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Abstract
Background  Biomass accumulation as a growth indicator can be significant in achieving high and stable soybean 
yields. More robust genotypes have a better potential for exploiting available resources such as water or sunlight. 
Biomass data implemented as a new trait in soybean breeding programs could be beneficial in the selection of 
varieties that are more competitive against weeds and have better radiation use efficiency. The standard techniques 
for biomass determination are invasive, inefficient, and restricted to one-time point per plot. Machine learning models 
(MLMs) based on the multispectral (MS) images were created so as to overcome these issues and provide a non-
destructive, fast, and accurate tool for in-season estimation of soybean fresh biomass (FB). The MS photos were taken 
during two growing seasons of 10 soybean varieties, using six-sensor digital camera mounted on the unmanned 
aerial vehicle (UAV). For model calibration, canopy cover (CC), plant height (PH), and 31 vegetation index (VI) were 
extracted from the images and used as predictors in the random forest (RF) and partial least squares regression (PLSR) 
algorithm. To create a more efficient model, highly correlated VIs were excluded and only the triangular greenness 
index (TGI) and green chlorophyll index (GCI) remained.

Results  More precise results with a lower mean absolute error (MAE) were obtained with RF (MAE = 0.17 kg/m2) 
compared to the PLSR (MAE = 0.20 kg/m2). High accuracy in the prediction of soybean FB was achieved using only 
four predictors (CC, PH and two VIs). The selected model was additionally tested in a two-year trial on an independent 
set of soybean genotypes in drought simulation environments. The results showed that soybean grown under 
drought conditions accumulated less biomass than the control, which was expected due to the limited resources.

Conclusion  The research proved that soybean FB could be successfully predicted using UAV photos and MLM. The 
filtration of highly correlated variables reduced the final number of predictors, improving the efficiency of remote 
biomass estimation. The additional testing conducted in the independent environment proved that model is capable 
to distinguish different values of soybean FB as a consequence of drought. Assessed variability in FB indicates the 
robustness and effectiveness of the proposed model, as a novel tool for the non-destructive estimation of soybean FB.
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Background
High-throughput phenotyping (HTP) allows that impor-
tant information about cultivated plants be gathered in 
a faster and less expensive way than by standard tech-
niques (manual measurements) used so far [1]. Great 
potential of HTP for in-season biomass estimation is not 
utilized in soybean, one of the most important oil crops 
in the world with annual global production > 350 million 
tons [2]. Biomass estimation offers comprehensive over-
view of a plant potential to use available recourses. This is 
crucial in low-input sustainable farming, where nutrients 
are mainly limited to natural resources and water supply 
depends on precipitation. Also, more robust genotypes 
intercept higher amount of light and have higher photo-
synthetic rates, which can increase seed yield. Low bio-
mass accumulation in soybean leads to yield decrease 
due to reduced light interception and low radiation use 
efficiency [3]. In addition to the effect it has on yield, the 
amount and rate of accumulated biomass are also sig-
nificant in weed management, which is one of the main 
tasks of a successful agricultural production, especially in 
organic farming systems [4]. Rapid canopy closure is also 
an important factor of weed suppression [5]. Therefore, 
biomass accumulation rate, as a measurement of growth, 
can contribute to a more efficient selection of superior 
genotypes during the breeding process. Having a tool for 
soybean biomass estimation at any time during the grow-
ing period would provide a new insight into crop devel-
opment, thereby giving breeders continuous information 
on biomass accumulation. The determination of many 
important phenotypic traits within the current breeding 
programs is restricted due to complexity and lack of ade-
quate tools [6]. A typical example of such a trait is plant 
biomass. Standard techniques for biomass assessment are 
destructive as well as time and labor-consuming. These 
difficulties can be overcome by using different remote 
sensing platforms and technologies.

