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Abstract 

Background  The morphological structure phenotype of maize tassel plays an important role in plant growth, 
reproduction, and yield formation. It is an important step in the distinctness, uniformity, and stability (DUS) testing 
to obtain maize tassel phenotype traits. Plant organ segmentation can be achieved with high-precision and auto-
mated acquisition of maize tassel phenotype traits because of the advances in the point cloud deep learning method. 
However, this method requires a large number of data sets and is not robust to automatic segmentation of highly 
adherent organ components; thus, it should be combined with point cloud processing technology.

Results  An innovative method of incomplete annotation of point cloud data was proposed for easy development 
of the dataset of maize tassels,and an automatic maize tassel phenotype analysis system: MaizeTasselSeg was devel-
oped. The tip feature of point cloud is trained and learned based on PointNet +  + network, and the tip point cloud 
of tassel branch was automatically segmented. Complete branch segmentation was realized based on the short-
est path algorithm. The Intersection over Union (IoU), precision, and recall of the segmentation results were 96.29, 
96.36, and 93.01, respectively. Six phenotypic traits related to morphological structure (branch count, branch length, 
branch angle, branch curvature, tassel volume, and dispersion) were automatically extracted from the segmentation 
point cloud. The squared correlation coefficients (R2) for branch length, branch angle, and branch count were 0.9897, 
0.9317, and 0.9587, respectively. The root mean squared error (RMSE) for branch length, branch angle, and branch 
count were 0.529 cm, 4.516, and 0.875, respectively.

Conclusion  The proposed method provides an efficient scheme for high-throughput organ segmentation of maize 
tassels and can be used for the automatic extraction of phenotypic traits of maize tassel. In addition, the incomplete 
annotation approach provides a new idea for morphology-based plant segmentation.
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Introduction
Plant phenotype helps in understanding plant environ-
mental interactions and translating their applications in 
crop management, biostimulants, microbial communi-
ties, etc. [1–3]. Traditional phenotypic measurements 
are manually conducted at the single plant level, which is 
inefficient and has low precision, thus limiting the analy-
sis of the genetics of quantitative traits, especially those 
associated with yield and stress tolerance [4]. Therefore, 
high-throughput and automated phenotypic measure-
ment techniques should be developed. Maize is grown 
extensively around the world as an important food and 
feed crop, and is one of the three major food crops in the 
world, along with wheat and rice [5]. An important fea-
ture of maize is the structure of the male tassels. Maize 
tassels produce pollen necessary for maize reproduc-
tion, and factors such as the number and length of tas-
sel branches are related to factors affecting grain yield 
[6]. Studies have shown that the yield of plants with 
removed male tassels is 50.6% higher than that of intact 
plants, and that smaller male tassels usually release more 
energy for grain production and reduce light shading, 
making a good male structure one of the components of 
an ideal plant type [7]. In addition, regional trials are an 
important link in breeding and new variety promotion, 
and manual investigation of the distinctness, uniform-
ity, and stability (DUS) testing traits is a time-consuming 
and laborious work [8]. The DUS testing traits related to 
maize tassels include spindle length, number of branches, 
tassel weight, tassel density, branch length and branch 
angle, among which, tassel spindle length and branch 
number are two important traits. Therefore, the tas-
sel structure should be comprehensively evaluated and 
understood.

In the field planting environment,maize tassels can be 
recognized, counted and located based on image depth 
learning technology [9–11], and the point cloud data of 
maize tassels is incomplete using lidar [12]. Therefore, 
in order to obtain the three-dimensional morphological 
phenotypic traits of male tassel, it is necessary to man-
ually sample from the field, and be rapidly obtained via 
high-throughput data collection platforms. In the indoor 
environment, Gage obtained maize tassel phenotypic 
traits, such as the number of branches, tassel length, 
etc.by the single image technology [13]. These image-
based methods have greatly enhanced the development 
of phenotypic studies of maize tassels. However, two-
dimensional-based methods cannot accurately acquire 
phenotypic traits in three dimensions. As a result, 3D 
reconstruction methods, including depth camera-based 
methods [14, 15], LIDAR-based methods [16, 17], and 
multi-view image reconstruction-based methods [18–20] 
have been developed to avoid data loss in dimensionality. 

