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Abstract 

Background Automatic and precise jujube yield prediction is important for the management of orchards 
and the allocation of resources. Traditional yield prediction techniques are based on object detection, which predicts 
a box to achieve target statistics, but are often used in sparse target settings. Those techniques, however, are chal-
lenging to use in real-world situations with particularly dense jujubes. The box labeling is labor- and time-intensive, 
and the robustness of the system is adversely impacted by severe occlusions. Therefore, there is an urgent need 
to develop a robust method for predicting jujube yield based on images. But in addition to the extreme occlusions, it 
is also challenging due to varying scales, complex backgrounds, and illumination variations.

Results   In this work, we developed a simple and effective feature enhancement guided network for yield estima-
tion of high-density jujube. It has two key designs: Firstly, we proposed a novel label representation method based 
on uniform distribution, which provides a better characterization of object appearance compared to the Gaussian-
kernel-based method. This new method is simpler to implement and has shown greater success. Secondly, we intro-
duced a feature enhancement guided network for jujube counting, comprising three main components: backbone, 
density regression module, and feature enhancement module. The feature enhancement module plays a crucial role 
in perceiving the target of interest effectively and guiding the density regression module to make accurate predic-
tions. Notably, our method takes advantage of this module to improve the overall performance of our network. To 
validate the effectiveness of our method, we conducted experiments on a collected dataset consisting of 692 images 
containing a total of 40,344 jujubes. The results demonstrate the high accuracy of our method in estimating the num-
ber of jujubes, with a mean absolute error (MAE) of 9.62 and a mean squared error (MSE) of 22.47. Importantly, our 
method outperforms other state-of-the-art methods by a significant margin, highlighting its superiority in jujube 
yield estimation.

Conclusions  The proposed method provides an efficient image-based technique for predicting the yield of jujubes. 
The study will advance the application of artificial intelligence for high-density target recognition in agriculture 
and forestry. By leveraging this technique, we aim to enhance the level of planting automation and optimize resource 
allocation.
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Background
Jujube tree, whose fruit is known as red jujube or Chi-
nese jujube (date), is one of the world’s oldest cultivated 
fruit trees and the most important species in the wide 
international Rhamnaceae family in terms of economic, 
ecological, and social value [1, 2]. Jujube planting is a 
labor-intensive sector that needs a significant number 
of workers to complete numerous operations like plant-
ing, cultivation, and harvesting. Orchard production 
has increased dramatically in recent years as a result of 
the advancement of modern agriculture, and people are 
becoming increasingly interested in automatic manage-
ment [3–5]. The yield estimation of jujube can assist 
managers in forecasting the output of the area of interest 
and enable producers to make appropriate professional 
modifications to the resource allocation of the orchard, 
which plays an important role in promoting the orchard’s 
benign development.

However, this task is quite tough because of the high 
density, which makes it impossible for us to capture 
jujubes one by one. As an illustration, Fig. 1 depicts some 
samples of jujube taken from real scenes, which clearly 
indicates that the interested targets are subject to a vari-
ety of scales and severe occlusions. Additionally, the 
scene is complicated due to factors like changing illumi-
nation. According to modern cognitive research, human 
cognitive capacity is not a simple image-based matching 
process. It is an inherent process of information decom-
position and reconstruction. Biological systems identify 
object features and draw conclusions about the unknown 
based on the learned features [6]. Based on this, com-
puter vision algorithms offer a practical solution to the 
aforementioned issues.

