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Abstract 

Background  Pumpkin seeds are major oil crops with high nutritional value and high oil content. The collection 
and identification of different pumpkin germplasm resources play a significant role in the realization of precision 
breeding and variety improvement. In this research, we collected 75 species of pumpkin from the Zhejiang Province 
of China. 35,927 near-infrared hyperspectral images of 75 types of pumpkin seeds were used as the research object.

Results  To realize the rapid classification of pumpkin seed varieties, position attention embedded three-dimensional 
convolutional neural network (PA-3DCNN) was designed based on hyperspectral image technology. The experimental 
results showed that PA-3DCNN had the best classification effect than other classical machine learning technology. 
The classification accuracy of 99.14% and 95.20% were severally reached on the training and test sets. We also dem-
onstrated that the PA-3DCNN model performed well in next year’s classification with fine-tuning and met with 94.8% 
accuracy.

Conclusions  The model performance improved by introducing double convolution and pooling structure and posi-
tion attention module. Meanwhile, the generalization performance of the model was verified, which can be adopted 
for the classification of pumpkin seeds in multiple years. This study provided a new strategy and a feasible technical 
approach for identifying germplasm resources of pumpkin seeds.
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Background
Pumpkin is a cucurbit crop with a wide range of plant-
ings and a wide variety of resources [1]. Excavating 
high-yielding pumpkin germplasm resources will greatly 
enrich the edible oil market, which is of practical sig-
nificance to increase the added value of pumpkin. In 
addition, pumpkin seeds are rich in amino acids, pro-
teins and trace elements, which have high nutritional 
value and momentous research value [2–5]. However, 
due to the late start of breeding research and the nar-
row genetic background of germplasm resources, the 
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breeding efficiency of seed-used pumpkins whose seeds 
as the main edible organs or processing objects needs 
to be improved urgently. The classification of pumpkin 
seed varieties is an important link in the identification 
of germplasm resources, which can effectively improve 
the purity of varieties, increase crop yield and promote 
breeding improvement [6, 7]. At the same time, it is of 
great significance to further realize the rapid screening of 
high-quality trait genes.

Traditional manual inspection and machine vision 
techniques for variety classification and grading are time-
consuming and labor-intensive. It no longer meets the 
current requirements of high efficiency, accuracy and 
no damage [8, 9]. Hyperspectral imaging (HSI) tech-
nology can get rich spectral data and spatial informa-
tion of seed spectral images at the same time, which is 
widely employed in the seed classification field [10–13]. 
In particular, compared with the visible light bands, the 
mid-infrared bands, etc., the near-infrared (NIR) spec-
tral region is consistent with the absorption region of 
the combination frequency and double frequency of the 
vibration of hydrogen-containing groups (O–H, N–H, 
C–H) in organic molecules [14]. By obtaining the NIR 
spectrum of pumpkin seeds, the characteristic informa-
tion of hydrogen-containing groups can be acquired, so 
as to precisely reflect the composition and properties of 
the seeds for accurate classification. Traditional methods 
usually took advantage of principal component analysis 
and other methods to select or transform original spec-
tral features, and then adopted traditional machine learn-
ing methods such as support vector machine (SVM) to 
train classifier models [15–19]. The separation of feature 
learning and classifiers easily led to the ineffective extrac-
tion of features. The compressed features thereby may 
not guarantee the classification accuracy. Additionally, 
traditional machine learning generally assumes that the 
samples for training and testing have no relation and have 
the same distribution, which is why the model obtained 
on the training set can be equally effective on the test set. 
As a consequence, in the case of different domains and 
tasks, such as the classification of multi-year seeds, tradi-
tional machine learning is limited.

As a new study direction in machine learning, deep 
learning can automatically learn features through com-
puters and has excellent feature extraction capabilities 
[20–26]. Convolutional Neural Network (CNN) is one 
of the typical and commonly used models and has been 
gradually applied to spectral analysis recently [27–29]. At 
present, CNN constructed based on HSI can be roughly 
divided into one-dimensional convolutional neural net-
works (1DCNN), two-dimensional convolutional neural 
networks (2DCNN) and three-dimensional convolutional 
neural networks (3DCNN) [30]. 1DCNN is constructed 

from one-dimensional (1D) averaged spectra because 
spectral information is the most important feature of 
HIS [31, 32]. Although such models had achieved good 
results, the classification accuracy still depended on the 
adequacy of manually extracted features. Moreover, 
keeping only average spectra may also result in subopti-
mal model performance. 2DCNN is specially designed 
for RGB images, so it pays attention to extracting spa-
tial features from raw spectral images [33]. Although the 
seed classification performance of 2DCNN was better 
than that of 1DCNN in some studies [34]. But extracting 
and compressing classification features using two-dimen-
sional (2D) convolutions hardly took into account the 
spatial and spectral dimensions of HSI data, which made 
it difficult for deep learning models to fully mine features 
required for classification.

HSI is presented in the form of three-dimensional (3D) 
data cubes that exhibit correlations in both spatial and 
spectral dimensions. It is troublesome for 2D convolution 
to completely exploit the feature coupling relationship 
between different bands in 3D HSI data. 3D convolution 
was first applied for human action recognition, which can 
extract features in both spatial and temporal dimensions. 
Compared with 2D convolution, it had better recognition 
and classification effect in the vast majority of cases [35–
37]. Therefore, 3DCNN can straightly gain integrated 
deep spectral and spatial information from raw HSI in 
an end-to-end manner, which would validly ameliorate 
model accuracy [38–40]. Jung et  al. designed 2DCNN 
and 3DCNN to identify susceptible areas, asymptomatic 
areas and healthy areas of strawberry leaves [41]. The 
classification accuracy of the latter was 84%, which was 
10% higher than that of the former. Gao et al. used SVM 
and 3DCNN to classify heat-shocked rice seeds and nor-
mal rice seeds, and 3DCNN received a higher accuracy 
of 97.5% [42]. As a consequence, 3DCNN has enormous 
latent capacity in the identification and classification of 
crop seed varieties based on HSI.

