across distinct Range and Rows of the experimental 
design for the itth trial within a year. The final term on 
the right hand side of (1), contained a vector of genetic 
effects, g , of length r with an associated indicator matrix 
Zg that assigns the line to the appropriate yield plot in the 
experiment. The genetic effects capture the underlying 
genetic variation of yield across the breeding population 
around the experimental average µ . The distribution of 
the effects are assumed to be g ∼ N (0, σ 2

g I r) where σ 2
g  is 

the genetic variance.
Empirical best linear unbiased predictors (eBLUPs) of 

the genetic effects g̃ were then extracted from the fitted 
LMM and generalized heritabilities were calculated using 
[40]. The techniques of [41] were then used to conduct a 
de-regression to derive adjusted yield values for each line, 
namely

where g̃ i and PEVi are the eBLUP and prediction error 
variance of the ith line respectively and σ̂ 2

g  is the Residual 
Maximum Likelihood (REML) estimate [see 42] of the 
genetic variance.

Linear genomic prediction
We define a general form for the linear genomic predic-
tion model of the adjusted yield, namely

where 1nµ∗ is the grand mean and q is a p length vec-
tor of additive marker effects with a distribution that var-
ies depending on the method used for prediction. In this 
reduced model the residual errors, e∗ , are used to account 
for all non-additive genetic variation and have distribu-
tion e∗ ∼ N (0, σ 2I r).

(2)yi = µ̂+
g̃i

1− PEVi/σ̂ 2
g

, i = 1, . . . , r.

(3)y = 1nµ
∗ +Mq + e∗
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LMM genomic prediction
For cases where the distribution of the marker effects are 
assumed to have an unconditional Gaussian of the form 
q ∼ N (0, σ 2

a Ip) , (3) can be defined as a genomic prediction 
LMM. If p >> r then it is computationally convenient to 
re-write the LMM as

where a is an r length vector of additive line effects 
with distribution a ∼ N (0, σ 2

aGa) . Here, σ 2
a  is the addi-

tive genetic variance, Ga = MMT /s represents an r × r 
additive relationship matrix reflecting the marker based 
relationships between the lines and is scaled using 
s = trace (MMT )/r [43].

Using the techniques of [44], (4) can be solved and the 
genomic predictions can be immediately written as

where

where H = σ 2I r + σ 2
aGa . Typically, σ 2 and σ 2

a  are 
replaced by their Residual Maximum Likelihood (REML) 
estimates and ã becomes an empirically based additive 
genomic prediction of the adjusted yield.

BayesA and BayesB genomic prediction
BayesA and BayesB are a form of hierarchical Bayesian 
regression based on the linear model (3). In this model we 
now consider additional structure for the marker effects, 
q = (q1, . . . , qp) such that the ith marker effect has a distri-
bution of the form

(4)y = 1rµ
∗ + a + e∗

ỹ = 1rµ̂
∗ + ã

µ̂∗ = (1Tr H
−1

1)−1
1
T
r H

−1y

ã = GaH
−1(y − 1rµ̂

∗)

where χ−2(ν, s2q) represents a scaled inverse chi-square 
distribution with ν degrees of freedom and scale param-
eter s2q , or equivalently an Ŵ−1(ν/2, s2qν/2) . After integrat-
ing over the marker variances, σ 2

i , i = 1, . . . , p , we can 
obtain marginal marker effects of the form

BayesB considers the complete structure derived here 
and BayesA is a special case of BayesB where π = 0 . In 
both cases the non-zero marginal effects have a t-distri-
bution with ν degrees of freedom and scale parameter 
s2q reflecting the requirement to capture the important 
positive and negative marker effects and shrink negligi-
ble effects close to zero. The spike and slab prior of the 
marginal marker effects ensures BayesB acts like a fea-
ture selection method and consequently provides a useful 
comparison to the ML feature selection method outlined 
in the next section.

ML genomic prediction
Based on its previous successful use in genomic prediction 
we have chosen to use an MLP-based machine learning 
scheme. The MLP is a densely connected network used in 
deep learning and is a typical feed-forward neural network 
that does not assume a particular structure of the input 
features [25]. We investigated the use of MLP architecture 
presented in Fig. 1. The MLP consisted of input layer that 
correspond to a fixed number of neurons where the com-
plete set of neurons denote a set of SNP marker features 

qi | σ
2
i ,π ∼

{

0 probability π

N (0, σ 2
i ) probability 1− π

σ 2
i | ν, s2q ∼ χ−2(ν, s2q)

qi |π ∼

{

0 probability π

t(0, s2q , ν) probability 1− π
i = 1, . . . , p.