The 3D data acquisition methods avoid plant self-obscu-
ration that may be encountered in 2D images and provide 
a basis for complex plant phenotype extraction. The 3D 
processing software is the traditional method widely used 
to obtain plant phenotypic traits (leaf area, length, width, 
inclination, etc.) from 3D data via manual operations, 
such as organ segmentation on plant 3D data. However, 
this method is time-consuming and hinders the efficiency 
of high-throughput phenotype acquisition. Therefore, 
a method that can improve the efficiency of phenotype 
extraction is necessary [21]. The DBSCAN(density-based 
spatial clustering of applications with noise) algorithm is 
applied to automatic branch segmentation of maize tassel 
point cloud, but it was difficult to achieve branching and 
segmentation for compact tassels, so more robust algo-
rithms need to be studied [22]. The DFSP(distance field-
based segmentation pipeline) algorithm was proposed 
for automated segmentation of corn plant stem and leaf 
point clouds in different directional structures [23].

Automated segmentation techniques based on 3D deep 
learning can be used to efficiently acquire phenotypic 
data. The 3D deep learning networks can be divided into 
three broad categories: 3D voxel grid-based frameworks 
[24], convolution-based methods [25–27], and the frame-
work for direct input point clouds [28]. PointNet extracts 
features in a way that a global feature is extracted for all 
point cloud data without considering the direct relation-
ship between local point clouds [28]. PointNet +  + can 
extract local features at different scales of point clouds 
and obtain deep features through a multilayer network 
structure [29]. Meanwhile, several researchers have 
used deep learning of 3D point clouds in plant organ 
segmentation.A novel pattern-based deep neural net-
work Pattern-Net was designed for the segmentation of 
wheat point clouds [30]. DeepSeg3DMaize was devel-
oped to extract six phenotypic traits of maize based on 
PointNet [31]. A dual-functional deep learning neural 
network PlantNet was proposed for semantic segmenta-
tion and instance segmentation of two dicotyledons and 
one monocotyledon from point clouds [32].

However, there are a few publicly available datasets for 
training, which limits the development of deep learning 
techniques in the plant domain [33]. ROSE-X dataset was 
developed, which consisted of only 11 annotated three-
dimensional models of plants of the genus Rosaceae, 
and thus is not applicable to other morphological plant 
species [34]. Therefore, a quick method of annotating 
plant point cloud data to build data integration should 
be developed. In this study, an innovative incomplete 
annotation method was proposed for the rapid construc-
tion of point cloud annotation dataset of maize tassels. 
MaizeTasselSeg, an automated maize tassel point cloud 
processing system using PointNet +  + as a deep learning 
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model framework to segment the tips of maize tassel 
branches, was then developed. The shortest path growth 
algorithm was also proposed for branch segmentation of 
maize tassels to achieve automated organ-level pheno-
typic trait extraction of maize tassels. This study provides 
an automated and efficient solution for the 3D pheno-
typic analysis of maize tassels.

Materials and methods
Overview
This study consists of four parts (Fig. 1): high-throughput 
data acquisition of maize tassels, pre-processing of point 
cloud data, dataset construction and deep learning-based 
segmentation of maize tassels, and extraction of the DUS 
testing traits.

Materials
Maize tassel samples (180) were selected from the maize 
association analysis population for the construction of 
training and test sets to increase the diversity of sample 
morphological structure. The materials were planted in 
the experimental field of the Beijing Academy of Agri-
cultural and Forestry Sciences (39°56′N, 116°16′E). The 
materials were sown on May 10, 2021, based on the 
unified density (row spacing; 60  cm and plant spacing; 
30 cm).