From another perspective, deep networks need enough 
samples for each type of seed to fully learn to extract 
features hidden in redundant spectral data. When the 
amount of data required to build models is not avail-
able, the model may overfit or fall into a local optimum. 
In addition, due to the influence of various external envi-
ronmental factors, spectral characteristics of seeds vary 
widely from year to year. Whether the model has the 
same excellent classification effect for multi-year seeds is 
a major indicator to test its generalization ability. Trans-
fer learning, such as fine-tuning, provides an efficient 
solution [43, 44]. Zhu et  al. fine-tuned pretrained mod-
els including AlexNet, ResNet18, Xception, InceptionV3, 
DenseNet201 and NASNetLarge to categorize 10 types of 
soybean seeds [45]. Among them, NASNetLarge reached 
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up to the best classification accuracy of 97.2%. Wu et al. 
designed a deep learning model called VGG-MODEL 
and transferred it to 4 crop seeds for classification, all 
of which attained higher performance than traditional 
methods [46]. To sum up, transfer learning can be suc-
cessfully utilized in the fast and accurate classifica-
tion of crop seeds that are multi-year, multi-variety and 
sample-scarce.

Under such context, this paper aimed to develop a 
method for classifying pumpkin seeds based on NIR 
hyperspectral technology for automated and intelligent 
germplasm identification. We first verified the feasibility 
of classification through regression analysis of chemical 
components and spectral clustering analysis. Additional 
objectives were: (1) to construct a superior model called 
position attention embedded 3D convolutional neural 
network (PA-3DCNN) to classify 75 classes of pump-
kin seeds; (2) to build a PA-3DCNN transfer model to 
classify pumpkin seeds in the second year to explore its 
transferability and generalization ability.

Methods and materials
The main research process of this study included six 
parts: sample preparation, data collection, feasibility 
analysis, construction of classification model, transfer 
study and visualization (Fig.  1). Above all, the feasibil-
ity of classification was verified by collecting the chemi-
cal composition data and NIR spectral data of pumpkin 

seeds for two years. Subsequently, deep learning methods 
were exploited to build the pumpkin seed classification 
model. And the transferability of our model was verified 
by fine-tuning. Eventually, visualization was applied to 
explore the essence of spectral image classification.

Sample preparation
The pumpkin seeds of 75 varieties belonging to differ-
ent geographical locations in Zhejiang Province of China 
were collected by the Zhejiang Academy of Agricultural 
Sciences during 2017–2022. After the pumpkins in 2020 
and 2021 were planted, their 75 and 56 types of seeds 
were separately collected as samples for this experiment.

All samples were uniformly packaged in kraft paper 
bags and stored in a dry room at a constant tempera-
ture of 23  °C. During the experiment, pumpkin seed 
samples with obvious defects such as damage, shriveled, 
and insect pests were excluded. And this study was con-
ducted on the whole seed, including the shell.

Physiological and biochemical data collection
The contents of physiological and biochemical compo-
nents in different varieties of pumpkin seeds are differ-
ent, which stimulates the diverse spectral fingerprints. 
Analyzing the degree of correlation between chemical 
composition content and spectral features of seeds is the 
premise of classification. The important components of 
pumpkin seeds are starch, soluble sugar, fat and protein. 

Fig. 1  Flow chart of data analysis in this study
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In addition, they contain rich amino acids, which are 
essential nutrients needed by the human body. There-
fore, the chemical composition content including starch, 
fat, soluble sugar, total protein and 16 amino acid com-
ponents (Asparagine, Threonine, Serine, Glycine, Ala-
nine, Valine, Methionine, Isoleucine, Leucine, Tyrosine, 
Phenylalanine, Lysine, Histidine, Glutamine, Arginine, 
Proline) of 75 pumpkin seeds in 2020 were analyzed by 
liquid chromatography mass spectrometry (LC-MS1000; 
Jiangsu Skyray Instrument Co., Ltd., Kunshan City, 
China).

Near‑infrared hyperspectral imaging system
In this research process, the hyperspectral information of 
pumpkin seeds was acquired by near-infrared hyperspec-
tral imaging system from 870 to 1740  nm. The system 
mainly consists of an imaging spectrometer (ImSpec-
torN17E; Spectral Imaging Ltd., Oulu, Finland), and a 
camera lens (OLES22; Specim, Spectral Imaging Ltd., 
Oulu, Finland). The specific structure is shown in Fig. 1. 
Other devices were introduced comprehensively in Feng 
et al. [47]. Before the formal experiment, the equipment 
was preheated for 30  min and the experimental param-
eters were adjusted and corrected. The exposure time 
was 3 ms. The distance between the lens and experi-
mental sample was 19  cm. The speed of the displace-
ment platform was 15 mm/s. The light intensity knob of 
the halogen lamp was adjusted to a stable state to ensure 
the integrity and clarity of the image information. After 
the acquisition, original spectral images were corrected 
in the HSI-Analyzer software using corrected images of 
black and white plates and the correction calculation for-
mula described by Nie et al. [48].