Fig. 1 The proposed variational Bayesian ML architecture that includes the initial feature selection module and additional hidden layers 
in the prediction module
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from a row of M . The array of hidden layers then capture 
non-linear features from the output of the previous layers 
were each of the hidden layers may consist of varying num-
ber of neurons. Hidden Layers are usually fully connected 
(FC) between neurons with each connection given its own 
weight parameter. The output layer receives the outputs of 
the last hidden layer and provides the prediction, in this 
case a prediction of adjusted grain yield. The weights of the 
whole network are parameters that require learning from 
the training set and their estimates determine the effective-
ness of each neurons contribution towards the final predic-
tion. In the MLP architecture presented in Fig. 1, two major 
sub-networks are proposed including a feature selection 
module (for marker selection) and a prediction module 
(for result estimation). For each module, the component of 
the MLP model is described in more detail in the sections 
below along with a derivation of the objective function 
governing the complete network optimisation. For ease of 
notation we have considered a single sample in Fig. 1 with 
recognition this network is applied to all training samples.

Feature selection module
Let m = [m1, . . . ,mp]

T represent a p length vector of 
genetic marker input features for a line or sample in the 
dataset. As shown in Fig. 1, we introduce a feature selection 
module to adaptively select the important genetic markers. 
Within this feature selection module we introduce a hidden 
selection layer with an output defined by the model

where ⊙ denotes the element wise multiplication and 
v = [v1, . . . , vp]

T is a vector of weights. The weights v will 
be learned during network optimisation, and to enforce 
the sparsity of the selection, we assume they will be gov-
erned by a hierarchical sparse prior distribution. Before 
outlining the methodological details of this hierarchical 
prior and the associated learning objectives, we intro-
duce the remainder of the neural network structures and 
operations.

Prediction module
After the selection module we then utilise further layers of 
an MLP (see Fig. 1) to refine the feature representation and 
prediction. Let wj be a p length vector of weights for the 
connections between the complete set of outputs from the 
first hidden layer to the jth neuron in the second hidden 
layer. The output for the jth neuron is then

where b0 was the bias for the first hidden layer and ReLU 
denotes the the rectifier linear unit activation function. 

(5)x = m⊙ v

(6)z1j = ReLU
(

b0 +

p
∑

s=1

wjsxs

)

For a full set of connections between layers, (6) can be 
generalized to become

where x is the p length vector of outputs from the first 
hidden layer and W 1 is a (n1 × p) matrix with jth row wj . 
Given an arbitrary k fully connected hidden layers the 
output from the kth hidden layer can be immediately 
written as

where bk−1 and zk−1 is the bias and output from the 
k − 1 hidden layer and W k are the (nk × nk−1) matrix 
of weights. For the data sets used in this research 
we trained models using an MLP containing a pre-
diction module with k = 3 FC hidden layers where 
(n1, n2, n3) = (256, 128, 1) with the last layer as the output 
layer. We utilized one dropout layer after the first layer.

Bayesian sparse prior for featue selection and objective 
function
Following [35], we assume the hierarchical sparse prior dis-
tribution for the feature selection weights v is of the form

Here, p(v | γ ) is the sparse prior for v conditioned on the 
hyperparameters γ and U(γi | a, b) is a uniform hyperp-
rior with range hyperparameters [a, b]. The hyperparam-
eters γ will be estimated during the optimisation of the 
network.

For notational simplicity, we use D to indicate all the data 
samples (including both M and y ) available for training and 
let θ be the network parameters defined as the complete 
set of network weights with the exception of the feature 
selected weights, v . Under a Bayesian paradigm, we require 
the ability to learn the unknown variables or parameters 
v , γ , and θ from the given data D through an appropriate 
formulation of the posterior distribution p(v, γ , θ |D) . 
Directly estimating this posterior is difficult. To make pro-
gress, we formulate the learning task with the variational 
Bayesian approach outlined in [33]. Firstly, we define a vari-
ational posterior for v as q(v) =

∏

i q(vi) such that

where µi and αiµi are the mean and variance of the vari-
ational posterior, respectively. With (7), the proposed 
variational Bayesian learning task can be represented as

z1 = ReLU (b0 +W 1x)

zk = ReLU (bk−1 +W kzk−1).

p(v | γ ) =

p
∏

i=1

p(vi | γi) =

p
∏

i=1

N (vi | 0, γi)

p(γ ) =

p
∏

i=1

p(γi) =

p
∏

i=1

U(γi | a, b).