Devices such as satellites or various UAVs use differ-
ent sensors for collecting information about the Earth’s 
surface. Although satellites are becoming advanced and 
more precise, they cannot provide sufficient spatial reso-
lution while data quality can be reduced due to clouds or 
other atmospheric factors [7]. On the other hand, the use 
of UAVs in agricultural research is growing year by year 
[8]. Photos taken by a digital camera mounted on UAV 
have a better resolution than those taken by satellites, 
thus ensuring greater data accuracy. The main advantage 
of using UAVs is in high-throughput i.e. a large amount 
of data collected in a short period of time [9, 10]. Hyper-
spectral (HS) imaging has the biggest potential for the 
assessment of different plant traits because HS cameras 

collect data from the entire spectrum [11]. The price of 
HS cameras is still too high compared to others such as 
RGB and multispectral (MS) sensors. These two are the 
most common camera types used in recording spectral 
reflectance of plant material in agriculture. Plant spectral 
reflectance is measured through values of digital num-
bers (DNs) which are used for the calculation of vegeta-
tion indices (VIs) linked to different plant traits [12–17]. 
Many VIs were used for biomass prediction in wheat 
[18], corn [19], and white oat [20]. In addition to the 
spectral reflectance sensed, data related to photogram-
metry can also be obtained by processing UAV images 
through the structure from motion (SfM). Photogram-
metry represents a technique that allows measuring the 
dimensions of the object on the image [21]. As a result 
of SfM processing of the UAV images a digital elevation 
model (DEM) can be obtained based on the point cloud 
data [22]. Other SfM derivatives such as the digital sur-
face model (DSM) stand for surface elevation where the 
surface represents the plant canopy. In an agricultural 
cropping land, along DSM there is also a digital terrain 
model (DTM) which represents the ground-based eleva-
tion of bare soil. Based on the difference between DSM 
and DTM, it is possible to calculate plant height (PH) 
[23–25]. Another useful tool for PH determination is a 
light-detection and ranging system (LiDAR). This system 
measures the distance between the sensor and the object 
based on the time that passes when the laser signal goes 
from LiDAR to the object and back [26]. This method 
was used for PH assessment in sugarcane [27], wheat 
[28], or soybean and maize [29]. Even do LiDAR provides 
accurate measurements of plant traits in a non-destruc-
tive way there are some restrictions for wider application. 
Relatively high prices, complexity in data acquisition and 
data extraction are the main disadvantages of this system 
compared to the UAV camera sensors [30]. As an impor-
tant indicator of plant growth, canopy cover (CC) can 
also be extracted as the percentage of plant pixels on an 
image [31]. Obtaining reliable information about PH and 
CC can be a useful tool in an estimation of accumulated 
biomass during the growing period.

Prediction of crop biomass can be based on a simple 
linear regression with different VIs [32], PH [33], or CC 
[34]. However, combining these individual data (predic-
tors) can result in more accurate predictions. A study on 
barley shows that more precise results can be achieved by 
using both VIs and PH as opposed to using only reflec-
tance-based data [35]. For plant trait estimation, the 
power of combining different predictors can be utilized 
through machine learning models (MLMs) and math-
ematical algorithms. One of the most popular algorithms 
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based on classification and regression is random forest 
(RF) [36]. The RF was used for the prediction of corn [37] 
and soybean yields [38], leaf area index (LAI) of alfalfa, 
Rhodes grass, corn, carrots [39], and soybean [40], as 
well as for determination of wheat biomass [41]. For big 
data analysis, the most suitable methods are based on 
deep learning (DL) techniques [42]. These techniques 
use the artificial neural network (ANN), an ML algo-
rithm designed to solve nonlinear relationships. The huge 
potential of DL models was utilized in many plant species 
for yield prediction [43], abiotic or biotic stress detection 
[44], leaf counting, and mutant classification [45]. Still, 
the RF was reported to be a better choice for biomass 
prediction compared to DL models, ANN and support 
vector regression (SVR), which was proven in wheat bio-
mass estimation where RF outperformed ANN and SVR 
[46]. Partial least square regression (PLSR), another well-
known MLM, is not as straightforward as RF. With PLSR, 
the dependent variable (crop trait) and independent vari-
ables (predictors) are explained through principal com-
ponents. Different crop traits such as wheat yield [47] or 
yield and biomass of potato were successfully estimated 
using PLSR [48].

The aim of the study was to find an optimal model 
for the prediction of soybean fresh biomass (FB) using 
MLMs, VIs, CC and PH obtained by analyzing UAV digi-
tal images of different wavelength ranges. Moreover, the 
research objective was to estimate the robustness of the 
final model by conducting biomass screening of diverse 
soybean germplasm grown in different environments.