In 2020, the valid samples number of 75 kinds of 
pumpkin seeds was 35,927. In 2021, that of 56 kinds of 
pumpkin seeds was 12,111. There was little difference in 
the effective sample size of different pumpkin varieties. 
The pumpkin seeds in 2020 were divided into training set 
and test set (7:3) at random in order to build classifica-
tion models with excellent generalization ability. Figure 1 
shows the visual distribution of geographic locations of 
various seeds in 2020 and 2021. The height of bars in the 
graph was proportional to the number of samples.

Spectral data acquisition and preprocessing
Spectral data is provided by the near-infrared hyper-
spectral equipment in the form of a data cube. There-
fore, the data can be analyzed in two different patterns, 
1D spectral data and 3D spectral images. The pixels of all 
seeds were defined as regions of interest (ROI) and used 
as extraction targets to reduce the interference of back-
ground signals. The average spectrum of each pumpkin 
seed ROI was 1D spectral data. The smallest rectangular 

area used to extract and segment each seed ROI was 3D 
spectral images. The size of 3D spectral images of each 
seed was unified to 100 ×  80 ×  256 (length, width and 
number of bands of the image respectively) by symmetric 
zero-padding on both sides.

Feasibility analysis methods for pumpkin seed 
classification based on NIR spectral characteristics
In order to explore the corresponding relationship 
between the spectral data and chemical components, 
the partial least squares (PLS) regression model was 
constructed to demonstrate feasibility of using NIR 
spectral information to identify pumpkin seeds. Cor-
relation analysis and normal distribution analysis were 
carried out on 20 kinds of physiological and biochemi-
cal data of 75 kinds of pumpkin seeds. Normality was 
checked using the Kolmogorov–Smirnov test. The aver-
age spectrum was treated as independent variable in that 
regression model. The chemical components with a large 
proportion, strictly obeying the normal distribution and 
no obvious correlation were selected as the dependent 
variables.

At the same time, in order to further evaluate whether 
the spectral information was identifiable for pump-
kin varieties, linear discriminant analysis (LDA) was 
employed to reduce the dimension and cluster the aver-
age spectral data of 75 pumpkin varieties. The above 
methods laid the foundation for building seed classifica-
tion models.

Construction of classification models based on average 
spectrum and traditional machine learning methods
In order to comply with the qualitative classification of 
75 kinds of pumpkin seeds based on the average spec-
trum, LDA, SVM and extreme learning machine (ELM) 
machine learning methods were used to construct classi-
fication models respectively. LDA achieves the maximum 
distinguishability of samples in another space by calcu-
lating the correct projection direction and establishing a 
suitable linear discriminant function.

SVM distinguishes samples by building a nonlinear 
classification model and increasing the distance from 
the support vector to the hyperplane. In this study, the 
extremely stable radial basis function was selected. Pen-
alty coefficient c and kernel parameter g were determined 
to be 1024 and 0.5 by using the toolbox function libsvm 
inside Matlab R2016a and grid search optimization.

ELM is a feedback-forward algorithm based on neural 
network. It contains three layers. The neurons number in 
the input, output layer was determined by the input and 
output of the original data itself. The number of hidden 
nodes was changed from 1 to 3000 in steps of 100, and 
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the discriminative accuracy was computed. The final hid-
den nodes number n was determined to be 100.

Construction of pumpkin seed classification models based 
on pretrained models
Using transfer learning to fine-tune pretrained models 
is faster and easier than randomly training weights from 
scratch. And it doesn’t require plenty of images. Accord-
ingly, this study attempted to transfer six pretrained 
models including Vgg16, Vgg19, ResNet50, ResNet101, 
InceptionV3, and Xception to build classification mod-
els based on pumpkin seed spectral images. They are all 
classic two-dimensional convolutional neural networks 
formed by the continuous development of image classi-
fication in recent years. The depth and width of the net-
works are different, but they all have strong robustness 
and generalization performance.

To match three channels of RGB images, this study 
made use of principal component analysis to extract 
main components from 256 bands of original spectral 
images and retained the first three principal components. 
The target domain of this study was the HSI of pumpkin 
seeds, which was quite different from the source domain 
ImageNet dataset. Therefore, the weights in the first k lay-
ers of the pretrained model were respectively frozen, and 
the fully connected layer and output layer were adjusted 
for retraining. The above models all added two fully con-
nected layers. The first layer consisted of 2048 neurons, 
and the second layer consisted of 1024 neurons. In order 
to alleviate the overfitting problem, L2 regularization and 
dropout layers were applied after the fully connected lay-
ers. The dropout ratio was 0.5, and L2 regularization was 
0.001. The output layer was processed by the softmax 
multi-classification function. In addition, the six classifi-
cation models all employed the multi-class cross-entropy 
loss function and stochastic gradient descent optimiza-
tion algorithm to fairly compare model performance. 
The learning rate and momentum decay coefficients were 
0.0001 and 0.94, respectively. The number of samples fed 
into the network at a time was 32. The number of itera-
tions epoch was 100. The number of frozen layers k was 
determined according to multiple trainings, so that the 
model did not overfit and the classification accuracy was 
optimal. The specific parameters are listed in Table 1.

Construction of pumpkin seed classification model 
PA‑3DCNN based on double convolution and pooling 
structure and position attention module
In contrast to 1DCNN or 2DCNN, 3DCNN directly pro-
cesses the spectral data cube, thereby simultaneously 
processing spatial and spectral dimensions of pumpkin 
seed images. A three-dimensional convolution-based 
pumpkin seed classification model PA-3DCNN was con-
structed (Fig. 2). The input to the neural network was 16 
spectral images of pumpkin seeds with a spatial dimen-
sion of 100 × 80 and a channel of 16.