Initially, traditional methods rely on the shape, color, or 
hand-crafted features to capture those interested objects 
[7]. Ref.[8] explored three prominent visual cues of tex-
ture, color, and shape into a strong classifier, which was 
used to capture berries even when they are of similar 
color to the vine leaves. These methods have a limited 
ability to generalize. When the camera angle of view or 
lighting conditions change, the prediction performance 
suffers greatly. To address these issues, several efforts 
are devoted to to building stronger representations [9, 
10]. Ref. [11] proposed a multi-scale feature learning 
method for multi-class segmentation which is used to 
estimate the fruit yield on treecrops. Ref. [12] utilized a 
conditional random field on multi-spectral images (color 
and near-infrared reflectance) to model crop and back-
ground for the detection of highly occluded objects. Ref. 
[13] aggregated more robust feature representations for 
building an image descriptor, such as scale-invariant fea-
ture transform for calculating low-level features, bag of 
features. Although some issues have been improved [14], 
the applicability and robustness of those traditional mod-
els remain limited.

Inspired by the cognitive mechanism of biological 
natural vision, convolutional neural networks have been 
extensively developed [15–17]. Thanks to the develop-
ment of deep learning in the field of computer vision 
[18–20], the performance on many tasks has been sig-
nificantly improved. As for the task of jujube counting, 
an intuitive solution is to use detection-based meth-
ods. Many efforts have been made in this field thus far, 
with numerous milestone results, such as Faster-RCNN 
[21], FPN [22], YOLO and its variants [6, 23–26]. These 
efforts and follow-up detection work have promoted 

Fig. 1 Part of samples with different densities from jujube counting dataset
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the detection and counting tasks in various parts of 
plants [27]. For example, [28] explored the use of an 
object detection framework, Faster R-CNN, in the con-
text of fruit detection in orchards, such as mangoes and 
almonds. [29] trained four Region-based Convolutional 
Neural Networks (R-CNN) which output the spike den-
sity and a classification probability for each plot. The 
authors [30] used Faster-RCNN to detect the apple flow-
ers, and the results were used to estimate the blooming 
intensity and determine the blooming peak date. Ref. [31] 
explored the data augmentation to increase the dataset 
size for detecting and counting olive fruit flies by using 
modified YOLO. Ref. [32] built a channel pruned YOLO 
model for accurately detecting apple fruitlets with a 
small model size. Afonso et  al. [33] proposed a tomato 
detection and counting method based on Mask-RCNN. 
It performs well for recognizing and counting mature 
tomatoes, but it struggles to detect green fruits. Never-
theless, these methods are designed for scenes with rela-
tively sparse targets, and their accuracy will suffer greatly 
when confronted with high-density scenes.

An alternative solution to the aforementioned problem 
is to regress the number of targets or the density map 
directly. MCNN [34] constructed a multi-column convo-
lution network based on convolution kernels of different 
sizes to learn the scale change of targets, and they pro-
posed a density map based on Gaussian kernels to char-
acterize the number and distribution of targets. CSRNet 
[35] learned the multi-scale features of targets via the 
stack of dilated convolution layers, which achieves out-
standing performance. MbCNN [36] perceived the scale 
change of the target by collecting the characteristics of 
different levels for aphid counting. These methods have 
produced good results, but their straight application to 
this task is not satisfactory because the distribution of 
targets is substantially different, as are the target density 
and size.

To address these issues, we propose a feature enhance-
ment guided network for yield estimation of high-density 
jujube. To achieve this task, we collected a dataset with 
samples of different densities for jujube counting, which 
contains various challenges, such as severe occlusion, 
scale change, complex background, etc. Then, we put for-
ward a new label generation method based on uniform 
distribution to characterize the jujube with point anno-
tation. In addition, we designed a feature enhancement 
guided network for efficiently estimating the number of 
high-density jujubes. It consists of three main compo-
nents: backbone, density regression module and feature 
enhanced module. The backbone is used to mine effective 
features from images, and the density regression mod-
ule is given to predict the density map. To enhance the 
feature representation, a feature enhancement module 

is proposed to guide the density prediction with pixel-
level semantic information. At last, various experiments 
are performed to demonstrate the effectiveness of our 
method. Our method achieves a more accurate estima-
tion result with 9.62 MAE and 22.47 MSE compared to 
other state-of-the-art methods.