Data acquisition
At maize tassel loose pollen stage, the MVS-Pheno V2 
platform [35], an easy-to-assemble automated acquisi-
tion device with a supplemental light system, was used 
to obtain multi-view images of maize tassels (Fig.  1a1). 
The device was deployed in a 3  m long, 3  m wide, and 
2 m high tent next to the maize planting area. The maize 
tassels were cut from the maize plants in the field dur-
ing the maize power dispersing period, held using a metal 
frame table (Fig. 1a2), and placed in the central acquisi-
tion area of the device for multi-view image acquisition. 
On the swivel arm of the MVS-Pheno V2 platform, two 
side cameras(Japan,Canon,Canon77D) are used, which is 
80 cm the distance between the cameras and the center 
of the device,and the vertical distance between the two 
cameras is 15  cm. For each maize tassel sample, each 
camera acquires 30 side images at 12° intervals, total-
ing 60 side images, and each cycle usually takes 90  s 
(Fig.  1a3). 25 samples of maize tassels ware manually 
measured to evaluate the reliability of our method, firstly 
the branch angle and tassel volume ware manually meas-
ured by the three-dimensional digitizer device (America, 
Polhemus, FASTSCAN) (Fig. 2b) [36], and branch length 
and branch number ware manually measured by image 
methods (Fig. 2a) [37].

The Structure-from-Motion algorithm (SFM) [38] and 
the Multi-View Stereo algorithm (MVS) [39] were used 
for the reconstruction of multi-view point clouds. A 
batch point cloud reconstruction pipeline system(PC_
MVS) was integrated and developed on the basis of the 
open source libraries openMVS [40] and openMVG [41]. 
Dense point clouds of corn tassels are reconstructed by 
PC_MVS (Fig. 1a4).

Data set production
Point cloud pre‑processing
The maize tassel point cloud reconstructed using multi-
view image data had some noise points. There are three 
types of noise point clouds, namely, surrounding enclo-
sure and ground noise, support frame and calibration 
plate noise, and maize tassel attachment noise(color 
noise and outlier noise). The noise was removed as fol-
lows: firstly surrounding enclosure and ground noise 
point cloud was removed based on the rules of the corn 
tassel point cloud in the center of the reconstructed 
point cloud scene (Fig. 1b1); the maize tassel point cloud 
was separated from the point cloud scene using the 
HSV space segmentation method of point cloud color 
information(the point cloud vertex color was converted 
from RGB space to HSV space, and the threshold masks 
of H, S and V channels were set) (Fig. 1b2), the threshold 
values were set as follows: H: 15–180, S:0.05–1, V: 0–1 
for each channel of HSV under the conventional indoor 
lighting environment, and the threshold values could 
quickly eliminate the shooting background cloth, calibra-
tor point clouds from the scene, and remove the color 
noise caused by light reflection; the calibration plate 
point cloud was separated by HLS space, and the maize 
tassel point cloud is corrected based on the actual size of 
the calibration plate [35]; the outlier noise points were 
then removed based on the statistical filtering algorithm 
as follows:

The point pi was selected from the point cloud P , and 
the average distance between its n neighboring points 
{m1,m2,m3, . . . ,mn} for the point piwascalculated as 
follows:

where d denotes the distance between two points.
The standard deviation σ of that point and neighboring 

points was determined as follows:

The neighboring point was removed if the dis-
tance from the neighboring point mi to pi was greater 

(1)dmean =
d1 + d2 + · · · + dn

n

(2)σ =
1

n− 1

√

∑n

k=1
(di − dmean)

2
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Fig. 1  Overview of the proposed methodology. a High-throughput data acquisition of maize tassels using the MVS-Pheno phenotyping platform 
and Point cloud reconstruction: (a1) the MVS-Pheno phenotyping platform, (a2) the iron frame for fixing maize tassel, (a3) maize tassel Multi-view 
images, (a4) Multi-view reconstruction; b pre-processing of point cloud data: (b1) the dense point cloud, (b2) segmentation of maize tassel point 
cloud and calibration plate point cloud, (b3) the dense maize tassel point cloud, (b4)the down sampling point cloud; c the data set construction 
and deep learning-based segmentation of maize tassels: (c1) point cloud annotation, (c2) the schematic diagram of point cloud segmentation 
network model, (c3) the point cloud at the top of the branch is segmented through the network model, (c4) Branch extraction; d Phenotypic 
Extraction: (d1) Number of branches, (d2) Branching angle, (d3) Branch bending degree, (d4) Convex hull volume
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than ∝ standard deviations from the average distance 
(di > dmean− ∝ ×σ ). The noise reduction effect was bet-
ter when ∝= 0. 5 which get a relatively smooth edge while 
preserving as much information as possible (Fig. 3c).