Under the condition of network depth increased, the 
model classification accuracy decreases with the addi-
tion of convolutional layers. But limiting the model depth 
may reduce classification accuracy. Therefore, this study 
adopted 2 double convolution and pooling structures, 
which consisted of two convolutional layers, two batch 
normalization layers and one maxpooling layer. The 
pooling layers (M1, M2) were set after the double con-
volutional layer, and the batch normalization layer was 
set after each convolution for data normalization. Max-
pooling3D pooling with a size of 2 × 2 × 2 was adopted 
for downsampling, which can effectively reduce the num-
ber of parameters and be more conducive to model con-
vergence while maintaining feature invariance. However, 
frequent use would cause certain damage to spatial infor-
mation. Hence, the double convolution design realized 
the maintenance and transmission of features. Moreo-
ver, experiments revealed that the 3 × 3 × 3 convolution 
kernel was a valid 3D convolution kernel for processing 
3D spatiotemporal features [49]. So, 3 ×  3 ×  3 convolu-
tion kernels were utilized in this model. And the num-
ber of convolution kernels was continuously reduced as 
the depth of the neural network increased. According 
to experience and experiments, the first 2 convolutional 
layers (C1, C2) both used 128 channels, the third convo-
lutional layer (C3) used 64 channels, and the fourth con-
volutional layer (C4) used 32 channels.

After four times of 3D convolution and two times of 
pooling, the spectral dimension was compressed to 1, and 
3D convolution cannot be performed again. At this time, 
the size of feature map A is 22 × 17 × 32. Inspired by Fu 
et al. this study drew on the position attention module in 
the dual attention networks (DANet) [50]. By weighting 

Table 1  The parameters of pretrained models to build pumpkin seed classification models

Transfer model Vgg16 Vgg19 ResNet50 ResNet101 InceptionV3 Xception

Input image size 224 × 224 × 3 299 × 299 × 3

Transfer model
layers n

16 19 50 101 46 36

Freeze Transfer model layers k 11 15 40 91 44 36
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all spatial features and selectively aggregating spatial fea-
tures, the spatial interdependence of features was learned 
and the classification accuracy was improved. As shown 
in Fig.  2, feature map A was convolved three times to 
acquire three feature maps B, C, and D. Multiply the 
transpose of B by C, and then obtain the spatial attention 
map S through softmax. Then perform matrix multiplica-
tion on the transpose of D and S, and finally add to A to 
obtain the final feature map E. The output was flattened 
and input into a fully connected layer with 100 neurons. 
The dropout layer was applied to avoid overfitting. In this 
study, the dropout ratio was 0.5, and the output layer was 
processed by the softmax multi-classification function. 
The weights of convolution kernels were initialized by 
Xavier. And the multi-class cross-entropy loss function 
and stochastic gradient descent optimization algorithm 
were utilized. To verify the superiority of the model’s 
classification performance, PA-3DCNN and 3DCNN 
without position attention module were respectively 
trained and compared. Other parameters such as learn-
ing rate were the same as pretrained models.

Transfer of pumpkin seed classification model PA‑3DCNN
Due to the influence of various external environmental 
factors, the spectral characteristics of pumpkin seeds 
in 2021 and 2020 are quite dissimilar. The classifica-
tion model constructed from the previous year’s images 

directly recognizes the seeds of the second year, which 
will inevitably lead to a significant drop in classification 
accuracy. In this study, the fine-tuning method of trans-
fer learning was adopted, and spectral images of pump-
kin seeds in 2021 were fed into PA-3DCNN at different 
scales. It allowed the model to re-adapt to new spec-
tral features through low samples, thereby verifying the 
model’s generalization ability and realizing efficient clas-
sification of pumpkin seeds. All weights before the first 
double convolution and pooling structure of PA-3DCNN 
were frozen. Two fully connected layers and the output 
layer were retrained. The first and second fully connected 
layer’s neurons number was set to 1024 and 512. The out-
put layer output 56 categories. In order to alleviate the 
overfitting problem, the dropout layer was applied after 
the fully connected layer, and the dropout ratio was 0.5. 
The number of samples input to the network at a time 
was 8. The settings of other parameters were the same as 
PA-3DCNN.

Data visualization
Feature visualization can intuitively explore the feature 
extraction mode of CNN. The feature maps of the con-
volutional and pooling layers of PA-3DCNN were visual-
ized as a single graph in each channel to explore the main 
points that the model concentrated on. In addition, the 
feature maps of the PA-3DCNN transfer model with a 

Fig. 2  Model structure diagram of PA-3DCNN. The model consisted of 2 double convolution and pooling structures, the position attention module, 
fully connected layers, etc. Conv3D referred to the three-dimensional convolution operation. C1–C4 referred to the first to fourth convolutional 
layers. M1–M2 referred to the first and second pooling layers. A–E, S were the code names of the feature maps in the position attention module. 
Before @ was the number of feature maps, after which was the size of the feature map. Specific details were described in the paper
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scale of 0.5 in the pumpkin seed training set in 2021 were 
in comparison with the original model feature maps to 
investigate the interpretability of feature extraction.

In order to visualize the classification process of 3D 
spectral images by deep learning, t-SNE was used to per-
form nonlinear dimensionality reduction on the feature 
data of the flattening layer, and subsequent layers. The 
t-SNE visualization of PA-3DCNN was compared with 
3DCNN to explore the interpretability of the classifica-
tion performance improvement by position attention 
mechanism.