Materials and methods

Overall
The overview of a jujube yield estimation system is shown 
in Fig. 2. The main steps are as follows: The first is data 
collection, which can be performed using mobile phones, 
digital cameras, or web searching; the second is data pro-
cessing, which includes data cutting, scaling, etc., to meet 
the computing abilities of hardware devices while creat-
ing labels for performance evaluation if necessary. The 
third is network modeling, wherein network reasoning 
can be performed directly on the processed data if the 
model has been trained. Note that pre-trained parame-
ters are directly loaded for network reasoning. Finally, the 
results and analysis are given.

Fig. 2 System overview
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Data collection
In this study, we collected a dataset for jujube counting 
with 692 images, which were primarily sourced from 
outdoor photos and web crawlers. It includes a range of 
types of jujubes, including winter jujube and pear jujube, 
to broaden the applicability of this dataset.

It covers samples with different densities. We separated 
them into four types for simplicity: low density (1–50), 
medium density (51–100), high density (101–200), and 
ultra-high density (more than 200), as shown in Fig.  1. 
The figure makes it clear that, compared to object detec-
tion in sparse scenes, this task is more challenging due to 

factors like severe occlusion, scale changes, and com-
plicated background. With an average of 58 jujubes per 
image, we marked 40,344 jujubes in total. Additionally, 
Fig.  3 presents the distribution of samples at different 
densities. The dataset is divided into three parts: training, 
validation and test. In training phase, 459 and 50 samples 
are used for training and validation, respectively, and the 
rest are for test.

Label generation
As shown in Fig. 1, in many scenes, the jujubes are small 
in scale and occluded more severely, which makes box 
annotation extremely difficult. For this reason, this work 
uses points to reduce the complexity of annotation. We 
use the publicly available annotation software named 
Labelme for annotation. A red dot at the center of each 
target indicates the position of the target (x,  y), which 
represents the horizontal and vertical coordinates of the 
target, respectively. The labeling process is given in Fig 4, 
which shows a scene with a high density of jujubes, for 
which it obviously takes a long time to label.

Directly predicting points is a quite challenging task. 
To lessen the prediction complexity, we regress density 
map as an alternative. A common generation method is 
to generate the map based on Gaussian kernel, such as 
MCNN [34] and CSRNet [35]. Its purpose is to simulate 
objects of interest with various postures and perspec-
tives. Instead, we introduce a new generation method of 

Fig. 3 Distribution of samples at different densities

Fig. 4 Image annotation. Red dots indicate labels
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uniform distribution density map since the surface distri-
bution of jujube is relatively uniform, which is easier to 
use and more efficient compared to the Gaussian-kernel 
based method. Assume that there is a jujube in position 
xi of the image. Then the uniform density map is gener-
ated by α(x − xi) . Formally, the overall density map is 
given by the following equation:

where N is the total number of the jujubes and 
α(x − xi) = 1/M in which M is the area of density map.

Figure 5 shows the visualization of the density map. It 
can be seen that it not only represents the quantity infor-
mation of the targets, but also shows the distribution 
of the targets in the scene. This can help us sort out the 
local and global yield of the scenes.

Feature enhancement guided network
This study uses a convolutional neural network to extract 
robust features for jujube counting. Many networks, 
including MCNN, CSRNet, and MbCNN [36], have been 
proposed for density map regression. MCNN put for-
ward three branches with various convolution kernels to 
achieve the sense of human head size. By using dilated 
convolution kernels and pre-trained VGG, CSRNet was 
able to learn about various scales. MbCNN performed 
feature enhancement by combining features at many 

(1)K =

N∑

i=1

α(x − xi),

levels. It is obvious from these findings that robust fea-
ture extraction is crucial for determining network per-
formance. Inspired by these works, we propose a feature 
enhancement guided network (FEG Net) which aims to 
better direct the exploration of density maps, as shown 
in Fig. 6. It consists of three modules: backbone, density 
regression module and feature enhancement module, 
which will be introduced in detail.