The point clouds generated via multi-view reconstruc-
tion were dense,each maize tassel sample point cloud 
has more than 500,000 points,which cannot success-
fully run on the normally configured computer for deep 
learning training. Firstly,the random sample consensus 
(RANSAC) algorithm [42] is used, and the sample point 
cloud has been quickly down-sampled from 500,000 to 
100,000 points. Down-sampling using the farthest sam-
pling (FPS) [43] algorithm simplified the number of point 
clouds without destroying the point cloud distribution, 
therefore, which was used to further sample the sample 
point cloud from 100,000 to 40,000 points. In this paper, 
each sample point cloud is reduced to 4000 points to 
improve the efficiency of model training (Fig. 1b4).

Point cloud annotation
Although deep learning algorithms for point clouds have 
attracted much attention, the methods have not been 
widely used in plant phenotype processing. This could 
be because plant point clouds are more complex than 
buildings, furniture, etc., and there are few open source 
datasets. Besides, various plants have many differences 
and thus require more networks to be trained. In addi-
tion, manual annotation is a challenge in some self-shad-
ing plants. The morphology of maize tassels is divided 
into compact and spread types. As a result, it is difficult 
and time-consuming to completely label each branch of 
the tassel manually. Therefore, only the top point cloud 
of each branch of the tassel was selected as the point 
cloud representative of that branch since the roots of tas-
sel branches are compact (Fig. 1c1). The top point cloud 
of the segmented branch was continuous (3–5 cm long), 
and did not cross with the main stem of the tassel to 

Fig. 2  Validation data. a Validation data shot. Placement of branches in order of their position on the stalk. b maize tassel branch skeleton point, 
and the red dots represent the upper node, the green dots represent the lower node of the branch

Fig. 3  Denoising effect of different parameters. a original point cloud; b n  = 20, α = 0; c n = 20, α = 0.5; d n = 20, α = 1
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accelerate the labeling speed. The branch point cloud of 
maize tassels was annotated using CloudCompare [44], 
then the top point cloud of the branch was marked as 1, 
and the rest points were marked as 0.

Dataset enhancement and composition
Data enhancement was performed via the random point 
sampling method for all labeled branch point cloud 
data since the maize tassel point cloud data obtained 
via multi-view reconstruction were dense and non-uni-
form. In the first stage of downsampling, different ini-
tial points were selected to ensure sample dataset in the 
RANSAC, and different point cloud samples were gener-
ated through different initial sampling point sequences. 
Finally, a new enhanced dataset was obtained, including 
1260 training sets, 360 test sets, and 180 verification sets, 
totaling 1800.

Maize TasselSeg system
Segmentation network framework
The specific network framework used for segmentation is 
shown in Fig.  4. The network input data contained 3-D 
coordinate information and normal vector information 
for N points. An encoder-decoder structure was used to 
improve the performance of the model for the segmenta-
tion task. The encoder module of the network consisted 

of multiple set abstraction (SA) layers. The point set in 
each SA layer was adopted and abstracted to produce a 
smaller scale, larger channel set of points. The SA layer 
consisted of three parts (sampling layer, grouping layer, 
and PointNet layer). The sampling layer down samples 
the point cloud collection using the farthest distance 
sampling algorithm, and each point sampled is then 
used as the center of mass of a local domain. The group-
ing layer constructs a local neighborhood by finding the 
nearest neighbors around the center of mass sampled 
by the sampling layer and finally abstracts these local 
neighborhoods via the PointNet layer. In addition, Point-
Net +  + proposes two methods, multi-scale grouping, 
and multi-resolution grouping, which enhance the gen-
eralization ability of the network by splicing local features 
at different scales to better abstract the local features of 
point clouds. In this paper, the neighborhood features of 
different radiuses for the center of mass obtained were 
abstracted using MSG as an extension of SA layer by 
sampling each sampling layer.