Software tools
Data analysis and model building were performed using 
a laboratory computer with Win10 64-bit operating sys-
tem, Intel(R) Xeno(R) Gold 6242 CPU, 2.80  GHz, 128 
GB RAM and Tesla V100. The extraction of the averaged 
spectrum and the construction of traditional machine 
learning models were performed in MATLAB R2016a. 
The deep learning framework Keras was adopted for the 
construction and training of convolutional network mod-
els. Figures were drawn based on OriginPro 9.0 (Origin-
Lab Corporation, Northampton, MA, USA).

Results and discussions
Near‑infrared spectroscopy of pumpkin seeds
The average NIR spectra of 75 types of pumpkin seeds 
ranging from 921.34 to 1676.33 nm are shown in Fig. 3. 
On the overall trend, these NIR spectral curves behaved 
consistently, but different species of seeds have distinct 
spectral reflectance due to genetic differences. The NIR 
spectral reflection is mainly generated by the vibration 
and rotation in the compound, including the biological 
macromolecular compound except for the fat of satu-
rated higher fatty acid glyceride. Correspondingly, total 

protein and fat content in pumpkin seeds accounted 
for 60–70%. Soluble sugar and amino acid contented 
20–30%. Starch content was less than 10%. Therefore, 
the mechanism of NIR action of pumpkin seeds and the 
absorption bands of spectral fingerprints were also very 
complicated. The molecular activity of specific spectral 
fingerprints was denoted on the straight line with marked 
concavities and convexities in Fig.  3. The peak around 
960 nm was associated with the second-order frequency 
doubling of N–H bond stretching [51]. The peak at 
1119 nm and the trough at 1204 nm had relation to that 
of C–H bond stretching [52]. The peak at 1308 nm was 
related to the combined frequency of C–H bond vibra-
tions [53]. The trough at 1477 nm was related to the first-
order frequency doubling of O–H bond and N–H bond 
stretching autocorrelation [54, 55]. The peak at 1640 nm 
had relation to the first-order frequency doubling of C–H 
bond [56]. It was the above-mentioned specific spectral 
features that made it possible to classify pumpkin seeds 
by NIR spectroscopy. However, due to the similar chemi-
cal composition of seeds and the lack of fundamental 
specific molecular differences, it was impossible to find 
specific spectral fingerprints of 75 kinds of pumpkin 
seeds from the single spectral curve. For this reason, fur-
ther quantitative research was needed to achieve the clas-
sification and identification of seeds.

Feasibility analysis results
Descriptive statistical analysis was performed on the 
physiological and biochemical information of 75 kinds 
of pumpkin seeds. The normal distribution diagram is 
shown in Fig.  4 and data results are shown in Table  2. 
According to statistical results, the content of fat and 
total protein was the highest. Soluble sugar and starch 
accounted for a certain proportion. Amino acids occu-
pied a small amount. The skewness coefficient of Aspara-
gine was greater than 1.96, indicating that it did not obey 
the normal distribution. The significance level P of Thre-
onine, Methionine and total protein was less than 0.05, 
which also believed that they did not obey the normal 
distribution. Correspondingly, other components obeyed 
the normal distribution.

Correlation analysis was carried out on the physiologi-
cal and biochemical information of 75 kinds of pumpkin 
seeds (Fig. 5). Among them, the highest correlation coef-
ficient between starch, fat, soluble sugar and total protein 
was less than 0.3. The correlation coefficients of starch 
and soluble sugar with each amino acid were less than 
0.2 or less, and there was no significant correlation. The 
overall correlation coefficient among the 16 amino acids 
was as high as 0.9, indicating a strong linear correlation. 
Locally, the average correlation coefficient between gly-
cine and other amino acids was about 0.66, which was 

Fig. 3  Average near-infrared spectral curves of 75 kinds of pumpkin 
seeds
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relatively low. In summary, four physiological and bio-
chemical components with large proportions, strictly 
obeying normal distribution and no obvious correlation 
were selected for the establishment of PLS regression 
model. These four components were Glycine, starch, fat, 
and soluble sugar.

The PLS regression model was constructed for four 
chemical components on the average NIR spectrum of 
pumpkin seeds in the 921.34–1676.33  nm band. Fig-
ure 6 showed the scatter plot of the correlation between 
model predicted value and true value of the four com-
ponents. On the whole, the coefficient of determina-
tion R2 of the regression model was above 0.65. Among 
them, the straight line fitting in Fig.  6a had the best 
effect. R2 and RMSEP also represented the strongest 
correlation of glycine content with the smallest error. In 
contrast, soluble sugar had a lower correlation of 0.697 
with a maximum error of 0.054. In general, the regres-
sion model for four components all measured up sat-
isfactory prediction results, which verified the strong 
correspondence between spectral fingerprint charac-
teristics and chemical components of pumpkin seeds. 

Consequently, it was feasible to take advantage of NIR 
spectral data to identify pumpkin seeds.

In addition, LDA was performed on the NIR average 
spectral data of 75 types of pumpkin seeds (Fig.  7). It 
was clear that LDA had obtained excellent cluster-
ing results in the dimensionality reduction of the NIR 
spectrum, which further verified the effectiveness and 
possibility of NIR spectral information for distinguish-
ing seed varieties, and supplied a theoretical basis for 
building classification models. The samples of each 
variety were relatively concentrated and the bounda-
ries between different kinds of pumpkin seeds were 
also relatively clear. On the whole, 75 kinds of pumpkin 
seeds were clustered in five groups, but accurate multi-
variety classification cannot be achieved. The reason 
was that the classification accuracy of traditional meth-
ods for large sample datasets would decrease due to the 
simplicity of the algorithm itself. Deep learning is cur-
rently one of the best methods for big data processing 
and analysis. Therefore, the method would be used to 
classify pumpkin seeds in the following text.