Backbone
The backbone of neural networks is utilized to extract 
features from images, which is critical for the realization 
of robust vision tasks. To this end, we employ the first ten 
convolution layers of VGG-16 [18] as the feature extrac-
tor of our network. It should be emphasized that the net-
work parameters pre-trained on ImageNet are loaded 
when the backbone is initialized. It aims to learn transfer-
able prior knowledge, reduce the size of new task training 
data, and effectively avoid network overfitting.

The specific network configuration of the backbone is 
detailed in Table  1. More specifically, the first two lay-
ers are stacked by 3× 3 convolution layers for extracting 
primitive information such as lines and corners. Follow-
ing them are three pooling layers, each of which is fol-
lowed by 2–3 convolution layers. Since three pooling 
layers are employed, we acquire a network feature that is 
1/8 the size of the original image. It should be noted that 
each convolution layer is followed by a ReLU nonlinear 
transformation. As the number of network layers rises, 

Fig. 5 Visualization of the density map with uniform distribution
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the extracted features become more abstract, making it 
simpler for the network to detect concrete objects.

Density regression module
The scale variation of jujubes is a remarkable chal-
lenge for this task. As depicted in Fig.  1, jujube size and 
shape vary widely due to the impact of the camera view. 
Inspired by [35, 37], this study utilizes dilated convolu-
tion to capture scale changes. This is because it increases 
the receptive field of the convolution kernel by a dilated 
stride without increasing parameters and avoids the spa-
tial downsampling operation of the pooling layer. As a 

result, it enables flexible aggregation of multi-scale con-
textual features while retaining the same resolution.

In particular, we build four layers of 3× 3 convolution 
with an expansion rate of two in this module, and the 
number of channels steadily decreases, which is 512, 512, 
256, and 128 in turn. Finally, a 1× 1 convolution layer is 
used to generate the final result Od(xi) . Due to the fact 
that the final output size is 1/8 of the original picture size, 
we further employ bilinear interpolation to restore the 
resolution to the original image size. The output of this 
branch accomplishes the network parameter optimiza-
tion via the following loss:

where Lx,y =
2uxuy+c1
u2x+u2y+c1

 , Cx,y =
2σxσy+c2
σ 2
x σ

2
y +c2

 , and Sx,y =
σxy+c2
σxσy+c3

 

denotes luminance comparison, contrast comparison and 
structure comparison, respectively, um , σm and σmn 
denotes local mean, variance and covariance for pre-
dicted density map and groundtruth, respectively.

Feature enhancement module
This module builds dual paths as a guide for refining the 
features of the density regression module using super-
vised and unsupervised methods. The motivation of the 
module design is to emphasize the understanding of the 
region of interest and reduce the interference of noise. 
The reasons for designing dual paths are that there will be 
some semantic ambiguity if the output with the supervi-
sion signal is immediately filtered to the density regres-
sion module. As a result, we build two pathways to ensure 
that the module not only benefits from the semantic 

(2)Loss1 = 1− Lx,yCx,ySx,y,

Fig. 6 The overall framework of our proposed feature enhancement guided network. It is made up of three modules:backbone, density regression 
module and feature enhancement module

Table 1 Network configurations of the first ten layers of VGG16

First ten layers of VGG16

Input images with three channels (RGB)

conv3-64

conv3-64

maxpool

conv3-128

conv3-128

maxpool

conv3-256

conv3-256

conv3-256

maxpool

conv3-512

conv3-512

conv3-512
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information provided by the supervision signal but also 
automatically adjusts the region of interest to improve 
network feature learning.