Interpolate and PointNet (IP) layers were designed in 
the decoder part. PointNet +  + adopts the reverse inter-
polation method and skip connection to achieve the up 
sampled point cloud features and obtain the discrimina-
tive point-wise feature. Reverse interpolation obtains the 
interpolated feature with C-dim point feature using the 

Fig. 4  Overview of the network model of maize tassel segmentation. The encoder part consists of three SA layers. Each SA layer sets a different 
number of sampling points, sampling radius, and Multi-Layer Perceptron (MLP) layer size. The decoder part consists of three IP layers. Each IP layer 
connects the features extracted by the corresponding SA layer and sets a different MLP layer size
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inverse distance-weighted(inverse of distance squared) 
mean based on k-nearest neighbors (Summation param-
eter K  ). The feature can be calculated as follows:

where:

The local level features were obtained by directly con-
catenating the representations from the previous encoder 
corresponding layer onto the interpolated features, 
which passed through a PointNet to obtain the output. 
The above process was repeated until the features were 
relayed to the original point set. Encoder was sequen-
tially performed through the three SA layers to obtain 
features at three different scales. The decoder was then 
performed through the three IP layers to splice the fea-
tures at all scales. Finally, segmentation prediction was 
performed through a fully connected layer. The model 
output parameter k for the branch top segmentation of 
maize tassels was set to 2.

Loss function
Segmentation networks are essential in the classification 
predictions of points. Herein, SoftMax cross-entropy 
function, which is commonly used in classification tasks, 
was used as the loss function in the training process as 
follows:

where n , p(xi), andq(xi) represent the number of point 
clouds input to the network, the probability of the true 
label of the point, and the predicted value of that point, 
respectively.

Network training
The segmentation network was trained using a server 
with 16 cores and 32 threads CPUs, 128  GB RAM, 1 
NVIDIA GeForce RTX 3090 GPU running under Win-
dows 10 operating system, and Pytorch as the training 
framework.

The point cloud data containing XYZ coordinates, 
normal vectors, and label values of custom point 
cloud size were used as the input data for the network 
training. The training batch size and initial learning 
rate were set to 24 and 0.001, respectively. The learn-
ing rate was reduced by 50% every 20 epochs. ADAM 
Solver was used to optimize the network. The weight 

(3)f (j)(x) =

∑k
i=1wi(x)f

(j)
i

∑k
i=1wi(x)

, j = 1, . . . ,C

(4)wi(x) =
1

d(x, xi)
2

(5)Loss = −

n
∑

i=1

p(xi)logq(xi)

decay of the model and momentum were set to 0.0001 
and 0.9, respectively. Network training was terminated 
when the training loss function was less than the fixed 
threshold, otherwise, the training continued until all 
epochs were completed.

Evaluation indicators
Ground Truth annotation was used to determine the 
accuracy of the segmentation results based on four 
quantitative metrics (Intersection Over Union (IoU), 
segmentation accuracy, precision, and recall). The IoU 
represents the intersection rate between the predicted 
and true values of the segmentation network. The accu-
racy reflects the proportion of correctly segmented 
points to the ground truth points of the segmentation 
network. The precision represents the true predicted 
positive data, while the recall represents the total pre-
dicted positive data.

The four indicators were determined as follows:

A point in the maize tassel point cloud was defined 
as true positive (TP) if it was marked as the same cat-
egory. A point was defined as a false negative (FN) if it 
was mislabeled and it was ground truth. The point was 
defined as false positive (FP) if it was mislabeled and it 
was not ground truth. Higher IoU, segmentation accu-
racy, precision, and recall values represented better 
accuracy.

Branch extraction of maize tassels
The top point cloud of each branch of the maize tassel 
was obtained through a segmentation network. Inspired 
by the shortest path (SP) algorithm [45] and the Median 
Normalized-Vectors Growth (MNVG)algorithm [46], the 
bottom-up minimum path algorithm (Algorithm. 1) was 
constructed, which was used to extract the skeleton point 
cloud of the tassel and the organs based on the skeleton 
point cloud for complete extraction of a branch point 
cloud.