Materials and methods
Experimental site
The experiments were conducted in 2020 and 2021, at the 
experimental plots of the Institute of Field and Vegetable 
Crops in Rimski šančevi, Novi Sad, Serbia. For model 
calibration, ten soybean varieties with different maturity 
groups were sown in five replications in 2020 and four 
replications in 2021. The genotypes were sown on cher-
nozem soil, characterized by homogeneous texture and 
well-aggregated structure. In total, 90 calibration plots, 
each 8 m2 were used for calibration of the biomass pre-
diction model.

UAV and data acquisition
The UAV used in the research was P4M (DJI, Shenzhen, 
China) equipped with six 1/2.9” CMOS sensors cover-
ing specific wavelength ranges. Five sensors were mono-
chromatic B (450 ± 16 nm), G (560 ± 16 nm), R (650 ± 16 
nm), Red edge (RE) (730 ± 16 nm), and Near-infrared 
(NIR) (840 ± 26 nm) and one RGB camera. Each sensor 
has a resolution of 2.08 megapixels (MP) with a focal 
length of 5.74 mm. During the flights, the UAV was con-
nected with a real-time kinematic (RTK) system, a global 

navigation satellite system (GNSS) receiver, which pro-
vides centimeter-level precision of photographed objects 
on the image. The UAV is equipped with an integrated 
sun sensor which automatically corrects the reflectance 
based on the sunlight and secures data consistency in 
different weather conditions. Nine flights were con-
ducted in this study, and the date for each of the flights 
was recorded in growing degree days (GDDs) calculated 
after emergence. In 2020, the photos were taken at 274, 
413, 650, 745, and 1016 GDDs, and in 2021 at 215, 492, 
747, and 1130 GDDs. Every flight was performed on a 
cloud-free, sunny day, wind speed didn’t exceed 10 m/s. 
The UAV shooting angle was course aligned, and image 
capture mode was set to equal time intervals while the 
front and side overlap of the images was 80%. Mission 
planning was done with DJI GS PRO software (DJI, Shen-
zhen, China). Flights were done at a 60 m altitude which 
secured the ground resolution of 3.17  cm/pixel. Subse-
quently, after each flight, soybean FB was harvested and 
measured with a specialized Wintersteiger combine. No 
significant amount of biomass was left on the field.

Data processing
After collecting the photos of soybean genotypes, a dense 
cloud, digital elevation model (DEM) and orthomo-
saic were created using the Agisoft PhotoScan software 
(version 1.7.2. from 2021) build by Agisoft LLC from St. 
Petersburg, Russia (http://www.agisoft.com). The PH of 
the soybean genotypes was calculated using DEM (DSM 
and DTM), while CC and DNs were obtained from the 
orthomosaic for each plot. Each channel of the MS image 
was exported and analyzed using Fiji Is Just ImageJ (FIJI) 
software (version 1.51. from 2018), the open-source 
image analysis software [49]. First the region of inter-
est (ROI) was created for every plot and then the mask-
ing procedure was performed to filter out the soil pixels 
(Fig.  1). The masking procedure was done in FIJI using 
the Create Mask function that eliminates soil and ensures 
that only plant pixels remain for further analysis. Follow-
ing the masking procedure, the average DN value of each 
channel was exported together with the CC which was 
calculated as the percentage of plant pixels filling each 
ROI.

Based on the collected data, 31 different VI were cal-
culated for each plot. The description and formula of 
each index are given in Additional file 1. High collinear-
ity among many VIs was expected as they were obtained 
by combining the DNs of five spectral channels in dif-
ferent formulas. The relationship between VIs was ana-
lyzed so as to simplify the calculation within the MLM 
algorithm and ensure that collinearity does not disturb 
prediction quality. The correlation matrix was created in 
R with the ggcorrmat function from the ggstatsplot pack-
age [50]. This function creates the matrix plot based on 

http://www.agisoft.com
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the values of the correlation coefficient and marks non-
significant relationships (p < 0.05). Highly correlated VIs 
were excluded using the findCorrelation function with 
± 0.8 set as the cutoff value of pair-wise absolute corre-
lation within the Caret package [51]. The function com-
pares the mean absolute correlation (MAC) of two highly 
correlated VIs and eliminates the variable with the largest 
MAC.

In both years, the PH of each plot was determined 
using the elevation models (DSM and DTM). The differ-
ence between DSM and DTM represents PH (Fig. 2). The 
average value of PH for each plot was used for further 
analysis.