Fig. 4  Normal distribution of 20 physiological and biochemical components of pumpkin seeds. a Asparagine, b Threonine, c Serine, d Glycine, 
e Alanine, f Valine, g Methionine, h Isoleucine, i Leucine, j Tyrosine, k Phenylalanine, l Lysine, m Histidine, n Glutamine, o Arginine, p Proline, 
q Starch, r Fat, s Soluble sugar, t Total protein
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Table 2  Statistical table and Kolmogorov–Smirnov test of physiological and biochemical components of pumpkin seeds

*P refers to significant at the 0.05 level. **P refers to significant at the 0.01 level

Physiological and biochemical 
components

Mean (mg/g) Standard Deviation 
(mg/g)

Skewness coefficient Kurtosis coefficient Significance 
level P

Asparagine 2.920 0.229 1.964 0.303 0.200

Threonine 0.994 0.075 1.713 0.454 0.007**

Serine 1.711 0.141 1.881 0.615 0.200

Glycine 1.745 0.121 0.325 0.438 0.200

Alanine 1.516 0.108 1.668 0.144 0.200

Valine 1.487 0.127 0.538 0.489 0.200

Methionine 0.569 0.096 0.982 0.175 0.027*

Isoleucine 1.194 0.103 0.101 0.232 0.200

Leucine 2.486 0.177 1.917 0.385 0.200

Tyrosine 1.059 0.090 1.188 0.071 0.200

Phenylalanine 1.702 0.151 0.747 0.254 0.200

Lysine 1.183 0.077 0.170 0.562 0.085

Histidine 0.735 0.056 0.830 0.078 0.200

Glutamine 6.271 0.553 0.787 0.547 0.200

Arginine 5.349 0.435 1.621 0.666 0.200

Proline 1.250 0.108 1.866 0.248 0.190

Starch 8.365 1.635 1.726 0.297 0.067

Fat 45.474 2.447 1.134 0.219 0.191

Soluble sugar 27.669 4.843 0.036 0.721 0.185

Total protein 43.120 10.338 1.906 0.166 0.018*

Fig. 5  Correlation heat map of 20 physiological and biochemical components of pumpkin seeds
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Results of pumpkin seed classification models based 
on average spectrum and traditional machine learning 
methods
LDA, SVM and ELM were constructed based on aver-
age spectral information of the full spectrum band of 
pumpkin seeds extracted from near-infrared hyperspec-
tral images. The classification results are listed in Table 3. 
Three models have met with good results in the accu-
racy and error. ELM classification result was the best and 

Fig. 6  PLS regression model results for predicting four independent physiological and biochemical components based on near-infrared 
spectroscopy. a Correlation scatter plot of Glycine, b correlation scatter plot of starch, c correlation scatter plot of fat, d correlation scatter plot 
of soluble sugar

Fig. 7  Visual clustering diagram of pumpkin seeds varieties based 
on LDA. Different varieties were identified according to the symbols 
and colors of 12 shapes and 7 colors

Table 3  Classification results of LDA, SVM and ELM models 
based on near-infrared average spectra

Model Training set 
accuracy (%)

Test set 
accuracy (%)

Time (s) Error

LDA 91.60 89.40 232.6 0.39

SVM 92.44 91.60 516.6 0.33

ELM 96.40  93.22 102.6 0.28
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reached 93.22%, and it was the most stable with an error 
of only 0.28. LDA and SVM also obtained test accura-
cies as high as 89.4% and 91.6%. It efficiently embodied 
the enhanced interaction between chemical components 
of the seeds and NIR spectrum. Optical electromagnetic 
waves in the NIR range not only cause electron transi-
tions in molecules, but also vibrational and rotational 
transitions, such as the combined frequency and fre-
quency doubled vibrations of organic compounds con-
taining hydrogen groups. NIR spectral information can 
truly and validly reflect changes in chemical bonds, and 
then reach up to the purpose of accurately classifying 
pumpkin seeds.

Results of pumpkin seed classification models based 
on pretrained models
The classification results of 75 categories of pumpkin 
seeds by fine-tuning 6 pretrained models are shown in 
Table  4, and the loss and accuracy curves are shown in 
Fig.  8. The loss dropped rapidly as the model accuracy 
raised over 100 iterations. Comparing training and test-
ing curves, six models revealed no negative transfer, over-
fitting or underfitting. The six models including Vgg16, 
Vgg19, ResNet50, ResNet101, InceptionV3, Xception 
achieved 83.42%, 80.66%, 75.89%, 70.83%, 61.38%, and 
71.10% accuracies in the test set, respectively. Among 
them, the fine-tuned Vgg16 model attained the best 
classification effect. Since the structures of six transfer 
models were continuously adjusted to the optimal state 
according to the dataset, they had different depths. In 
this study, Vgg16 had the shallowest structure and fewer 
parameters. Generally, the features extracted by deep 
neural networks became richer due to more layers. In 
turn, the model classification accuracy would be higher 
[57]. However, the influence of factors such as dataset 
size, network depth, network structure and parameters 
could also lead to opposite conclusions [58, 59]. On the 
one hand, the above models were all two-dimensional 