(6)IoU =
TP

TP + FP + FN

(7)Accuracy =
TP + TN

TP + TN + FP + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN
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Fig. 5  Schematic of the bottom-up minimal path algorithm for maize tassels branch nodes searching. a the point cloud is clustered 
from the network segmentation at the top of branch; b the initial growth point at the top of the branch; c the nodal convex hull; d the root node 
is selected through traversing the maximum convex hull; e the root node is added to the path search queue; f the R nearest contraction region; g 
the next search node; h the fork node; i the multiple branch nodes; j the multiple shortest path from the branch top nodes to the root node
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The top point cloud of each branch was obtained 
by segmenting the maize tassel point cloud using the 
learned network. The segmented top point cloud was 
clustered using a density clustering algorithm. The point 
cloud was considered to have a uniform density since the 
maize tassel point cloud was down-sampled using the 
farthest point sampling.

The average distance dmean of the point cloud of sin-
gle maize tassel was calculated, and ε = 3 ∗ dmean was 
used as the search radius of density clustering, while 
minPts = 5 was set as the minimum density of the 
neighborhood.

In addition, a threshold of minimum clustering points 
was selected to reject over-clustered point clouds. The 
point clouds at the top of the maize tassel branches seg-
mented by the PointNet +  + network were density-clus-
tered to obtain the point cloud instances and the number 
of branches at the top of each branch.

The bottom-up minimum path algorithm was used to 
obtain the skeleton of the tassel point clouds, as follows:

First, the maize tassel point cloud was cut into two 
parts: the top of the branch T  and the remaining part 
R . For each branch top instance, the point p in R that is 
closest to T  was searched and saved as the initial growth 
point at the top of the branch (Fig. 5a, b).

All points n in Rweretraversed . The volume of the mini-
mum convex hull of n with the initial growth point p of 
all branches was then calculated. The point n correspond-
ing to the minimum convex hull with the largest volume 
was selected as the root node of the tassel point cloud. 
The parent node of the root node was selected as the ter-
mination node. The root node was then put into the tra-
versal list O (Fig. 5c–d). The traversal list O was traversed 
cyclically. Each traversal was performed on all points p′ 
within the neighborhood r of the current traversal point. 
The nearest point p′′ whose parent node was not empty 
was searched, and its own parent node was set to p′′ . The 
point p′ was stored in the traversal list O , and the cur-
rent traversal point was removed (Fig. 5e–g). When the 
traversed point is the fork node (Fig. 5h), multiple branch 
nodes are searched, and these branching points are set as 
the parent node respectively (Fig.  5i). This process was 

repeated until the traversal list O was empty and the par-
ent node information of each point was obtained. Finally, 
the initial growing point p of the top instance of each 
branch was searched for the shortest path to get the skel-
eton of each branch (Fig. 5j). The longest branch skeleton 
was set as the main stem skeleton. The skeleton points 
overlapping with the main stem skeleton were set as the 
stem part. Each original point cloud was judged after 
obtaining the skeleton point cloud, and its nearest branch 
was used for fusion. Finally, all branch point clouds were 
obtained.

The algorithm set a multi-layer traversal neighborhood 
range to improve the robustness of unevenly distributed 
tassel point clouds. The initial point cloud was down-
sampled to the farthest distance to improve the operation 
efficiency of the algorithm.

Extraction of phenotypic traits
Six phenotypic traits, including the number of branches, 
branch length, branch curvature degree, branch angle, 
tassel volume, and tassel dispersion, were extracted based 
on the stem and branch point clouds. The extraction 
methods are described in Table 1.

Results
Part segmentation results
The segmentation network was trained using 251 
EPOCHs and 4000 point clouds. The segmented corn 
tassel point clouds were quantitatively evaluated. The 
accuracy of the network rapidly increased in the first 
100 epochs, while the loss value rapidly decreased. How-
ever, the accuracy and loss stabilized in the subsequent 
epochs. The highest accuracy and average loss obtained 
during the training process were 97.69% and 6.30%, 

Table 1  Phenotypic traits calculation method

Traits name Calculation method Fig.