(7)q(vi) = N (µi,αiµi),
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where KL denotes the Kullback–Leibler (KL) divergence, 
µ is used to parameterise the distribution corresponding 
to v , p(v, γ , θ |D) is the joint posterior distribution of the 
parameters given data, and q(v, γ , θ) is the corresponding 
variational joint posterior of p(v, γ , θ |D).

We assume θ and v in the prior distribution are inde-
pendent and this allows the joint posterior to be re-
formulated as

By using the variational posterior to approximate the true 
posterior, the objective in (8) can be re-formulated as the 
variational lower bound (VLB) of the marginal likelihood 
[45] over the data, namely

where L denotes the expected log-likelihood and absorbs 
the loss term for optimally fitting the data. [35] shows 
that under a uniform hyperprior for γ , KL(q(γ ) || p(γ )) 
does not depend on µ, γ ,α or θ and can be safely ignored. 
Assuming p(θ) is a known Laplacian distribution of the 
form Laplacian(θ | 0, �θ ) with hyperparameters �θ , we 
can now reduce the VLB to

where �θ‖θ‖1 is the derived regularizer of θ . Using the 
results from [35] as well as a mean absolute error loss 
function we can then derive a final objective function for 
jointly estimating feature selection weights v and the net-
work parameters θ , namely

where yi is the adjusted yield and ỹi is the predicted yield 
for the ith sample. The final term on the right hand side 
of (9) can be viewed as the variational Bayesian sparsity 
regularization term to encourage sparsity of the feature 
selection weights across the p dimensions. The estimated 
means for the posterior of v , µ , will be used as the actual 
sparse weights for feature selection and the parameters 
αi, i = 1, . . . , p control the sparsity of these weights. This 
derived component then acts as a regularizer for the 
weights v where, for example, if α−1

i → 0 during train-
ing, then the corresponding weight vi and the associated 

(8)min
µ,γ ,α,θ

KL(q(v, γ , θ) || p(v, γ , θ |D)),

p(v, γ , θ) = p(v, γ )p(θ).

min
µ,γ ,α,θ

L(µ, γ , θ)− KL(q(v) || p(v | γ ))

− KL(q(γ ) || p(γ ))− KL(q(θ) || p(θ)),

min
µ,γ ,α,θ

L(µ, γ , θ)− �θ�θ�1 − KL(q(v) || p(v | γ )),

(9)

Lobj =

r
∑

i=1

|yi − ỹi|/n+ �θ�θ�1 + 0.5

p
∑

i=1

log(1+ α−1
i ),

feature/marker mi from any given m can potentially be 
ignored in the subsequent processes of the neural net-
work. After optimisation, a set of sparse weights are have 
been automatically and adaptively learned. For this rea-
son the feature selection does not need a manually set 
threshold. This complete ML approach we have called 
VBS-ML.

Computations and Benchmarking
The LMM was fitted using the flexible LMM R package 
ASReml-R [46] available in the R statistical computing 
environment [47] and commercially available from VSNi 
at https:// vsni. co. uk/ softw are/ asreml-r. For computa-
tional efficiency we incorporated the genetic marker rela-
tionship matrix of the lines through the special function 
vm() in the random model formula.

BayesA and BayesB models were computationally fit-
ted using the BGLR R package [48] freely available in 
the R statistical computing environment [47]. Due to the 
intractability of the posterior density of the parameters 
for both hierarchical models, BGLR uses a numerically 
based Gibbs sampling algorithm. BGLR also assumed 
some additional structure of some hyperparameters that 
included π ∼ Beta(π0, p0) where we have assumed the 
probability of marker inclusion to be 1− π0 = 0.05 and 
p0 is sufficiently large to ensure E(π) = π0 . Additionally, 
we have assumed ν = 4 and s2q is assumed to be distrib-
uted s2q ∼ Ŵ(s, r) where s = 1.1 and solved for the rate 
parameter based on an attributed R2 = 50% (R-squared) 
for the linear predictor Mq̃ . Other MCMC numeri-
cal attributes such as number of total iterations, burn 
in number of iterations and thinning were set at default 
values.