Machine learning models (MLMs)
The RF and PLSR were used to predict the soybean FB 
using CC, PH, and VIs. In the RF algorithm, the number 

Fig. 2  Example of (a) digital terrain model (DTM) and (b) digital surface model (DSM)

 

Fig. 1  Region of interest (ROI) examples (yellow boxes) for individual soybean plots, (a) raw image of individual channel (as example NIR), (b) image after 
soil pixels were filtered out with the masking procedure
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of trees (ntree) was chosen by the lowest value of root 
mean square error (RMSE) while the number of predic-
tors evaluated at each node (mtry) was selected based 
on the cross-validation. The RF was applied for the pre-
diction of soybean FB using the train function from the 
Caret package with mtry = 3 and ntree = 500 set as opti-
mal tuning parameters. A leave group out cross-valida-
tion (LGOCV) was implemented in the model where the 
harvested biomass and predictors from 70% of the ran-
domly selected plots were used as a training set, while the 
remaining 30% were used as a test set. The LGOCV pro-
cedure was repeated 10 times, generating new training 
and test partitions in each cycle. The model performance 
was rated based on the average result of 10 predic-
tions obtained through the LGOCV. For FB estimation 
with PLSR, the Caret package was also used including 
LGOCV approach. In the PLSR, an optimal number of 
latent variables was chosen based on the lowest value of 
RMSE in the estimation of a dependent variable (FB).

Prediction results of the models were evaluated 
through the coefficient of determination (R2), mean abso-
lute error (MAE), and RMSE calculated with the follow-
ing formulas:
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where xi represents actual value of the trait for the i-th 
plot, x̄ -average of all actual values, yi− predicted value 
of the trait for the i-th plot, ȳ -average of all predicted 
values and N- total plot number. The better performing 
MLM was chosen for further analysis.

Evaluation of selected MLM on independent set of soybean 
genotypes
The proposed MLM for biomass prediction was addi-
tionally validated by performing temporal screening of 
soybean genotypes grown in different environments. 
The genotypes were divided into early (117) and late 
(89) based on the maturity group. They were sown on 8 
m2 plots on sandy soil with low fertility and poor water 
retention to simulate a drought environment. As control 
groups, an identical set of genotypes was sown on a car-
bonate chernozem, a soil with favorable conditions, good 
water retention, and optimal soil fertility (Additional file 
2). Trials for biomass screening were labeled as ED (early 
group grown under drought simulation), LD (late group 
grown under drought simulation), EC (early control), 
and LC (late control). For 206 soybean genotypes within 
ED, LD, EC, and ED trials, the necessary predictors were 
calculated from the UAV images collected in four-time 
points during 2020 and 2021. In both years, the trials 
were photographed at approximately 230, 390, 706, and 
917 GDDs, with a difference of ± 1.8 ̶ 21.6 GDDs. The FB 
of genotypes in ED, LD, EC, and LC trial was estimated at 
each time point.

Results
Development of the model for soybean FB estimation
As a result of plant growth, the values of CC, PH, and FB 
for soybean calibration plots increased as the season pro-
gressed in both years (Table 1).

The results showed that soybean plants were taller in 
2020 than in 2021, while almost a maximum of CC was 
achieved in both years. Still, in 2021 the CC remained 
high even at 1130 GDDs, while in 2020, it dropped over 
10% between the last two measurements. The increase in 
biomass accumulation was also noticeable in both years.

Correlation matrix revealed a strong relationship 
between many VIs, non-significant correlation coeffi-
cients (p < 0.05) were marked with cross (Fig. 3).

More than 62% (289/465) of all correlations were 
higher than the cut-off value set for pair-wise abso-
lute correlation (± 0.8). Highly correlated variables were 
reduced by leaving only TGI and GCI as unique predic-
tors. The relation between these two VIs was weak (r = ̶ 
0.1), while at the same time they showed the lowest MAC 

Table 1  Average canopy cover – CC (%), plant height – PH (m), and fresh biomass – FB (kg/m2) measured on soybean calibration plots 
in 2020 and 2021.