Branch count (BC) Number of point cloud clusters after clustering the results of the segmentation network Figure 1 d1

Branch length (BL) Calculate the path length between the two endpoints of the branch Figure 1 d2

Branch angle (BA) Angle of branching to main stem formation Figure 1 d2

Branch curvature (BC) Ratio of branch length to the distance between the two endpoints of the branch Figure 1 d3

Tassel volume (TV) The smallest convex hull of the tassel Figure 1 d4

Tassel dispersion (TD) Ratio of the mean value of the tassel branch angle to �/2 /

Table 2  Precision, recall, and IoU of the trained model

Branch top Remainder

Precision (%) 96.29 99.01

Recall (%) 96.36 99.05

IoU (%) 93.01 94.56
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respectively, indicating that the model had a good learn-
ing efficiency. The final accuracy, recall, and IOU of the 
completed training model (Table  2) of the top of the 
tassel branch were 96.29%, 96.36%, and 93.01%, respec-
tively. The segmentation precision, recall, and IOU of the 
rest were 99.01%, 99.05%, and 94.56, respectively, indi-
cating that the model performed satisfactorily for part 
segmentation.

The visualization results of the test set segmentation 
of maize tassels with different morphologies are shown 
in Fig.  6. Where in, (Fig.  6a–f) show side views of the 
results of different morphological tassels segmentation, 
and (Fig. 6 g, h) show top views of the results of scattered 
tassels segmentation. The segmentation results showed 
that the model could sufficiently segment the top point 
cloud of the tassel branch with a few errors compared 
with manual segmentation. These errors appeared at the 
boundary between the segmented point cloud of the top 
of the tassel and the remaining part of the point cloud. 
The influence of whether the point cloud was correctly 
labeled at this point on the clustering of the top of the 
tassel branch was ignored to improve the robustness of 
the constructed MaizeTasselSeg system.

In addition to maize tassels, there are many types 
of plants with tip features, such as the leaves of maize 
and wheat. If the tip point cloud of plant organs can be 
automatically segmented, then automated segmenta-
tion of organ point clouds will become easier. There-
fore, more plant with tip features were used to verify 

the generalization ability of our method. As shown in 
Fig. 7, the leaf tip point clouds of maize (Fig. 7 Maize-
1-8) and wheat (Fig.  7 Wheat-1-8) at different growth 
stages (from the seedling stage to the mature stage) are 
automatically segmented, and the leaf tip point clouds 
of different types of vegetables are automatically seg-
mented (Fig. 7 Vegetable-1-8). Among them, maize and 
wheat represent fine and long leaves, while vegetables 
represent large and round leaves. The tip segmentation 
results indicate that the proposed method has good 
generalization ability and is suitable for organs point 
cloud segmentation of various types plant.

Tassel branch organ extraction
The results of branching organ extraction for different 
morphological maize tassels are shown in Fig.  8. Each 
row from left to right represents branch segmentation of 
tassel, part segmentation, top clustering of branches, and 
shortest path extraction of branches. Visualization results 
showed that the developed method could adequately seg-
ment the branching organs for different morphological 
maize tassels.

Accuracy of phenotypic traits
Three phenotypic traits (branch number, branch length, 
branch angle, and tassel volume) ware selected for com-
parison with the manually measured results. The actual 
value of the number of branches and branch length ware 

Fig. 6  Segmentation results of the test set of maize tassels with different morphologies. Each plot from left to right represents the true label, 
segmentation result, and error point cloud
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manually measured by image methods, and the actual 
value of branch angle and tassel volume ware manually 
measured through the three-dimensional digitizer skel-
eton data using CloudCompare. The validation results 
for each phenotypic traits are shown in Fig. 9. The R2 and 
RMSE were 0.9897 and 0.529 cm, respectively, for branch 
length, 0.9317 and 4.516°, respectively, for branch angle, 
and 0.9587 and 0.875, respectively, for branch num-
ber, and 0.9385 and 258.34cm3, respectively, for tassel 
volume.

