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Abstract 

Background In the era of Agri 4.0 and the popularity of Plantwise systems, the availability of Plant Electronic Medi-
cal Records has provided opportunities to extract valuable disease information and treatment knowledge. However, 
developing an effective prescription recommendation method based on these records presents unique challenges, 
such as inadequate labeling data, lack of structural and linguistic specifications, incorporation of new prescriptions, 
and consideration of multiple factors in practical situations.

Results This study proposes a plant disease prescription recommendation method called PRSER, which is based 
on sentence embedding retrieval. The semantic matching model is created using a pre-trained language model 
and a sentence embedding method with contrast learning ideas, and the constructed prescription reference data-
base is retrieved for optimal prescription recommendations. A multi-vegetable disease dataset and a multi-fruit 
disease dataset are constructed to compare three pre-trained language models, four pooling types, and two loss 
functions. The PRSER model achieves the best semantic matching performance by combining MacBERT, CoSENT, 
and CLS pooling, resulting in a Pearson coefficient of 86.34% and a Spearman coefficient of 77.67%. The prescription 
recommendation capability of the model is also verified. PRSER performs well in closed-set testing with Top-1/Top-3/
Top-5 accuracy of 88.20%/96.07%/97.70%; and slightly worse in open-set testing with Top-1/Top-3/Top-5 accuracy 
of 82.04%/91.50%/94.90%. Finally, a plant disease prescription recommendation system for mobile terminals is con-
structed and its generalization ability with incomplete inputs is verified. When only symptom information is avail-
able without environment and plant information, our model shows slightly lower accuracy with Top-1/Top-3/Top-5 
accuracy of 75.24%/88.35%/91.99% in closed-set testing and Top-1/Top-3/Top-5 accuracy of 75.08%/87.54%/89.84% 
in open-set testing.

Conclusions The experiments validate the effectiveness and generalization ability of the proposed approach 
for recommending plant disease prescriptions. This research has significant potential to facilitate the implementation 
of artificial intelligence in plant disease treatment, addressing the needs of farmers and advancing scientific plant 
disease management.
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Background
Plant disease management is critical to meeting the chal-
lenges of sustainable agriculture, and one of the keys is 
a science-based disease control and treatment strategy. 
The selection of appropriate treatment plan for plant 
diseases in various environments and with different 
symptoms relies on specialized disease knowledge. How-
ever, our past research has shown that many producers 
choose pesticide application strategies based on personal 
experience, advice from friends and advertising, lack-
ing a reliable source of knowledge and information [1]. 
Consequently, the scope and norms of pesticide use are 
ignored, which may increase the risk of contaminating 
the environment and endangering human health [2]. The 
diffusion of science- and evidence-based plant produc-
tion management practices is challenging especially in 
areas dominated by smallholder farming [3]. Accurate 
recommendation of pesticide prescriptions is an impor-
tant issue that needs to be addressed in agricultural 
management.

To assist smallholder farmers in managing plant dis-
eases, Plantwise1, a global program led by the Center for 
Agriculture and Biosciences International (CABI), has 
established plant clinics in over 30 countries in Africa, 
Asia and Latin America, creating a global network of 
plant clinics operated by professional plant doctors [4, 5]. 
These plant doctors play a crucial role in providing farm-
ers with recommendations for effective pest and disease 
management. They prescribe targeted pesticide applica-
tion strategies, called prescriptions, tailored to the spe-
cific circumstances and symptoms of disease events. This 
valuable information, concerning plant diseases and their 
management, is organized and recorded as Plant Elec-
tronic Medical Records (PEMR), which usually consist of 
the following key sections:

1. Disease Symptoms: PEMR includes descriptions of 
disease symptoms observed in plants, such as leaf 
spots, wilting, rotting, and slow growth. These symp-
toms serve as the primary and direct basis for disease 
diagnosis and subsequent treatment strategies and 
are also the main objects of most intelligent disease 
diagnosis research [6, 7].

2. Environmental characteristics: Environmental fac-
tors, including the season and geographic location 
of affected plants, can influence disease development 
and aid in determining appropriate management 
strategies [8].

3. Crop cultivation descriptions: PEMR contains details 
about the cultivation practices employed, includ-
ing whether the crops are grown in an open field or 
a greenhouse. Different cultivation methods may 
require distinct management approaches [9].

4. Diagnosed Diseases: The specific diseases diagnosed 
by plant doctors, such as cucumber powdery mildew 
or tomato blight, are documented in PEMR. This 
information facilitates tracking the occurrence and 
prevalence of different diseases over time.

5. Recommended Pesticides: Includes both biological 
and chemical pesticides, which may be selected by 
the plant doctor depending on the severity of the dis-
ease.

6. Application Methods: PEMR provides instructions 
on how to apply the recommended pesticides. This 
information covers details such as the frequency of 
application (e.g., once every 5–7 days), the duration 
of the treatment (e.g., consecutive application for 
3 times), and any specific application techniques or 
precautions.

7. Field management measures: PEMR may also incor-
porate field management measures crucial for disease 
prevention and control, such as greenhouse isolation, 
ventilation, and cooling.

The above key elements in PEMR provide a valuable 
source of information for intelligent plant disease man-
agement research [10]. By analyzing and mining the 
historical data of PEMR, it is possible to summarize the 
patterns of disease medication for similar diseases, plants 
and environments, and then realize intelligent prescrip-
tion recommendations. How to effectively mine the 
PEMR data is an urgent problem to be solved.