2020 2021
GDD (oC) CC (%) PH (m) FB (kg/m2) GDD (oC) CC (%) PH (m) FB (kg/m2)
274 45.08 0.15 0.18 215 53.26 0.10 0.21

413 74.33 0.25 0.54 492 84.50 0.28 0.89

650 82.75 0.59 1.61 - - - -

745 98.82 0.96 2.28 747 95.70 0.53 1.74

1016 87.87 0.99 3.03 1130 98.63 0.75 2.75
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values when compared to the other VIs. For example, 
CIVE and GCI, or TGI and GNDVI, were not correlated 
(r = 0). Still, CIVE and GNDVI were excluded due to hav-
ing a higher MAC than TGI and GCI.

Biomass prediction models
Performance of the MLMs with different sets of predic-
tors was analyzed by comparing the actual and the pre-
dicted values of soybean FB (Fig. 4).

There was a negligible difference in soybean FB when 
CC and PH were combined in models with all VIs, as 
opposed to being combined with TGI and GCI only. Fur-
ther comparison of the MLMs was based on the results 
of the cross-validation for soybean FB prediction with a 
reduced set of predictors.

Both models showed good accuracy, as suggested by 
the high value of R2 and low RMSE and MAE. Neverthe-
less, RF provided slightly better results. The difference 
between the actual and predicted biomass was observed 
in the results of both models. Discrepancies were pres-
ent in positive and negative directions. A lower standard 
deviation (SD) between the actual and the predicted 

values was obtained with the RF (SD = 0.25 kg/m2) model 
as compared to the PLSR (SD = 0.27 kg/m2) (Fig. 5).

Even though the RF and PLSR have different math-
ematical algorithms, they used the same variables to 
predict the soybean FB. The importance of each predic-
tor variable was extracted from the prediction models 
with the varImp function in the caret package and shown 
through the relative levels (0-100) (Fig. 6).

In both models, the predictor variables ranking was 
the same, the most important being PH, GCI, CC, and 
TGI, respectively. In the PLSR, the PH, GCI, and CC had 
a decisive impact in making the predictions, while the 
influence of TGI was marginal. The same situation with 
the TGI was found in the RF, where the CC also had a 
minor effect on the model performance. The GCI had 
a lower prediction effect in the RF as compared to the 
PLSR, while PH maintained its dominant position and 
was marked as a crucial variable. Correlation between 
four selected predictors was also calculated (Fig. 7).

Significantly high correlation was observed between 
PH, CC and GCI while no significance was observed 
between TGI and three other predictor variables.

Fig. 3  Correlation matrix for assessing the relationship between vegetation indices (VIs). Crosses on the plot indicate non-significant correlation coef-
ficients (p < 0.05)
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Temporal screening of soybean FB using proposed RF 
model
As a better-performing model, RF was subjected to fur-
ther evaluation on an independent set of soybean geno-
types grown in different environments. Biomass of 206 
soybean genotypes was estimated within the ED, LD, EC, 
and LC trial in 2020 and 2021 (Fig. 8).

The results showed that the amount of accumulated 
organic matter increased throughout the season. Soybean 

FB was low at 230 GDDs, while the increase was notice-
able after 390 GDDs. This pattern was present in all trials 
for both years. The unfavorable conditions did not affect 
soybean at the beginning of the growing period as much 
as it did later, when the negative effect of drought led to 
a decrease in biomass accumulation for genotypes in ED 
and LD as compared to the control.

Fig. 5  Box plots of differences between actual and predicted fresh soybean biomass (kg/m2) obtained with random forest (RF) and partial least squares 
regression (PLSR) with reduced set of predictors. The error bars show the 95% confidence interval while the line inside the boxes represent the median 
value

 

Fig. 4  Correlation between the actual and the predicted fresh soybean biomass (kg/m2). (a) CC and PH combined with 31 VIs in RF, (b) CC and PH com-
bined with 31 VIs in PLSR, (c) CC and PH combined with TGI and GCI in RF and (d) CC and PH combined with TGI and GCI in PLSR. Canopy cover – CC, 
plant height – PH, vegetation indices – VIs, random forest – RF, partial least squares regression – PLSR, coefficient of determination – R2, root mean square 
error – RMSE, and mean absolute error – MAE
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Discussion
The initial set of predictors contained PH, CC, and 31 
VIs. Many VIs were highly correlated due to the simi-
lar origin, which enabled the reduction of their number 
without losing significant power in variability explana-
tion. Further analysis suggested that only TGI and GCI 
could be used instead of a complete set of reflectance–
based predictors. Although the number of VIs was 
reduced, it was necessary to check whether this reduction 
would affect the predictive ability of the RF and PLSR 
model. The results showed that the reduction of VIs did 
not have a significant effect on the performance of the 
MLMs. This indicates that soybean FB could be success-
fully predicted without using a large set of highly corre-
lated VIs, which makes the entire process more efficient. 