The detailed configuration of this module is presented 
in Fig. 7. More specifically, the dual paths originate from 
a shared convolution layer, where each path has the same 
convolution structure. The shared convolution layer is 
made up of a 3× 3 convolution layer with an expansion 
rate of 2. Each path is made up of a 3× 3 convolution 
and a 1× 1 convolution, followed by a sigmoid nonlinear 
operation. The supervised signals are given by a binary 
cross entropy loss:

where pi is the predicted probability value of each pixel, 
and yi is the binarization of density map by a given 
threshold.

The non-supervised path is used directly to filter the 
output of density regression module. The specific opera-
tion is listed as below:

where f (xi) denotes the output of the non-supervised 
path.

Finally, the parameters of the network are optimized as 
follows:

Experiment settings
The proposed network is built based on the Pytorch 
framework, and we generate the density map by MAT-
LAB. Unified hardware is used for training and test, 
namely Intel Core i7-11700K, 16GB RAM and RTX 
2080Ti. We train our model for 600 epochs with batch 
size 8. Adam optimizer is used to optimize the network, 
and the learning rate is 10−5 . In the training process, we 

(3)

Loss2 =
1

N

∑

i

−[yi log(pi)+ (1− yi) log(1− pi)],

(4)Denf (xi) = Od(xi)f (xi).

(5)Ltotal = Loss1 + Loss2.

use random clipping, random gamma transform, random 
grayscale and random flip for data augmentation.

Evaluation metrics
We use Mean Absolute Error (MAE) and Mean Square 
Error (MSE) as evaluation metrics to evaluate our model 
which is defined in the following:

and

where N is the number of test images, Zi is the actual 
number of jujubes in the ith image, Ẑi is the estimated 
number of jujubes in the ith image. Note that MAE is 
used to evaluate the average accuracy of network predic-
tion, while MSE is used to evaluate the robustness of the 
proposed network.

Results and analysis
In this section, we study the influence of network struc-
ture and settings on counting performance. Compara-
tive experiments are finally provided to demonstrate the 
effectiveness of our proposed network.

Comparison results on feature enhancement module
We perform an ablation study on the feature enhance-
ment module. To more clearly illustrate the benefits of 
this module, we will initially provide three baselines as 
follows.

• Baseline 1: It is a variant of CSRNet (termed as CSR-
Net∗ ), consisting of four 3× 3 convolutions with an 
expansion rate of 2, followed by a 1× 1 convolution.

• Baseline 2: It has two 3× 3 convolutions with an 
expansion rate of 2, followed by a 1× 1 convolution 

(6)MAE =
1

N

N∑

i=1

|Zi − Ẑi|

(7)MSE =
1

N

N∑

i=1

(Zi − Ẑi)
2

Fig. 7 Feature enhancement module
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and Sigmoid activation function. To generate the 
final density map, multiply the output of the afore-
mentioned operations by that of Baseline 1.

• Baseline 3: It has the same network structure with 
Baseline 2. The distinction is that there is no multi-
plication operation taking place here. As an auxiliary 
signal, the mask is utilized as the supervised signal 
to efficiently help the network better distinguish 
between the foreground and background.

Clearly, baseline 2 and baseline 3 are one of the two paths 
in our module. The reason for setting these two baselines 
is to emphasize the benefits of combining the two in our 
module. To make this ablation study more applicable, we 
adopt the same settings as CSRNet, such as the param-
eter initialization of pre-trained VGG, and label gen-
eration. Table  2 presents the comparison results of our 
proposed module with the three baselines. Compared 
to baseline 1, baseline 2 shows a slight improvement in 
MAE performance while simultaneously significantly 
reducing MSE. This outcome can be attributed to the use 
of unsupervised attention, which directly constructs a 
single path to focus on learning regions of interest. How-
ever, due to the presence of noise, efficient identification 
of both interesting and uninteresting regions becomes 
challenging. In comparison to both baseline 1 and base-
line 2, baseline 3 demonstrates a significant improvement 
in both MAE and MSE. This suggests that the utilization 
of mask-based supervised signals enables better percep-
tion of important regions. Nevertheless, the generation 
of masks based on a given threshold introduces a cer-
tain amount of noise. To address these challenges, we 
propose a module that combines the strengths of both 
approaches. By doing so, we are able to further mitigate 
the impact of noise and consistently filter out unimpor-
tant regions more effectively.