Currently, data mining research in electronic medi-
cal records (EMRs) focuses on the human healthcare 
domain [11–13], especially on various prescription rec-
ommendation tasks such as recommendations for dia-
betes prescriptions [14], TCM prescriptions [15–17] and 
Parkinson’s disease prescriptions [18], drugs for cancer 
cell lines [19]. Zhao et al. predicted herbal prescriptions 
in the form of probability values by graph convolution 
construction and multilayer perceptron (MLP) [15]; He 
et  al. proposed a machine learning method called ker-
nelized ranking learning (KRL) to formulate personalized 
drug recommendations as a ranking problem [19]; Ye 
et al. combined knowledge graph (KG) and recommender 
system for drug-target interaction prediction [20]; Shi 
et al. recommended the prescription of typical drugs by 
learning the relationship between observed symptoms 
and prescribed drugs through multimodal representation 
[18]. Most of these existing methods for EMR make good 
progress by extracting features from typical symptom 

1 Plantwise is a global, CABI-managed program, aiming at strengthening 
plant health systems through plant clinics: www. plant wise. org

http://www.plantwise.org
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representations and then classifying, ranking or predict-
ing the prescriptions. However, the specificity of PEMRs 
makes plant disease prescription recommendation a 
challenging task, and existing methods face four main 
issues:

1) Lack of labeling data. Unlike human medical institu-
tions, electronic information systems are not widely 
available in plant disease control institutions, result-
ing in a lack of publicly available PEMR datasets. 
Current intelligent prescription recommendation 
models usually rely on a large amount of labeled 
training data, which is not feasible for plant disease 
prescription recommendation tasks where labeled 
data are lacking.

2) Lack of structural and linguistic specifications. In 
contrast to EMR in the medical domain, PEMR lacks 
strict structural specifications. In addition, PEMR 
texts often contain a large number of dialects and 
slang from agricultural production, which makes it a 
challenge to extract semantic features by combining 
agricultural knowledge.

3) Challenge of adding new prescriptions. Current 
intelligent prescription recommendations have fixed 
prescription categories that cannot easily accommo-
date new prescriptions. Adding new prescriptions 
requires a large amount of label data for the new pre-
scriptions and requires the network to be modified 
and retrained. However, in production practice, pes-
ticide categories are diverse and frequently change, 
and label data for many new pesticides are difficult to 
obtain. These problems make it challenging for exist-
ing prescription prediction models to achieve flexible 
adjustments of pesticide prescription categories and 
quantities.

4) Multiple factors need be considered in practical 
application scenarios. The disease triangle principle 
in plant pathology states that the manifestation of 
plant diseases is affected by a combination of host 
genetic susceptibility, pathogen virulence, and abiotic 
environmental parameters. It is important to note 
that the same pathogen may necessitate different 
treatment approaches depending on various factors, 
such as the crop type, season, temperature, and field 
distribution. Consequently, it is crucial to conduct 
comprehensive comparisons and tests when making 
prescription recommendations in practical settings.

To address these challenges, we conducted a thor-
ough survey of relevant research in the field of plant 
disease diagnosis and prescription recommendation. 
The majority of research on intelligent plant disease 
diagnosis centers around digital image processing [6, 

7, 21], while only a few studies explore mining PEMRs. 
For example, Xu et al. [10] applied a two-phase stacked 
integrated learning approach to mine structured pre-
scription data related to tomato diseases. Addition-
ally, Ding et al. [22] proposed a crop disease diagnostic 
model, CdsBERT-RCNN, for mining the text informa-
tion of crop EMRs, thereby establishing a foundation 
for feature extraction from PEMRs.

Regarding prescription recommendations, several 
typical approaches have been explored. Rule-based and 
knowledge graph-based recommendation methods 
require substantial manual effort, face scalability issues, 
and are not suitable for PEMRs lacking structural and 
linguistic specifications [23–28]. On the other hand, 
instance-based recommendation methods are sim-
ple and effective [13, 29], and with the introduction of 
deep learning and pre-trained language models, they 
can extract deep semantic features [22, 30, 31], thereby 
addressing the lack of labeled PEMR data. Some stud-
ies have transformed the prescription recommendation 
problem into an EMR classification task [16, 32, 33], but 
this approach can only recommend trained prescription 
categories. In contrast, semantic matching-based recom-
mender systems offer more flexibility in adding new pre-
scriptions [34, 35].

Semantic matching methods can be categorized as 
representation-based [36, 37] and interaction-based 
approaches [38, 39]. The former generates sentence 
embeddings by pre-processing the dataset to reduce 
online computation time, making it suitable for large-
scale retrieval. The latter incurs higher computational 
costs and is suitable for small-scale retrieval or ranking. 
We attempted an interaction-based matching method, 
but experimental results indicated that, given limited 
computational resources, the online computation time 
required to complete our prescription recommenda-
tion task would take several years. Further details on the 
related work are provided in the following section.

In summary, there is a lack of suitable intelligent meth-
ods for pesticide prescription recommendation in plant 
disease management. Therefore, this paper aims to 
develop a plant disease prescription recommendation 
method based on sentence embedding retrieval (PRSER) 
to provide accurate and personalized recommenda-
tions for pesticide application strategies, enabling small-
holder farmers to make informed decisions regarding 
disease treatment. To leverage the information captured 
in PEMRs, we choose a representation-based semantic 
matching approach to improve the speed of prescrip-
tion retrieval. Also, a combination of a pre-trained lan-
guage model (PLM) and a contrast learning approach is 
used to achieve effective sentence embedding in PEMRs. 
By addressing these challenges, we expect to make 
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significant contributions to intelligent disease manage-
ment in the agricultural domain.