convolutional neural networks, which paid more atten-
tion to extracting spatial features from spectral images. 
This made it difficult for the models to fully mine the fea-
tures required for classification. On the other hand, the 
dataset in this study had a smaller scale and multiple cat-
egories. Meanwhile, a large amount of redundant infor-
mation was contained in NIR spectral images. Therefore, 
the robustness of models was reduced by complex net-
work structures and the accuracy was disturbed by noisy 
data. Simple models conversely performed better in clas-
sification of informative seed spectral images. Similarly, 
Wu et  al. designed 1D deep neural networks including 
VGG-MODEL, RES-MODEL and INCEPTION-MODEL 
to fulfil effective classification of crop seeds based on NIR 
data. Among them, VGG-MODEL with the shallowest 
model depth worked best [46]. The authors also pointed 
out that the advantage of deep models was not in deal-
ing with small datasets. Yang et al. employed a self-built 
CNN model to identify seed vitality [20]. And the model 
accuracy was better than ResNet18 with a deeper net-
work structure, which verified that simple model struc-
ture can also handle information-rich spectral data. It can 
be seen that the optimal classification model structure is 
closely related to the size and distribution of the dataset.

Results of pumpkin seed classification model PA‑3DCNN
The classification results of PA-3DCNN and 3DCNN 
without position attention module on 75 types of pump-
kin seeds are shown in Table  4, and the loss and accu-
racy curves are shown in Fig. 8. The loss dropped rapidly 
within the first 30 iterations. After 60 iterations, the loss 
of two models approached 0 smoothly, which manifested 
good performance and stability. The test set accuracies 
of 3DCNN and PA-3DCNN achieved as high as 94.16% 
and 95.20%. In other words, the position attention mod-
ule effectively ameliorated the classification performance 
by 1.05%. Not all regions in an image contributed equally 
to the classification task. The position attention module 

Table 4  Results of pumpkin seed classification models based on spectral images

Model Parameters (MB) Training set 
accuracy (%)

 Test set

Accuracy (%) Precision (%) Recall (%) F1

Transfer pretrained models Vgg16 254 86.84 83.42 83.58 83.42 83.34

Vgg19 240 81.24 80.66 80.67 80.67 80.46

ResNet50 849 76.67 75.89 75.86 75.89 75.58

ResNet101 849 75.46 70.83 71.02 70.83 70.57

InceptionV3 409 65.18 61.38 61.08 61.38 60.80

Xception 1608 71.85 71.10 71.08 71.10 70.65

Ours 3DCNN 49 95.69 94.16 94.19 94.16 94.13

PA-3DCNN 49 99.14 95.20 95.24 95.20 95.19
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Fig. 8  Loss and accuracy curves of eight pumpkin seed classification models in the training set and test set. a Vgg16, b Vgg19, c ResNet50, 
d ResNet101, e InceptionV3, f Xception, g 3DCNN, h PA-3DCNN
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efficiently upgraded the classification accuracy by weight-
ing features and selectively aggregating spatial features to 
find the most important parts in the network for process-
ing. Zhu et al. added an attention mechanism module to 
the residual block of 3DResNet designed for high-dimen-
sional hyperspectral images, which made better the 
model performance in effect [60]. It was confirmed that 
3DCNN embedded with the attention mechanism had 
far-reaching prospects for the analysis and mining of HSI 
information.

Comparing the models constructed by machine learn-
ing methods and pretrained models, PA-3DCNN had the 
best classification effect. The classification accuracy of 
PA-3DCNN was respectively 1.98% and 11.78% higher 
than that of ELM and Vgg16, which effectually demon-
strated its superiority in the classification of pumpkin 
seed varieties. Compared with 1DCNN and 2DCNN 
that only extract spectral or spatial features, 3DCNN uti-
lized 3D convolution kernels to not only sample in the 
spatial domain but also along the spectral dimension, 
which simultaneously supplied a more efficient way to 
extract spatial and spectral information. In the mean-
time, the double convolution and pooling structure of 
PA-3DCNN made the number of parameters smaller and 
the model more compact. In addition, 3D hyperspectral 
data was utilized as input for direct end-to-end training, 
so that complex preprocessing and postprocessing were 
not required. This study showed that the combination of 
high-dimensional spectral images and 3DCNN had great 
perspective for the classification of multi-variety pump-
kin seeds.

The performance of six classical deep learning net-
works in transfer learning was far worse compared to 
PA-3DCNN, which further proved that the complex 
network structure with numerous parameters was dis-
advantageous for recognizing pumpkin seeds. For tradi-
tional machine learning, ELM can make full use of the 
average spectrum, which was closest to the accuracy of 
PA-3DCNN. It strongly demonstrated that spectral infor-
mation was more essential than spatial information in 
identifying seed categories. When the training data was 
sufficient and the model structure was properly designed, 
deep learning models usually received more satisfactory 
results. Therefore, it was crucial to select an appropriate 
model and algorithm according to dataset size and form 
of data.

Results of PA‑3DCNN transferability
In order to evaluate transferability and generalization 
ability of PA-3DCNN, the spectral images of 56 types of 
pumpkin seeds in 2021 were fed into the model in differ-
ent proportions to build transfer models. The accuracy 
of training set and test set is shown in Fig. 9. When only 

10% of samples were divided into the training set, the 
classification accuracy of PA-3DCNN transfer model was 
as high as 74.13%. As the training set gradually expanded, 
the accuracy of the transfer model was significantly pro-
moted, which fully reflected that big data was the main 
driving force for the performance optimization of deep 
learning models. When 50% of spectral images were 
used as the training set, the classification accuracy of PA-
3DCNN transfer model reached 92.12%. Although the 
accuracy had decreased compared to the original model, 
the accuracy of 92.12% was still acceptable considering 
the factors of training time and training cost. Therefore, 
transfer learning was a practicable method to improve 
the discriminative ability of multi-year crop seeds and 
reduce the cost of sample collection. In summary, PA-
3DCNN was a classification model with strong gener-
alization ability that can be used for multi-year pumpkin 
seeds.