For the ML networks we used the Pytorch [49] package 
available in the Python software environment [50] where 
we assumed a batch size of 512 and 1e5 epoch. We used 
an ADAM optimiser and a cosine annealing learning rate 
adjustment strategy with a learning rate of 1e−4 and a 
weight decay of 5e−4 . We set �θ as 1e−3 . For the ADAM 
optimisation we used β1=0.9, β2=0.99. Our network had 
four fully connected layers and three residual blocks.

For computational benchmarking, we focussed on 
computational timings for conducting analyses of the 
2014 and 2016 data sets only. The 2017 and 2018 data 
sets are very similar in size to 2016 and would generate 
redundant information. For the linear genomic predic-
tion approaches we used an Oracle cloud instance (OCI) 
with 16 OCPU and 256 Gb RAM. For the ML networks, 
we used an OCI consisting of 12 OCPU with 72Gb RAM 
and a NVIDIA Tesla P100 with 3584 cores.

https://vsni.co.uk/software/asreml-r
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Model validation and accuracy
We randomly partitioned the complete data set into 
training and validation data sets four times. For each split 
we used a training data set containing 90% of the samples 
and a validation data set with the remaining 10% of the 
samples. Training and testing data sets did not overlap. 
For each split, the models were trained on the training 
data set only and the accuracy of the genomic prediction 
was assessed on the validation set.

There has been some recent discussion on the sole use 
of Pearsons correlation for asessing accuracy [51, 52] 
when regularization or feature selection methods are 
used for genomic prediction. For this reason, we have 
used a combination of Pearsons correlation and relative 
accuracy (RE) where, for n samples, the RE was defined 
as

The use of the observed value in the denominator of each 
of the elements provides a mechanism to scale the error 
according to the size of the observations that are being 
predicted. This RE provides an easily intepretable aver-
age proportional difference between the predicted and 
observed values.

Results
Figure  2 presents the distribution of the adjusted yield 
values for each of the years. The plot indicates the large 
differences in average yield across the lines over the 
years used in this research even though they were simi-
larly located. The variation of the adjusted yield values 
for 2014 and 2016 were similar with reduced variation in 
2017 and 2018. The broad sense heritabilities for each of 

RE =
1

n

n
∑

i=1

|yi − ỹi|/yi

the years indicate yield is under strong genetic influence 
across the set of varieties in each year. This suggests there 
are definitive underlying mechanisms for the changes in 
yield between varieties and these can be modelled using 
genomic prediction.

Linear genomic prediction approaches achieve similar 
accuracy
For each of the data sets, Table 1 presents the mean rela-
tive errors from each of the genomic prediction methods 
conducted using four random cross-validation splits with 
90% training data and 10% validation data. Additionally, 
to visually gauge the accuracy variation, Fig.  3 presents 
the relative error across the complete set of lines for each 
genomic prediction method by year combination for split 
1 only. Table 1 and Fig. 3 indicate, across most splits and 
years, the linear regression approaches LMM, BayesA 
and BayesB produced very similar results with BayesA 
and BayesB slightly outperforming LMM. Notably, for 
the 2016, 2017 and 2018 data sets, Table 1 indicates that 
the Bayesian regression approaches only produced neg-
ligible improvements or no improvement at all over the 
legacy LMM approach potentially indicating that using 
a smaller number of lines may impact the ability for 
these hierarchical models to improve the accuracy of the 
prediction.

VBS‑ML improves relative accuracy over all other 
approaches
Table  1 and Fig.  3 definitively show that the VBS-ML 
approach achieves the lowest relative error compared to 
all other approaches used here. This reduction occurred 
even though the number of markers used in the predic-
tion component of the VBS-ML network was reduced 
through feature selection by up to 98%. These relative 

Fig. 2 Distribution of the derived adjusted yield across the set of lines for Roseworthy data sets from 2014, 2016, 2017 and 2018. Generalized broad 
sense heritabilities H2 are given on the left hand side of the plot
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Fig. 3 Relative error prediction accuracy for genomic prediction methods LMM, BayesA, BayesB, Naive-ML and VBS-ML conducted on split 1 
of the Roseworthy data sets from 2014, 2016, 2017 and 2018

Table 1 For each of the data sets, the mean relative errors (%) from each of the genomic prediction methods conducted using four 
random cross-validation splits with 90% training data and 10% validation data. The number of feature selected markers for VBS-ML is 
given in parentheses

Year Methods 1 2 3 4 Ave.