Related work
Prescription recommendations
Current prescription recommendation methods can be 
classified as rule-based, knowledge graph-based and 
instance-based recommendations. Rule-based recom-
mendation methods, known as expert systems, are widely 
used in research on plant disease treatment recommen-
dation, such as apple diseases [23], pulse plant diseases 
[40] and oilseed-plant diseases [41]. Expert systems uti-
lize pre-determined rules for matching, requiring a great 
deal of manual effort to ensure the construction and 
knowledge updating of the expert pool [23], and are lim-
ited by rules when applied [24].

Knowledge graphs cover a more comprehensive range 
of knowledge than traditional expert systems. To support 
the construction of knowledge graphs, existing studies 
have identified entities [42–44] and relationships [45–47] 
between drugs and diseases from various data sources. In 
downstream tasks, knowledge graphs can be combined 
with algorithms such as machine learning to achieve pre-
scription recommendations [25–27]. At the same time, 
knowledge graph-based recommendations face chal-
lenges such as high computational complexity, lack of 
long-tail entities, rule conflicts, difficulty in extension 
and limitations of application in unstructured EMR [28].

The example-based recommendation approach intro-
duces machine learning to achieve intelligent recom-
mendations based on drug prescriptions given in existing 
EMRs. [29] utilized similarity algorithms to predict dis-
ease-drug interactions; [48] constructed a user-adaptive 
medication recommendation systems based on inference 
from Bayesian networks. Ref. [13] proposed an extended 
treatment recommendation model based on reinforce-
ment learning using electronic health records from the 
South Korean health insurance system. With the devel-
opment of natural language processing techniques, deep 
learning and pre-trained language embeddings have been 
applied to solve complex natural language processing 
(NLP) tasks, including in the fields of plant disease man-
agement [22, 49–51] and drug recommendation [28, 30, 
31, 52]. In particular, semantic matching has been proven 
to be efficient in a variety of recommendation systems 
[30, 34, 35].

Semantic matching
As one of the fundamental problems in the field of NLP, 
semantic matching is widely used in downstream tasks 
such as information retrieval, recommender systems and 
question and answer systems [37, 53–55].

In general, there are two types of semantic matching 
models: representation-based and interaction-based. 
Representation-based models emphasizes the construc-
tion of the representation layer, encoding the text into 
overall embedding tensors before matching them, led 
by Microsoft’s DSSM [36]. A series of models such as 
CDSSM [56], LDR-LTM [57] and Enhanced-DSSM [37] 
have since emerged, which have similar structures to 
DSSM, but replace the expression or matching layer with 
a more complex and effective algorithm. In retrieval and 
recommendation tasks, representation-based models can 
pre-process text with trained sentence embedding mod-
els to build indexes and significantly reduce online com-
putation time.

Interaction-based models interact two texts at differ-
ent granularities through a structure represented by an 
attention mechanism, aggregated into feature matrices 
that enters the representation layer to obtain the final rel-
evance evaluation, e.g. ARC-II [38], ESIM [39], BiMPM 
[58]. Interactive computing better captures the semantic 
focus, but with high computational costs.

Sentence embedding with PLMs
Bidirectional Encoder Representations from Transform-
ers (BERT) [59], introduced by Google in 2018, brings 
research in natural language processing into the era of 
pre-trained language models (PLMs). Pre-training mod-
els by resorting to large-scale corpora in general-purpose 
domains and then fine-tuning them for downstream 
tasks has become the dominant paradigm in NLP [60]. 
An enormous amount of research effort has gone into it; 
examples include Robustly optimized BERT pre-training 
Approach (RoBERTa) [61], text-to-text transfer trans-
formers (T5) [62], Knowledge-Enabled BERT (K-BERT) 
[63], clinical BERT embeddings (ClinicalBERT) [64].

Some studies have applied BERT to text matching, 
an example is the BERT-based interactive medical text-
matching model constructed by [65], in which two sen-
tences are joined by [sep] to form a sentence pair as 
model input. Such approaches require significant com-
putational resources and struggle to make real-time 
inferences, which can be alleviated by the representation-
based twin-tower structure with sentence embedding 
at its core [66]. Sentence-BERT [67] obtains sentence 
embedding by siamese and triplet network structure and 
the semantic similarity of two sentences can be gauged 
by the cosine similarity between their embeddings [68]. 
A Simple contrastive learning framework of sentence 
embedding (SimCSE), including both unsupervised 
and supervised versions, was proposed by Gao et  al. in 
[69], achieving the SOTA performance of sentence-level 
semantic representation based on contrast learning and 
dropout data augment [70].
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Materials and methods
Data processing and dataset construction
Data sources
The samples of plant electronic disease records in this 
paper come from 115 plant clinics established by Bei-
jing Plant Protection Station. The plant clinics adopt a 
public welfare plant disease and pest diagnosis and con-
sultation service model, in which qualified plant doc-
tors to provide technical services for pest and disease 
control to farmers [4, 5]. The plant doctors make the 
diagnosis and finally prescribe the plant disease based 
on his personal experience, expertise, and references 
such as the Disease Understanding Paper prepared by 
the CABI Plantwise website.

This paper collects data for approximately 44 months 
between November 2017 and July 2021, resulting in a 
total of more than 44,000 PEMRs. PEMR records the 
pest and disease problems encountered by farmers 
in the process of plant cultivation and the treatment 
advice provided by plant doctors in accordance with 
specifications, including the main symptoms, geo-
graphical location, onset date, plant species, growth 
stage, affected parts, disease scale (mu), severity, field 

distribution, diagnosis results, consultation records, 
prescription of pesticides, pesticide quantity and other 
relevant information.