Visualization results
In order to demonstrate the effectiveness of deep learn-
ing and reveal the essence of spectral image classification, 
t-SNE visualization of the flattening layer, fully connected 
layer, input layer, and output layer of PA-3DCNN and 
3DCNN are shown in Fig.  10. Different colors repre-
sented different types of pumpkin seeds. It can be seen 
from the figure that the spectral characteristic distribu-
tion of original pumpkin seeds was laborious to dis-
tinguish. After convolutional layers, the data points of 
pumpkin seeds gradually changed from overlapping to 
clearly separable, and each type can be clearly distin-
guished in the final output layer. On the other hand, since 
3DCNN did not have position attention module, data 
points on the visualization map of its fully connected 
layer and output layer were more misclassified than PA-
3DCNN, and data point coincidence was more serious. 
The t-SNE visualization map further indicated the good 
classification performance of PA-3DCNN.

Fig. 9  Accuracy of PA-3DCNN transfer model on the training set 
and test set under different division ratios of training set
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Fig. 10  T-SNE visualization of the flattening layer, fully connected layer, input layer, and output layer of PA-3DCNN and 3DCNN. a T-SNE visualization 
of PA-3DCNN, b T-SNE visualization of 3DCNN
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The top 10 channel feature maps of convolutional and 
pooling layers of PA-3DCNN extracted and visualized 
by pseudo-color images are shown in Fig.  11a. There 
were differences in the images of dissimilar channels of 
original spectral images, which was different from RGB 
images. It proved that differing channels of high-dimen-
sional spectral images offered a large amount of non-
identical spectral information. The channel images from 
the first two convolutional layers recognized original 
seeds’ physical shape based on strengthening the edges of 
pumpkin seeds. As the depth of the network increased, 
the spectra of different positions of the whole seed were 
sequentially focused and locally analyzed in both spatial 
and spectral dimensions through convolution kernels. 
The feature maps of the convolutional and pooling lay-
ers gradually became abstract, but it was still noticeable 
that the edges of the pumpkin kernels were concentrated 
in the image as brighter pixels. Before features were flat-
tened and transferred to the fully connected layer, the 
feature maps of the last layer had the approximate shape 
of pumpkin seeds as before, which revealed that the key 
and important spectral information was preserved.

Additionally, feature maps of the PA-3DCNN trans-
fer model with a training set partition of 0.5 are shown 
in Fig.  11b. Since transfer learning employed the origi-
nal model as a feature extractor, the feature extraction 
path of the transfer model was same as that of the cor-
responding self-built model. Comparing Fig.  11a and b, 
it was found that feature maps of different channels of 
each layer were basically similar, which further verified 
the feature extraction mode of transfer learning. All in 

all, the adoption of transfer learning to build models can 
not only ensure excellent classification results, but also 
help reduce computational pressure and training data 
requirements.

Conclusion
In this study, Glycine, starch, fat, and soluble sugar were 
selected for the establishment of PLS regression model, 
which verified the strong correspondence between spec-
tral characteristics and chemical components. Mean-
while, LDA was performed on the NIR average spectral 
data of 75 types of pumpkin seeds and good clustering 
results were obtained, which further confirmed the effec-
tiveness of NIR spectral information for distinguishing 
seed varieties. After that, a pumpkin seed classification 
model PA-3DCNN was designed by fusing HSI technol-
ogy and 3DCNN. The double convolution and pooling 
structure and position attention module were used to 
effectively boost its classification performance. The clas-
sification accuracy of 99.14% and 95.20% were respec-
tively achieved on the training set and test set, which 
were 3.45% and 1.05% higher than that of 3DCNN. Com-
pared with ELM and Vgg16, the classification accuracy 
was enhanced by 1.98% and 11.78% respectively, indicat-
ing that high-dimensional spectral images combined with 
3DCNN had great potential in the classification of multi-
variety pumpkin seeds.

Furthermore, the classification models based on tra-
ditional machine learning had received relatively good 
classification results, and the accuracy of ELM was 
the closest to that of PA-3DCNN. This evidenced that 

Fig. 11  Feature visualization of the first 10 channels of convolutional layers and pooling layers of PA-3DCNN and PA-3DCNN transfer model. 
a Feature visualization of PA-3DCNN, b feature visualization of PA-3DCNN transfer model
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spectral information was more important than spatial 
information in identifying seed categories. On the con-
trary, the model constructed by transferring six classi-
cal deep learning networks had the worst classification 
performance, representing that the complex network 
structure with a large number of trainable parameters 
was unfavorable for recognizing NIR spectral images 
of pumpkin seeds. Additionally, in order to verify the 
generalization ability of PA-3DCNN, this study con-
structed a transfer model based on 56 types of pumpkin 
seeds in 2021, demonstrating that transfer learning was 
a feasible method to reduce the cost of sample collec-
tion and enhance the discrimination ability of multi-
year crop seeds.

In conclusion, this study lent an efficient classifica-
tion method for pumpkin seed varieties based on NIR 
spectral images. Meanwhile, the generalization perfor-
mance of the model was verified by fine-tuning, which 
can be adopted for the classification of pumpkin seeds 
in multiple years. In the future, a more robust general 
model for the identification and classification of multi-
year crop seeds should be constructed by building a 
spectral image database with various seeds and com-
bining promising transfer learning.
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