2014 LMM 7.38 7.21 7.44 7.31 7.34

BayesA 7.28 7.16 7.37 7.25 7.27

BayesB 7.20 7.09 7.36 7.21 7.22

Naive-ML 7.61 7.56 8.31 7.61 7.77

VBS-ML (354) 6.49 7.08 7.58 7.04 7.05

2016 LMM 5.36 5.00 5.11 5.23 5.18

BayesA 5.36 5.02 5.15 5.20 5.18

BayesB 5.30 5.02 5.07 5.28 5.16

Naive-ML 6.67 6.28 6.59 6.10 6.41

VBS-ML (409) 5.20 4.89 4.94 5.04 5.02

2017 LMM 3.53 3.37 3.63 3.45 3.50

BayesA 3.54 3.38 3.64 3.48 3.51

BayesB 3.51 3.43 3.65 3.43 3.51

Naive-ML 3.99 4.16 4.18 3.77 4.03

VBS-ML (315) 3.48 3.26 3.54 3.26 3.39

2018 LMM 5.94 4.98 5.80 5.94 5.67

BayesA 5.94 4.99 5.77 5.94 5.66

BayesB 5.98 5.06 5.63 5.97 5.66

Naive-ML 6.39 5.70 6.20 6.23 6.13

VBS-ML (385) 5.89 4.98 5.16 5.86 5.47
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error reductions are close to 0.2% for VBS-ML com-
pared to LMM, BayesA, BayesB and between 0.6% and 
1.4% for VBS-ML compared to the Naive-ML approach. 
Additionally, Fig. 3 indicates the VBS-ML tends to have 
a higher relative error peak closer to zero with thinner 
tails generated from the larger relative errors. Table  1 
also indicates that, on average, for all splits and years, 
the Naive-ML approach was definitively the poorest per-
forming genomic prediction approach compared to all 
others. In many cases the relative error increase using the 
Naive-ML were > 1% for some splits and this equates to 
a considerable difference on the scale of the response. For 
example, from split 3 in 2014 a relative error increase of 
0.87% using Naive-ML compared to LMM equates to a 
44 kg/ha increase in the average differences between the 
predicted and observed yield values. Figure  3 also indi-
cates that, compared to other methods, the distribution 
of relative errors for Naive-ML tends to have a smaller 
peak further away from zero and a fatter tail. This skew-
ness is especially prevalent for the relative errors in 2016 
where there were dramatic differences between Naive-
ML and other approaches.

VBS‑ML slightly improves correlation
Table  2 presents the Pearsons correlations of the pre-
dicted vs the observed values of grain yield for each of 
the genomic prediction methods conducted on each 
data set from four random cross validation data splits. 
To complement the table, Fig. 4 presents the correlation 
of the predicted vs observed grain yield values obtained 
from all genomic prediction methods conducted using 
split 1 of each data set. Table  2 indicates that, on aver-
age, VBS-ML generated similar correlation to the linear 
regression methods for the 2016 and 2018 data sets. For 
the 2014 and 2017 data sets VBS-ML managed to slightly 
improve over these approaches. This is especially evi-
dent in the 2014 correlation plot in Fig.  4 where there 
appears to be a broader and stronger relationship. The 
table also indicates, across all data sets, the linear regres-
sion approaches achieved a very similar correlation. This 
similarity is also highlighted in Fig. 4 where the median 
values and distribution of the predicted values is similar 
from all three prediction methods. Further to the dis-
cussion of relative error, Table  2 and Fig.  4 indicate the 
Naive-ML genomic prediction method for each year had 
substantially reduced correlations in 2016, 2017 and 2018 

Fig. 4 Relative error prediction accuracy for genomic prediction methods LMM, BayesA, BayesB, Naive-ML and VBS-ML conducted on split 1 
of the Roseworthy data sets from 2014, 2016, 2017 and 2018
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and for 2017 it also induced a mean shift in the predicted 
values.