Data cleaning
The data were manually entered by numerous plant doc-
tors and had various issues such as missing, redundant, 
and incorrect characters. We eliminate some records 
and fields with an excessive missing rate, de-duplicate 
the redundant records, and normalize the text. Further-
more, we standardize the pesticide names and eliminated 
invalid data to ensure the quality of the dataset, particu-
larly for instances where prescription names are inaccu-
rate, plant information is abnormal, and other problems 
existed.

Dataset construction
Two PEMR datasets are constructed as shown in Fig. 1: 
a vegetable disease-prescription dataset including 
tomato, cucumber, and eggplant with 20,791 instances, 
and a fruit disease-prescription dataset containing 
strawberry and watermelon with 1548 instances. The 
vegetable disease-prescription dataset (Vdateset) is 

Data collation and conversion

Matching two by two

Testing in open set

Matching model training and optimization

De-privatisation

Data cleaning

Vegetable disease-prescription dataset (Vdateset) Fruit disease-prescription data set (Fdateset)

Vdateset-E Vdateset-Q Fdateset-Q Fdateset-R

Training set Validation set Test set

Vdateset-R

Our model

Plant Electronic Medical Record 

Plant Clinic Plant Doctor 

Name Phone ID Number County Township 

Species Growth Stage Disease Site Main Symptoms 

Additional Information

Diagnostic Result Pesticide Category Pesticide Name

Pesticide dosageRecommendations For Disease Control

Date Disease Area Severity Field Distribution 

Delete duplicate value

Missing value processing

Consistent treatment

Training set Validation set Test set

Testing in closed set

data filtering

Fig. 1 Data processing and data set partitioning
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divided into an experimental set (Vdateset-E), a query 
set (Vdateset-Q) and a reference set (Vdateset-R) in 
the ratio of 8:1:1. The fruit disease-prescription dataset 
(Fdateset) is divided into a query set (Fdateset-Q) and a 
reference set (Fdateset- R) in the ratio of 5:5.

The datasets are specifically used in the following 
scenarios:

(1) Experimental dataset

 Vdateset-E is used to train the semantic match-
ing model based on sentence embedding. Stratified 
sampling is used to divide Vdateset-E into a training 
set (Vdateset-E-training) and a test set (Vdateset-E-
test) with the ratio of 7:3. The training set data are 
paired with the text within the dataset by two-by-two 
matching. Text pairs corresponding to the same pre-
scription are labeled as 1 and those corresponding to 
different prescriptions are labeled as 0. The ratio of 
positive and negative samples is adjusted to achieve 
balance. The test set is processed similarly. Finally, 
173,708 text pairs for the training set and 74,281 text 
pairs for the test set are obtained for the semantic 
matching model.

(2) Closed-set testing.

 Vdateset-Q and Vdateset-R are used for closed-set 
testing, with the former is the query set (i.e., the test 
set for prescription recommendation) and the latter 
as the reference set. The algorithm’s ability to rec-
ommend prescriptions in closed sets is verified by 

analyzing experiments on Vdateset-E and Vdateset-Q, 
which belong to the same class.

(3) Open-set testing.

 Fdateset-Q and Fdateset-R are used for open-set test-
ing. Since diseases and prescriptions from the fruit dis-
ease prescription dataset do not appear in Vdateset-E, 
the generalization ability of our prescription recom-
mendation system can be well evaluated.

Prescription recommendation process
As shown in Fig.  2, our prescription recommendation 
system consists of three main components: semantic 
matching network training, construction and embedding 
of the reference set, and prescription recommendation 
for application scenarios. Specifically, the process is as 
follows:

(1) Training PEMR sentence embedding method based 
on Vdateset-E.

(2) Construct a standard reference set and vectorize all 
samples in the reference set using the trained sen-
tence embedding scheme. The construction of the 
reference set is described in detail in 3.1.3.

(3) Vectorize PEMR waiting prescription using the 
trained sentence embedding scheme, calculate their 
cosine similarity with all the reference vectors, and 
recommend the prescription corresponding to the 
highest similarity.

0.98

0.92

0.12
Sorting

Sentence embedding method

Reference set

CEMR2

CEMR1

CEMR

Prescription2

Prescription1

Prescription

Embedding2

Embedding1

Embedding

Recommended 

prescriptions

CEMR waiting 

prescription

Cosine 
similarity

Embedding

Fig. 2 Prescription recommendation process
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PEMR sentence embedding method
To effectively train the PEMR sentence embedding 
method, we adopt a contrastive learning approach. The 
utilization of contrastive learning is motivated by its 
ability to learn powerful representations by contrasting 
positive and negative examples. By encouraging similar 
sentences to be closer to each other in the embedding 
space while pushing dissimilar sentences apart, the pro-
posed method aims to capture the underlying semantic 
meaning of PEMR sentences.

As depicted in Fig. 3, several essential components are 
included in our proposed approach to create a compre-
hensive and effective sentence embedding model. These 
components include a PLM (Pre-trained Language 
Model) Layer, a pooling operation, and the CoSENT 
loss function. The model structure and training process 
are described in detail in Sect.  "PLM layer"-"Training 
process".

PLM layer
MacBERT (MLM as correction BERT) is a PLM adapted 
to Chinese, which maps text to vector space and converts 
each word into a vector of fixed dimension. MacBERT 
shares the same model structure as BERT, but modified 
two pre-training tasks in BERT: masked language model 
(MLM) and next sentence prediction (NSP).