Comparison results on loss function
In order to properly train the network, the quality of 
loss function is crucial. It can make the network’s output 
adhere more closely to the actual distribution of labels. In 
this subsection, we evaluate the impact of different loss 
functions on network performance. Table 3 presents the 

comparison results of different loss functions. In analyz-
ing the table, it becomes evident that the performance of 
the L1 loss is poor. This can be attributed to the non-dif-
ferentiability of the loss function at zero, resulting in slow 
convergence rates of the optimization algorithm. Con-
sequently, fitting the density map becomes more chal-
lenging. On the other hand, MSE loss exhibits improved 
performance by effectively fitting the density map. How-
ever, it is susceptible to outliers, meaning that large dis-
crepancies between predicted and true values can lead to 
gradient explosion, adversely affecting network param-
eter optimization. To address these issues, the Smooth L1 
loss is proposed as a suitable alternative. This loss func-
tion effectively avoids the aforementioned problems and 
demonstrates improved performance in both metrics, 
as evidenced by the table. Additionally, the SSIM loss 
prioritizes differences between structures rather than 
pixel-level discrepancies, thereby excelling in MAE per-
formance. Consequently, in this study, we opt for SSIM 
loss as the objective for network optimization.

Comparison results on data augmentation
Due to the small amount of data for this task, we use 
various data augmentation techniques to increase the 
training samples so that the trained model has stronger 
generalization ability. Table  4 presents the experimen-
tal results with or without data augmentation. It clearly 
shows that the training method with data augmenta-
tion can greatly enhance the network performance in 
this task, with MAE increased by about 19.4% and MSE 
increased by 9.1%..

Comparison results on label generation
Due to the diverse characteristics of targets, general 
counting tasks typically use Gaussian kernels to describe 
the distribution of targets. This distribution may enable 
the network to more effectively capture the apparent 
characteristics of targets. Since the distribution of the 
targets in this study is relatively uniform, with the excep-
tion of color, we use the uniform distribution representa-
tion. Table 5 makes it clear that this strategy can produce 
a better MAE performance with less effort. Simultane-
ously, we have observed that the difference between 
the two approaches is not significant. This could be 

Table 2 Comparison results of our proposed module with 
different baselines

FEG Net ∗ represents FEG Net with MSE loss as the supervisory signal

Model MAE MSE

Baseline 1 13.37 29.81

Baseline 2 12.66 32.38

Baseline 3 11.30 26.03

FEG Net∗ 10.76 23.32

Table 3 Comparison results of different loss functions

Loss function MAE MSE

L1 loss 26.90 39.36

MSE loss 10.76 23.32

Smooth L1 loss 10.40 21.11

SSIM loss 9.69 21.78
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attributed to the manual setting of the density map with a 
fixed size, which makes it challenging to accurately cover 
the target region. In other words, the generated maps for 
each point tend to be either too large or too small. The 
ablation study reveals two important findings. Firstly, the 
representation of the target in this task is not singular, 
indicating that selecting an appropriate representation 
can contribute to enhancing the performance of sin-
gle or multiple metrics. Secondly, exploring the topic of 
adaptively setting the size of the density map to precisely 
cover the target area holds significant potential and war-
rants further investigation.

Comparison results with the state‑of‑the‑art models
In this subsection, we compare the proposed network 
with other networks designed for the counting task, 
including object detection-based methods (Faster 
RCNN and YOLO) and density regression-based meth-
ods (MCNN, CSRNet, and MbCNN). For object detec-
tion methods, we use point information to generate 
suitable pseudo-boxes and then use them to train these 
two object detection methods. MCNN built three con-
volutional branches with various scales and then com-
bines them. Based on the pretrained VGG, CSRNet 
used dilation convolution to learn the scale change of 
the target. To improve the target’s characterization, 
MbCNN employed convolutional features with various 
hierarchical scales.