Feature selected markers show useful predictive properties
The connectivity of the breeding lines between years 
2016 and 2018 allows us to further verify the effective-
ness of the proposed selection module for genomic 
prediction. After conducting ML genomic prediction 
independently in 2016 and 2017, we used the feature 
selected markers from each of the years to train an MLP 
to predict adjusted grain yield in future years. Table  3 
shows the relative error genomic prediction accuracy of 
an MLP where feature selected markers from 2016 are 
used to predict adjusted grain yield in 2017 and 2018 
and where feature selected markers from 2017 are used 
to predict adjusted grain yield in 2018. Comparing this 
table to the relative error prediction accuracies in Table 1 
indicates that using an MLP consisting of feature selected 
markers from 2016 to predict 2017 adjusted grain yield 
managed to outperform all genomic prediction methods, 
except for VBS-ML, conducted on 2017 data. A similar 
result was observed from the prediction of 2018 adjusted 
grain yield from feature selected markers in 2016 with 
improved accuracy from VBS-ML when using only 2018 
data. When an MLP, consisting of 2017 feature selected 
markers, was used to predict 2018 adjusted grain yield 

data, the relative error slightly improved over the Naive 
ML approach using 2018 data but was outperformed by 
all other genomic prediction methods used with the 2018 
data.

VBS‑ML shows efficiency over LMM for large data sets
Figure 5 presents the computational timings for the anal-
ysis methods conducted in the OCIs. The inflated compu-
tational time of the LMM in 2014 is due to the ASReml-R 
4.1 version used in this research that can only conduct 
the LMM optimisation on one core of the 16 available in 
OCI. The large reduction in LMM computational time 
for 2016 is due to the large reduction in size of the rela-
tionship matrix being used in the optimisation. BayesA 
and BayesB are clearly the most computationally efficient 

Table 2 For each of the data sets, the Pearson correlation between the observed and predicted grain yield from each of the genomic 
prediction methods conducted using four random cross-validation splits with 90% training data and 10% validation data. The number 
of feature selected markers for VBS-ML is given in parentheses

Year Methods 1 2 3 4 Ave

2014 LMM 0.52 0.49 0.50 0.47 0.50

BayesA 0.54 0.50 0.51 0.48 0.51

BayesB 0.55 0.51 0.51 0.49 0.51

Naive-ML 0.54 0.41 0.39 0.42 0.44

VBS-ML (354) 0.66 0.50 0.47 0.52 0.54

2016 LMM 0.63 0.56 0.65 0.57 0.60

BayesA 0.63 0.56 0.65 0.58 0.61

BayesB 0.64 0.55 0.65 0.57 0.60

Naive-ML 0.33 0.24 0.41 0.33 0.33

VBS-ML (409) 0.62 0.53 0.68 0.56 0.60

2017 LMM 0.48 0.52 0.53 0.52 0.51

BayesA 0.48 0.52 0.51 0.51 0.51

BayesB 0.48 0.51 0.51 0.53 0.51

Naive -ML 0.33 0.38 0.40 0.52 0.41

VBS-ML (315) 0.49 0.55 0.54 0.60 0.54

2018 LMM 0.54 0.54 0.46 0.48 0.51

BayesA 0.54 0.54 0.47 0.47 0.50

BayesB 0.54 0.54 0.49 0.46 0.51

Naive-ML 0.41 0.25 0.32 0.37 0.34

VBS-ML (385) 0.52 0.50 0.57 0.44 0.51

Table 3 Mean relative error prediction accuracy (%) for genomic 
prediction of an MLP that used feature selected markers from 
one year to predict adjusted grain yield in future years

Approach 1 2 3 4 Ave.

2016 =⇒ 2017 3.49 3.27 3.55 3.27 3.40

2016 =⇒ 2018 5.90 5.13 5.17 5.84 5.51

2017 =⇒ 2018 6.32 5.83 5.82 6.02 6.00
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analysis methods for both data sets. Both approaches uti-
lised all 16 cores available in the OCI suggesting that the 
MCMC approach implemented in the software is highly 
parallelized.

For the ML networks, although an OCI consisting of 12 
OCPU with 72Gb RAM was available for use in tandem 
with the NVIDIA Tesla P100, only one CPU with 20% of 
the available CPU RAM was needed to analyse the 2014 
data. For the smaller data set in 2016 the linear prediction 
analysis approaches computationally outpaced the VBS-
ML and Naive-ML analysis methods. For the much larger 
data set in 2014, the Naive-ML is 2 × faster than the LMM 
approach and the VBS-ML is 3 × more efficient. Although 
highly parallelized through the Tesla multi-core GPU, the 
ML approaches were not as efficient as multi-core CPU 
BayesA and BayesB.