(1) MLM in BERT randomly masks 15% of the words 
in the input sequence, and then learns to predict 
these masked words by the contextual words. (1) To 
solve the “pre-training and fine-tuning” discrepancy 
of MLM, MacBERT proposes MLM as correction 
(Mac) task, which converts the original MLM into a 
text correction task [71].

(2) NSP in BERT is used to determine whether two 
sentences are contextually related, which is con-
sidered not that effective by many studies [61, 72]. 
MacBERT replaces NSP with the sentence order 
prediction (SOP) task as introduced by ALBERT 
[72], which uses two consecutive texts as positive 
samples, and then switches their original order as 
negative ones.

Our model uses the MacBERT layer as a component 
to transform the plant EMR text into vector representa-
tions. The textual information is first extracted through 
three embedding layers: segment embedding, location 
embedding and word embedding, following which the 
obtained vector representations are passed to the bidi-
rectional transformer encoder. The core mechanism of 
Transformer is multi-headed attention, as shown in Eq. 1:

where Q , K  , and V  are the input vector matrix, dk repre-
sents the dimension of the input vector.

Finally, multiple sets of parameter matrices are intro-
duced for linear transformation and concatenation to 
obtain the enhanced semantic vector as the output, as 
shown in Eqs. 2 and 3:

(1)Attention(Q,K ,V ) = Softmax

(

QKT

√

dk

)

V

(2)
MultiHead(Q,K ,V ) = Linear(Concat(head1, · · · , headh))

(3)
headi = Attention(QW

q
i ,KW

k
i ,VW

v
i ), i = 1, 2, · · · , h

Vdateset-E

PEMR1 PEMR2

Sentence 
embedding

methodLabel: 0/1

PLM Layer

Pooling

u

Pooling

v

CoSENT Loss

PLM Layer

PEMR2PEMR2

Fig. 3 PEMR sentence embedding method
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Pooling operations
In order to generate a fixed-length representation of varia-
ble-length PEMR text, a pooling operation is used to sum-
marize the information contained in the input sequence 
into a single vector that captures the semantic informa-
tion of the entire text. Previous studies have verified the 
influence of pooling operations on the experimental 
results, indicating the importance of choosing a suitable 
pooling method for the model being used. In this study, 
we considered four commonly used pooling strategies in 
NLP tasks: CLS, mean, First-last avg, and pooler. Each of 
these methods has distinct functions and differences:

(1) CLS: uses the “[CLS]” token directly from the PLM 
as the vector representation of the entire sentence. 
CLS pooling is commonly used in tasks that require 
a simple and efficient approach such as text classifi-
cation.

(2) Mean: calculates the average of each token in the 
output of the PLM to represent the sentence vector. 
This approach is simple and computationally effi-
cient, and can capture the overall semantics of the 
input sequence.

(3) First-last avg: uses the average from the combina-
tion of the first and last layers of the PLM as the 
sentence representation. This approach is useful in 
tasks such as sentiment analysis, where the first and 
last tokens of a sentence often contain important 
information about the sentiment.

(4) Pooler: puts the “[CLS]” token through a fully con-
nected layer and Tanh activation function as the 
sentence representation. This approach can be 
more effective but also requires more computa-
tional resources and training data.

Loss function
Advanced sentence embedding methods, Sentence-BERT 
and SimCSE, are considered. Sentence-BERT consists of 
two parameter-sharing BERT networks, each of which 
receives a sentence as input and acquires a fixed-length 
vector of sentence embeddings after a pooling operation. 
Then the cosine distance of two sentence embeddings 
is calculated as similarity in the inference stage. But in 
the training stage, Sentence-BERT uses a classification 
objective function unrelated to cosine. The classification 
objective function is described in  Eq.  4. Two sentence 
embeddings u and v are concatenated with the element-
wise difference vector |u− v| between them and multi-
plied by the trainable weight Wt ∈ R3n∗k.

where n is the dimension of the sentence embeddings and 
k is the value of the target labels. Finally, cross-entropy 
loss functions are used to train the model.

Without the inconsistent training and prediction objec-
tives of Sentence-BERT, SimCSE optimizes the cosine 
values directly in training. Unsupervised SimCSE uses 
sentences with itself as positives and other sentences in 
the batch as negatives (Fig. 4a). Supervised SimCSE fur-
ther leverages performance through NLI data labels. The 
NLI dataset [73] consists of data triads in which the rela-
tionship between two sentences is either implicit, neutral 
or contradictory.

As shown in Fig. 4b, hi and h+i  are positive pairs with 
labeling entailment  while hi and h−j  are hard-negative 
pairs with labeling contradiction, the training objective 
is:

(4)s = softmax(Wt · (u, v, |u− v|))

(5)s = − log
ecos(hi ,h

+
i )/τ

∑N
j=1 e

cos(hi ,h
+
j )/τ + e

cos(hi ,h
−
j )/τ

Fig. 4 Differences in samples suitable for different models
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where τ is a temperature hyperparameter.
In contrast to the data triad of the NLI dataset, the 

format of our target data is the sentence pair (Fig.  4c). 
To implement the idea of optimizing cosine similarity 
in SimCSE on our data, the CoSENT loss function pro-
posed by Su (2022) [83] is introduced.

where � is a hyperparameter.

Training process
To ensure reproducibility, we provide a comprehensive 
description of the training process, including the follow-
ing steps:

Step 1: Preprocess the PEMR data to ensure that the 
input data is in a suitable format for training. During 
training, we set the maximum text length to 80. If the 
input text exceeds this length, it is truncated, and if it is 
shorter, it is padded with zeros to match the maximum 
length.

Step 2: Initialize the PLM Layer and the weights of the 
pre-trained MacBERT model are loaded, providing a 
strong initial starting point for training.