A smaller error in prediction of FB was achieved with the 
RF model, thereby securing its advantage over PLSR as a 
novel tool for remote estimation of soybean biomass.

Even though the RF model had high accuracy, there 
were some differences between the predicted and the 
measured values of FB (RMSE = 0.26  kg/m²). The expla-
nation for these discrepancies may lie in the predictors 
themselves. The PH stood out as the crucial variable 
which had the highest influence on the model’s perfor-
mance. Some soybean genotypes are prone to lodging 
which can disturb the determination of plant PH in such 
a way that the predicted PH obtained by the analysis of 
DTM and DSM is lower than the actual one. As a result 
of the disturbance caused by lodging, imprecision in the 
remotely estimated biomass can be expected [52]. In the 

Fig. 6  The importance of each predictor variable in (a) random forest (RF) and (b) partial least squares regression (PLSR) model for prediction of soybean 
fresh biomass (FB). Canopy cover – CC, plant height – PH, triangular greenness index – TGI, and green chlorophyll index – GCI
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prediction of soybean FB, the effect of the two remain-
ing VIs was not the same. The TGI had a low impact on 
the model’s performance, while in the case of GCI the 
results were a little different. The significance of GCI lies 
in its essence, as it was created by a combination of G 
and the particularly important NIR channel, associated 
with biomass in the previous studies [53]. On the other 
hand, the TGI is based on plant reflectance caused by 
light from the visible part of the spectrum. This part of 
light spectrum does not penetrate plant tissue as deeply 
as NIR [54, 55] does, which could be the reason why the 
GCI was far more important for biomass prediction than 
TGI. This is especially significant in later development 
stages, when plants achieve high CC and PH with lots 
of interlaced leaves. Adding more NIR–based VIs would 
not improve model accuracy because all VIs were highly 
correlated (r > 0.8) with the used GCI. Finally, the model’s 

precision can be disturbed by weeds if their presence 
leads to an increase in CC. Also, weeds leaf tissue can 
cause changes in spectral reflectance of the plots which 
can harm precise determination of selected VIs. In that 
case, the model could overestimate biomass for that plot. 
This can be expected with PLSR, where CC and GCI has 
a great influence. In the proposed RF model, the impor-
tance of GCI and especially CC is lower, ensuring more 
stable predictions of soybean FB regardless of canopy 
density.

In the barley research, biomass prediction relied on the 
correlation with PH, resulting in R2 = 0.72 [56]. Plant PH 
was also obtained using SfM and DSM in calculations 
of the crop surface model (CSM), thus ensuring higher 
accuracy compared to ground measurements. Biomass 
estimation based solely on PH simplifies the process, 
but it can also be very challenging. In the barley study, 

Fig. 7  Correlation matrix for assessing the relationship between four selected predictor variables, plant height (PH), canopy cover (CC), green chlorophyll 
index (GCI), and triangular green index (TGI). Crosses on the plot indicate non-significant correlation coefficients (p < 0.05)
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no other variables could compensate for the shortcom-
ings of one predictor prone to a lodging error such as PH. 
On the other hand, utilization of the VIs, PH, and CC as 
combined set of predictors requires more computing, 

but it provides better results in biomass prediction. For 
instance, tomato fresh shoot mass was predicted several 
times during the growing season using the RF algorithm 
and a set of combined predictors [57]. Six VIs, including 