Table 6 shows the comparison results of the proposed 
method with these methods. Notably, the proposed net-
work performs the best. The satisfactory results clearly 
confirm the effectiveness of our proposed strategies. The 
table clearly demonstrates that detection-based methods 
generally exhibit low MAE but high MSE. This is pri-
marily because these methods excel at accurately detect-
ing targets when they are large in size. However, they 

struggle to perform effective detection when the targets 
are small and heavily occluded. Moreover, the table high-
lights that YOLO outperforms Faster RCNN significantly. 
This improvement in performance can be attributed not 
only to the network structure itself but also to the incor-
poration of rich data augmentation strategies employed 
by YOLO. Furthermore, YOLO V5m demonstrates supe-
rior performance compared to YOLO V5s, achieving a 
MAE of 12.39 and a MSE of 41.95. This enhancement can 
be attributed to the increased number of parameters that 
enable more expressive features to be captured. Among 
the density regression-based methods, both MCNN and 
MbCNN are lightweight networks with relatively poorer 
performance. CSRNet utilizes pre-trained models to ini-
tialize its network parameters, enabling better capture of 
the target compared to MCNN and MbCNN. However, 
when compared to CSRNet, our proposed method show-
cases significant improvements, achieving a MAE of 9.62 
and an MSE of 22.47. These advancements are primarily 
attributed to the effectiveness of our proposed module.

Figure  8 shows the comparison of predicted results 
between our method and other counting methods. It 
should be noted that the results include pictures from low 
density to high density. As shown, the number of jujubes 
produced by our network is closer to the groundtruth 
when compared to the other two networks. We also 
notice that the performance of the three networks at high 
density, such as the last line of the image, is not satisfac-
tory, but our performance remains the best. Simultane-
ously, when compared to other networks, we generate 
less noises in the density map. Finally, it is not difficult 
to summarize the effectiveness of our proposed method.

Conclusions
In this paper, we introduce a feature enhancement guided 
network for high-density jujube counting. To begin with, 
a new jujube counting dataset is collected, which cov-
ers most challenges in this task, including severe occlu-
sion, scale change, and complex background. To better 

Table 4 Comparison results of the proposed network with/
without data augmentation

Data augmentation MAE MSE

Without augmentation 12.02 23.96

With augmentation 9.69 21.78

Table 5 Comparison results of the proposed method with 
different label generation methods

Method MAE MSE

Gaussian distribution 9.69 21.78

Uniform distribution 9.62 22.47

Table 6 Comparison of results between the proposed method 
and other counting methods

FEG Net uses SSIM loss as the supervisory signal

Method MAE MSE

Faster RCNN 15.78 46.20

YOLO V5s 13.29 43.66

YOLO V5m 12.39 41.95

MCNN 31.52 57.84

CSRNet∗ 13.37 29.81

MbCNN 33.35 60.86

FEG Net 9.62 22.47
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characterize the dot annotation, we then use uniform 
distribution to generate the image label in a density 
map fashion. Different from the Gaussian kernel-based 
method, the proposed method is easier and more 

effective. Next, a feature enhancement guided network is 
introduced to estimate the number of jujubes. It mainly 
consists of backbone, density regression module and fea-
ture enhanced module. The first two are used to extract 

Fig. 8 Comparison of the predicted results of our method with other methods
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features and predict the density map, respectively. The 
last one is a new proposed module to assist the density 
regression module in robust feature extraction. It uses 
mask signals as supervision to gain pixel-level semantic 
information to better characterize interested objects. At 
last, a number of experimental studies are provided to 
support the validity of our proposed approaches, and our 
network outperforms other state-of-the-art models.
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