Step 3: During training, we employ contrastive learn-
ing. By training the model to correctly distinguish 
between positive and negative pairs, we encourage the 
model to capture meaningful semantic representations.

Step 4: The AdamW optimizer is used to update the 
model parameters during training. The learning rate is 
set to 2e-5, and the batch size is 32. Backpropagation is 
used to compute the gradients, and the optimizer adjusts 
the model’s parameters accordingly, repeating this pro-
cess for 15 epochs.

Hardware, software environment and evaluation metrics
Software Environment: all experimental codes were exe-
cuted on Python 3.6 with Pytorch1.10.0 and CUDA 11.3. 
Hardware Platforms: we used a cloud server with RTX 
3090(24 GB) CPU, Intel(R) Xeon(R) Gold 6330 CPU and 
256 GB memory to train models.

The evaluation of the model is divided into two parts: 
(1) the ability of the model to estimate the similarity of 
the electronic medical records. The similarity between 
two sentence embeddings is evaluated using cosine 
similarity as the main metric. We calculate Pearson’s 
Coefficient and Spearman’s Rank Coefficient to indi-
cate how our cosine similarity estimates and the ground 
truth labels provided by the dataset are related. (2) The 
accuracy of the model’s prescription recommendations 
in application scenarios. Simulating a real application 
scenario, plant disease descriptions are used as input to 

(6)

s = log(1+
∑

(i,j)∈�pos ,(k ,l)∈�neg

e�(cos(uk ,ul)−cos(ui,uj)))

obtain diagnoses and prescriptions based on a standard 
prescription library. The correctness (Accuracy) of the 
diagnostic results is counted as an evaluation index of the 
prescription recommendation effectiveness.

where np denotes the number of accurate prescriptions 
recommended and nr denotes the total number of rec-
ommended prescriptions. Considering the diversity and 
personalization of prescription prescribing in actual agri-
cultural production, the top-n approach is used in this 
paper for model evaluation.

Results and discussion
Semantic matching experimental results
The core of the prescription recommendation model 
constructed in this study lies in semantic matching, and 
only a model with excellent semantic matching capabil-
ity can achieve effective prescription retrieval and recom-
mendation. To validate the semantic matching ability of 
the proposed model, experiments are conducted in this 
section on the constructed Vdateset-E, and the model 
performance is evaluated.

Different PLM and different pooling layer
The effects of different PLM structures and pooling types 
on the model matching effect are compared: four pool-
ing layers are chosen: first-last avg, mean, CLS, max, and 
three PLMs are chosen: macBERT, BERT, and roBERTa. 
With 3 kinds PLM models and 4 pooling types, we pro-
vide 12 different PLM + pooling results.

The detailed results are shown in Table 1, with the best 
performance in each column highlighted in bold. The 
results demonstrate that different PLMs are better suited 

(7)Accuracy =
np

nr

Table 1 Comparison of different PLMs and different pooling 
layers

PLM layer Pooling operations Pearson (%) Spearman (%)

BERT First-last avg 84.84 77.22

RoBERTa First-last avg 84.6 77.07

MacBERT First-last avg 85.66 77.10

BERT Mean 86.11 77.53

RoBERTa Mean 85.80 77.29

MacBERT Mean 85.89 77.33

BERT Pooler 84.40 77.02

RoBERTa Pooler 84.29 77.11

MacBERT Pooler 83.83 77.41

BERT CLS 85.95 77.27

RoBERTa CLS 85.95 77.16

MacBERT CLS 86.34 77.67
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for different pooling operations. Our model achieved the 
highest performance by combining MacBERT with CLS 
pooling, achieving a Pearson coefficient of 86.34% and 
a Spearman coefficient of 77.67%. MacBERT is trained 
by masking the word with its similar word rather than 
using the [MASK] token [71], which helps to improve the 
understanding of word embeddings [74]. Similarly, RoB-
ERTa is also better suited for CLS pooling. Overall, the 
CLS pooling method achieved effective results through 
a simple structure compared to the other three complex 
pooling methods. This may be because contrastive learn-
ing directly updates the representation of [CLS] token 
[75]. However, BERT performed better when enhanced 
by mean pooling (MEAN), with a Pearson correlation 
coefficient of 86.11% and a Spearman correlation coef-
ficient of 77.53%. These results align with the findings 
of [75], where mean pooling was shown to enhance the 
semantic correlation between adjacent characters in Chi-
nese when applied to BERT.

Different sentence embedding solution
Two sentence embedding schemes are compared: super-
vised simCSE optimized with the CoSENT loss func-
tion (our model) and sentence-BERT (sBERT), both of 
which employ CLS pooling. Figure  5 displays Pearson’s 
and Spearman’s coefficients for the diagnostic results 
obtained with different combinations of PLM and sen-
tence embedding loss functions. The results indicate that 
our model outperforms sBERT, irrespective of the PLM 
used. Notably, the performance gap between CoSENT 
and sBERT is particularly pronounced when RoBERTa 
or macBERT is used as PLM layer. Specifically, when 
combined with RoBERTa, CoSENT attains Pearson’s and 
Spearman’s coefficients of 0.8595 and 0.7716, respec-
tively, as opposed to 0.8084 and 0.7669 for sBERT. Simi-
larly, with macBERT, CoSENT achieves Pearson’s and 

Spearman’s coefficients of 0.8634 and 0.7767, respec-
tively, while sBERT obtains 0.8005 and 0.7673.