Fig. 8  Temporal change in biomass accumulation for soybean genotypes grown in different environments based on the results of proposed random 
forest (RF) model. The line in each box plot stands for median value. The error bars represent the 95% confidence interval and outliers are represented 
by dots. Early group grown in drought simulation – ED, late group grown in drought simulation – LD, early control – EC and late control – LC, growing 
degree days after emergence – GDD (°C)
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G ̶ R index [58], NDRE and different variations of NDVI, 
were used alongside other predictors such as plant area, 
length, width or PH. This approach secured high accu-
racy in the estimation of tomato biomass with R2 = 0.88. 
The VIs (especially the G–R index) were very important 
in making the prediction, but the crucial variable was 
plant area. Contrary to the study on soybean where PH 
was the main predictor, for tomato plant PH was not 
significant. This could be related to the different growth 
type of soybean and tomatoes. Unlike soybean, which has 
a predominantly vertical growth, tomatoes mainly spread 
their shoots horizontally, causing a smaller PH variation 
between the plants. The PH was also highly ranked in the 
prediction of maize biomass using different MLMs [59]. 
In the research on maize, the initial set of predictors con-
taining different VIs, PH and volumetric parameters was 
reduced because some variables were highly correlated. 
This was done to eliminate the possible impact of multi-
collinearity on the model’s predictive ability, in the same 
way as it was done in the prediction of soybean FB. All 
of the above suggests that the selection of a proper set of 
predictor variables customized to the certain plant shoot 
architecture is crucial for successful biomass estimation. 
This was given special attention in the proposed RF algo-
rithm for the determination of soybean FB, which there-
fore resulted in high accuracy (R2 = 0.94).

The quality of the proposed model was additionally 
tested in a two–year trial where FB was predicted for 206 
soybean genotypes. The results obtained on the evalua-
tion plots in 2020 and 2021 showed that both early and 
late genotypes from ED and LD trials accumulated less 
FB than the control. The reduction in biomass as the 
consequence of unfavorable conditions was expected 
based on the previous studies on soybean and corn [60, 
61]. The negative impact of drought on soybean devel-
opment manifested itself through reduced PH and LAI 
[62]. Moreover, the water deficit changed spectral reflec-
tance of the soybean plants, causing an increase in vis-
ible light reflection, while at the same time NIR dropped 
[63]. This means that values of TGI and GCI were also 
modified, as they directly depend on canopy reflec-
tance. The proposed model for remote estimation of 
soybean FB recognized changes in predictor variables, 
which was proven by the variability of predicted results 
in the testing environments. The difference in the esti-
mated FB was especially noticeable after 390 GDDs for 
both the early and late genotypes, because soybean is 
less sensitive to drought in the early development stages 
while the greatest damage occurs after flowering, i.e. the 
generative phase [64]. Furthermore, according to the 
results, the late genotypes accumulated more biomass 
than the early ones, which was anticipated as a result 
of the longer growing period. All of the above confirms 
the robustness of the proposed RF model, based on its 

ability to distinguish different values of soybean FB not 
just between different environments (EC/ED and LC/
LD), but also within each environment.

Conclusions
The estimation of soybean FB was tested using reflec-
tance and photogrammetry based predictors in two dif-
ferent MLMs, including RF and PLSR. More precise 
results were obtained using the RF model with only 
four predictors. The PH and GCI stood out as the most 
important variables respectively, while the impact of CC 
and TGI was minor. The proposed MLM showed that the 
soybean FB can be accurately estimated (R2 = 0.94) using 
a small set of predictors. The reduction in the number of 
VIs from the initial 31 to just two did not affect model 
performance. This information can be very useful for the 
future studies aiming to reduce unnecessary calculations. 
The robustness of the MLM was demonstrated on diver-
gent soybean germplasm in drought simulation environ-
ments, where the predictor variables were affected by the 
unfavorable growing conditions. Based on these changes, 
the model adjusted the results of soybean FB prediction 
between as well as within environments. The results of 
additional testing proved that the model is able to adapt 
to different conditions which is important for gather-
ing significant information about biomass accumulation 
and soybean development. This information could be 
utilized by practice and science. The farmers may ben-
efit from it by knowing the current status of the crop 
biomass production and managing the production pro-
cesses based on the obtained results. On the other hand, 
scientists from different fields could find this prediction 
model interesting as a tool for the enhancement of their 
research. For example, the proposed HTP model can pro-
vide a huge amount of data that can be used as new traits 
in soybean breeding programs. This can result in a more 
efficient and more precise selection of the best varieties. 
Still, there is a possibility for additional adjustments of 
the model. The observed significant correlation between 
PH, GCI, and CC indicates that further improvement of 
the proposed model could be achieved through enhanced 
predictor selection. To realize this idea, the additional 
testing of the model (new environment and germplasm) 
and literature survey will be continued in the future to 
collect as much information as possible. The acquired 
data will be used to perceive the possibilities for enhance-
ment of the proposed model for soybean FB prediction.
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