Discussion
This research focussed on improving prediction accuracy 
in large scale genomic prediction problems using an MLP 
architecture consisting of a feature selection module 
governed by variational Bayesian sparsity inference. For 
all data sets analysed in this study the number of genetic 
markers exceeded the number of samples. Consequently, 
the incorporation of the feature selection module in the 
initial stages of the ML architecture provided clear bene-
fits through dramatically reducing the number of impor-
tant markers and the burden of over-paramaterisation on 
the network. Further reductions in the over-parameter-
isation were achieved through the use of an L1 penalty 
on the weights of the network across the hidden layers. 
The VBS-ML approach was shown to improve genomic 

prediction accuracy over linear based legacy genomic 
prediction approaches such as LMM, BayesA and BayesB 
as well as the naive MLP without the feature selection 
module. In addition, we showed the feature selection of 
markers obtained from one year could be used to train an 
MLP for the following years data and produce a competi-
tive accuracy that would usually outperform legacy based 
approaches trained on the year that was being predicted.

The VBS-ML analysis approach can be considered to 
be an embedded feature selection approach that ensures 
redundant SNP markers are removed and the markers 
with the highest association in each linkage disequilib-
rium grouping are retained [53, 54]. This suggests this 
approach would be broadly applicable to other traits 
beyond grain yield where polygenicity or genetic com-
plexity varies. Additionally, the feature selection prop-
erties of the VBS-ML can be considered to provide 
explainability of the prediction through identification of 
important contributing markers [55].

The VBS inference governing the initial layer of the 
MLP architecture is akin to the application of variable 
selection in more traditional regression problems where 
the objective is optimisation of a non-concave penalized 
likelihood [56]. Specifically, the resulting log penalty that 
is derived from the hierarchical modelling of the feature 
selection weights resembles log penalties derived in vari-
ous variable selection studies [57, 58]. This penalty is well 
known for generating sparse solutions when it is applied 
to coefficients associated with a large set of covariates 
and a similar result was observed with the feature selec-
tion weights associated with the VBS-ML method used 
in this research. Penalties of this type have the so-called 
oracle property described by [56] that ensures strong 

Fig. 5 Computational timings of each of the analysis methods for split 1 of the 2014 and 2016 data. Timings are in seconds of elapsed CPU or GPU 
time
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sparsity without loss of accuracy for non-zero weights or 
coefficients over more traditional estimation approaches. 
In this case the penalty is inferred by the distributional 
hierarchy of the weights but this also suggests other non-
hierarchical oracle type penalties, such as the extended 
penalty class in [58] could be used in the initial layers of 
the MLP. This is now being explored and is a subject of 
further research.

In this study we focussed on improving the additive 
component of genomic prediction using ML. We note 
that [36] used a comparative Bayesian variable selec-
tion type ML architecture that attempted to incorporate 
epistatic features but had limited success in improving 
genomic prediction over more standard approaches. 
[59] used strong regularization of a small number of 
ML network weights in an approximate Bayesian set-
ting to ensure over-parameterisation of the network 
was reduced and slightly improved genomic prediction 
accuracy through estimation of additive components of 
epistasis. We are now exploring the use of a novel VBS-
ML approach to efficiently incorporate and select impor-
tant non-additive features that will include epistatic as 
well higher order features that would not usually be mod-
elled through legacy approaches.

Conclusion
The novel VBS-ML method discussed in this research 
provides a computationally feasible approach for under-
taking genomic prediction modelling when the data con-
tains large numbers of lines phenotyped and genotyped 
across a large set of genetic markers. This approach is of 
particular relevance to the plant breeding community 
where there has been a sizeable increase in the germ-
plasm sets being used for genomic analyses [13, 14] and 
current analysis software limitations are being reached. 
The high parallelisation of the ML predictive task will 
require plant breeding organizations to acquire appropri-
ate computational infrastructure as well as analytically 
integrate the VBS-ML into their plant breeding pipelines. 
If this is achieved, this research indicates that VBS-ML 
may be a useful avenue for improved genomic predic-
tion accuracy, allowing plant breeders to accelerate their 
breeding cycles and continue to increase rates of genetic 
gain.
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