These findings suggest that CoSENT may be better 
suited for capturing semantic similarity between sen-
tences [79], particularly when more powerful pre-trained 
models are employed. However, it is noteworthy that all 
combinations of models yielded Pearson’s and Spear-
man’s coefficients above 0.75, indicating that pre-trained 
language models and sentence embedding schemes are 
effective for capturing semantic similarity between sen-
tences, corroborating the view of studies such as [66–68].

Prescription recommendation testing
To verify the prescription recommendation capability of 
the model in application scenarios, we conduct closed-
set tests and open-set tests on the vegetable disease-
prescription dataset and the fruit disease-prescription 
dataset, respectively. The former (Vdateset-Q) is derived 
from the same distributed space as our model training 
data (Vdateset-E), while the latter (Fdateset-Q) contains 
a diverse range of plants and prescription types that the 
model did not see during training. The experimental 
results are shown in Table  2, and the bolded font indi-
cates the best results in that column.

Closed‑set testing
The results show that the method proposed in this paper 
can achieve good prescription recommendation accuracy 
in closed-set testing. Specifically, our model achieved 
Top-1 accuracy of 88.20%, Top-3 accuracy of 96.07%, and 
Top-5 accuracy of 97.70%. These are good results consid-
ering the complexity of the prescription recommendation 
task that involves multiple vegetables and multiple treat-
ment options.

Although the Top-1 accuracy of BERT-CoSENT is 
1.97% lower than that of our model, it achieves the same 
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results as our model in Top-3 and is 0.33% higher than 
our model in Top-5. In addition, RoBERTa-CoSENT also 
achieves relatively good results. This indicates that the 
choice of pre-trained language model has less impact on 
the accuracy of prescription recommendations.

On the other hand, the sentence embedding scheme 
has a greater influence on the accuracy of prescription 
recommendations. The model with CoSENT sentence 
embedding scheme for prescription recommendation 
was significantly more effective than the model with 
SBERT, which is consistent with the results of the previ-
ous semantic matching experiments. The CoSENT sen-
tence embedding scheme directly optimizes the cosine 
values without the problem of inconsistent training and 
prediction targets of SBERT and has achieved superior 
results in several NLP tasks [76–78].

Open‑set verification
Test our prescription recommendation method on the 
fruit disease dataset to explore its generalization capabil-
ity. As shown in Table 2, our model achieves good results 
in the open-set test, although slightly worse than in the 
closed-set test. Specifically, the Top-1 accuracy of the 
PRSER model on the open set is 82.04%, which is 6.16% 
lower than that on the closed set; the Top-3 accuracy is 
91.50%, which is 4.57% lower than that on the closed set; 
and the Top-5 accuracy is 94.90%, which is 2.80% lower 
than that on the closed set.

The decrease in accuracy compared to the closed-set 
test is expected, as the training set of the model does 
not contain fruit-related PEMRs and prescriptions. Nev-
ertheless, the relatively high Top3 and Top5 accuracies 
indicate that our model can still make good prescription 
recommendations even for new prescriptions. This is 
because our prescription recommendation model relies 
on semantic matching between PEMRs. The training 
data is significantly extended by transforming disease-
prescription pairs into binary-labeled disease-disease 
pairs. This approach enables the model to concentrate 

on the semantic extraction of PEMRs and accentuate the 
distinction between disease information. Consequently, 
the model is capable of effectively embedding PEMRs for 
prescription recommendations, even when faced with 
prescriptions with limited sample sizes or entirely new 
prescriptions not included in the training data.

Application scenario analysis
Plant disease prescription recommendation system 
construction
To address the challenge of the limited number of plant 
doctors and the inability of plant clinics to meet the 
needs of a large number of farmers, this paper designs 
and implements a plant disease prescription recommen-
dation system for mobile terminals based on sentence 
embedding. The system provides farmers with timely 
and accurate intelligent services, including symptomatic 
control, scientific use of pesticides, and decision-making 
support, ultimately improving the quality and efficiency 
of agricultural production.

The system utilizes Django in conjunction with 
WeChat applets for mobile development and the Django 
REST framework to establish a RESTful API for data 
exchange and communication between mobile devices 
and the server. In addition, a lightweight SQLite data-
base is employed as a serverless, zero-configuration, 
transactional SQL database engine for data storage and 
management.

Considering the limited experience of system users in 
describing and recording plant diseases, the system is 
designed with a detailed mobile app interface to guide 
users in entering various disease-related information. 
The system references the widely recognized “disease 
triangle” principle in plant pathology, which is a trian-
gular framework consisting of pathogen, host and envi-
ronment [79]. In practical scenarios of diagnosis and 
treatment of plant diseases, environmental, plant and 
symptom-related information needs to be considered. 
To facilitate the input of information, the mobile app 
interface organizes the information to be entered into 

Table 2 Prescription recommendation testing on closed-set and open-set

The bolded values indicate the best-performing results in each column

Model Closed-set (%) Open-set (%)

TOP.1 TOP.3 TOP.5 TOP.1 TOP.3 TOP.5

BERT-sBERT 79.67 87.87 91.15 75.24 89.81 92.48

roBERTa-sBERT 79.02 87.21 91.15 76.21 90.53 93.45

macBERT-sBERT 78.69 86.89 90.82 76.94 90.29 95.39

BERT-CoSENT 86.23 96.07 98.03 81.07 91.26 94.66

RoBERTa-CoSENT 86.56 95.41 97.05 80.34 92.72 93.45

PRSER(our model) 88.20 96.07 97.70 82.04 91.50 94.90
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three categories: (1) environmental information (onset 
date, geographic location, field distribution), (2) plant 
information (plant species, growth stage, and plant dis-
ease site), and (3) symptom information (severity, main 
symptoms, and detailed records). The Mockplus RP soft-
ware is used to implement the interface display and user 
interaction, ensuring a user-friendly and intuitive user 
experience for users. After the user fills in disease-related 
information, the system generates the top 5 prescription 
recommendations based on the proposed prescription 

recommendation model and the constructed prescrip-
tion reference (as shown in Fig. 6). The system can pro-
vide a direct service to farmers as well as a reference for 
plant doctors.

Analysis of common problems in application scenarios
The previous experiments have demonstrated that the 
plant disease prescription recommendation system uti-
lizing the PRSER model can produce favorable results for 
the complete PEMRs filled by plant doctors from plant 

Fig. 6 System input–output workflow diagram
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clinics. However, in practical application scenarios, users 
may input incomplete data, such as when only symptom 
information is available without corresponding environ-
mental information. To evaluate the generalization ability 
of the model in handling incomplete inputs, we conducted 
experiments using different input methods and evaluated 
the performance of the model using the TOP1/3/5 accu-
racy metrics. The experiments were conducted on a data-
set with incomplete disease-related information, and the 
results are shown in Fig. 7 and Fig. 8.

The experimental results demonstrate that the system’s 
recommendation accuracy can be enhanced by improving 
the completeness of the input data, with symptom infor-
mation playing a pivotal role. This is attributed to the fact 
that phenotypic characteristics represent the most intui-
tive and characteristic manifestations of crop diseases [6, 
7]. Specifically, with only symptom information, the sys-
tem can still provide good accuracy, with top-5 accuracy 

of 91.99% for the closed-set test and 89.84% for the open-
set test. This indicates that the proposed model has good 
adaptability to incomplete input data.

While the results are promising and demonstrate that 
incorporating environmental and plant-related informa-
tion can significantly enhance the accuracy of the recom-
mendation system, it is important to acknowledge certain 
limitations and potential challenges encountered during 
the study. The achieved TOP 5 accuracy rate of 97.70% 
in the closed test and 94.90% in the open test validates 
the underlying principle of the disease triangle in plant 
pathology, showcasing the intricate interaction among 
the environment, plant, and pathogen in disease develop-
ment [79]. However, we must recognize that these results 
were obtained under specific conditions and may not be 
generalizable to all scenarios.

The availability and quality of the input data from 
users are noteworthy limitations. The accuracy of the 
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recommendations heavily relies on the comprehensive-
ness and accuracy of the information provided during the 
practical application of the plant disease prescription rec-
ommendation system. If users fail to supply relevant and 
precise data, it may affect the system’s ability to deliver 
accurate recommendations. For example, with symptom 
information only, the top-5 accuracy is 91.99% for the 
closed-set test and 89.84% for the open-set test, which 
are both lower than the results with full input of Environ-
ment + Plant + Symptoms. Therefore, encouraging users 
to provide comprehensive information is crucial to maxi-
mizing the potential of the recommendation system.

Conclusions and future directions
Conclusions
The PRSER method proposed in this study demonstrates 
excellent performance in plant disease prescription rec-
ommendations. We constructed a multi-vegetables 
disease dataset and a multi-fruit disease dataset for com-
paring different PLMs, pooling operations, and loss func-
tions. The results of the semantic matching experiments 
show that the combination of MacBERT, CLS pool-
ing, and CoSENT loss function achieves the best per-
formance, with a Pearson coefficient of 86.34% and a 
Spearman coefficient of 77.67%. Furthermore, the pre-
scription recommendation test results demonstrate that 
the PRSER exhibits good accuracy in both closed-set and 
open-set scenarios, with Top-1/Top-3/Top-5 accuracies 
ranging from 82.04% to 97.70%.

We have further designed and implemented a plant 
disease prescription recommendation system for mobile 
terminals. The system features a user-friendly mobile app 
interface that guides users to enter information related 
to the environment, plant, and symptoms. Application 
scenario experiments demonstrate that the completeness 
of the input data positively affects the recommendation 
accuracy of the system, with symptom information iden-
tified as the most important determinant.

In summary, the PRSER approach proposed in this 
study has great potential to advance agricultural intel-
ligence by facilitating plant disease prescription recom-
mendations. Our findings provide valuable insights for 
future research in this area, especially in exploring new 
data sources, refining the recommendation system, and 
expanding its applicability in real-world agricultural 
production.

Future directions
The PRSER method proposed in this study exhibits out-
standing performance in plant disease prescription rec-
ommendations. However, there are several avenues for 
future research and improvement to enhance its capabili-
ties and applicability:

1. Integration of Image Data Modalities: In light of the 
growing interest in computer vision-based plant dis-
ease diagnosis, incorporating image data modalities, 
such as visible image data or hyperspectral data [6], 
into our model to construct a prescription recom-
mendation model based on multimodal fusion repre-
sents a promising research direction.

2. Integration of Other Relevant Data Sources: Explor-
ing the integration of diverse data sources, includ-
ing weather data, soil characteristics, and historical 
disease records, could significantly enrich the rec-
ommendation system’s understanding and decision-
making process.

3. Improvement of the Plant Disease Prescription Rec-
ommendation System: Two key aspects warrant 
attention. Firstly, enhancing the interpretability of 
the prescription system [80], allowing users to com-
prehend the reasoning behind the AI recommenda-
tions [81], would increase user understanding and 
acceptance. Secondly, refining the system’s interac-
tion design to foster seamless human and intelligent 
system interactions, such as employing question and 
answer systems, chatbots, and other agents [82], will 
elevate the overall user experience.
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