Varietal analysis of maize tassel phenotypes
Organ extraction and phenotypic analysis for the multi-
view reconstructed maize tassel point cloud were con-
ducted using MaizeTasselSeg system. The statistical 
results of phenotypic traits extracted from 180 tassel 
point cloud data are shown in Fig.  10. Where the units 
of (Fig. 10a and d) are in cm, the units of (Fig. 10b) are 

in cubic centimeters, and the units of (Fig.  10c) are in 
degrees. The horizontal coordinates of all statistics are 
the corresponding interval values and the vertical coor-
dinates are the corresponding number of branches or the 
number of tassels. The branch count, branch length, and 
branch angle were mainly concentrated around 6–16, 
20  cm, and 40°, respectively. The branch curvature, tas-
sel dispersion, and tassel volume were mainly below 1.4 
level, below 0.5, and below 12000 cm3, respectively. The 
statistical results were consistent with the morphological 
characteristics of the experimental materials. Therefore, 
this study provides a reliable and efficient analysis system 
for the phenotypic analysis of maize tassel.

Discussion
Selection of dataset annotation
The lack of readily available manually-annotated data-
sets and insufficient software for annotating plant point 
clouds to reduce labor costs have slowed the progress 

Fig. 7  The segmentation results of leaf tip point clouds for three types of plants, namely maize, wheat, and vegetables based on MaizeTasselSeg. 
Among them, the green circle represents the correctly identified leaf tip, while the black circle represents the unrecognized leaf tip
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of deep learning in the plant domain. Maize tassels have 
thin branches, which are usually tight at the base, which 
limits the manual production of a complete dataset to 
segment the branch junctions. The point clouds for com-
pact maize tassels reconstructed from multiple views 
are often incomplete at these junctions, making it diffi-
cult to annotate this type of maize tassel. In this paper, 
a top-down incomplete labeling method was proposed. 
The top part of the tassel branch, which is relatively well 
labeled, was selected for labeling because of the scattered 
growth structure of maize tassels. A network model was 
then trained to segment the point cloud of this part. The 
tassel branch organs were extracted via subsequent clus-
tering and shortest path growth algorithms. However, 

it is difficult to choose an appropriate annotation scale. 
Besides, different quality of data has some influence on 
the choice of annotation scale. Herein, multi-view recon-
struction point clouds were the original point cloud data 
used. Although it has the advantage of the lower acquisi-
tion cost, the corresponding point cloud quality is not as 
good as that obtained via LiDAR scanning. Furthermore, 
some of the original point cloud data may have discrete 
missing cases at the top of the branches (Fig. 11). There-
fore, it may lead to the wrong learning of the model if 
only a few point clouds are labeled at the top of the male 
branch. Finally, the approach of labeling as many points 
as possible at the top of the male branch was adopted. 

Fig. 8  The organ segmentation results of maize tassel point cloud. Images from left to right in each panel represent organ segmentation, network 
segmentation, branch top clustering, and shortest path extraction. a simple and decentralized tassel, b tassel bending at the top of the branch, c 
more branched tassel, d tassel branching pendulous
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The part of the labeled points was made in such a way to 
ensure a certain rigidity (no bending).

Point cloud sample size
The size of each tassel point cloud in the labeled dataset 
was 100000 points. The built network model first per-
formed the farthest distance sampling on the input point 
cloud data. The model parameters were kept constant 
for different sampling size datasets to analyze the impact 
of sampling points on the segmentation accuracy of the 
model (Fig. 12) (sampling size; 1000–8000 and step size; 
1000). The accuracy of the model for different sampling 
size datasets was stable between 97 and 98%. The model 
obtained the highest accuracy of 97.95% for a sample size 

of 6000. However, the IoU significantly fluctuated. The 
model also obtained the highest IoU for a sample size of 
6000 (93.75%).

Although the best accuracy and IoU were achieved 
with a sampling size of 6000, this is not always the case. 
The segmentation results of the model with sampling 
sizes of 1000, 4000 and 6000, are shown in Fig.  13. The 
segmentation results of the top point cloud of the tassel 
branches at the sampling sizes of 1000 and 4000 did not 
show a mixture of the two types of markers, indicating 
that marker error occurred at the boundary between the 
two marker clouds. However, the segmentation results of 
the sampling sizes of 6000 showed a mixture of the two 
types of markers in some of the top point clouds of the 

Fig. 9  Evaluation of maize tassel phenotypic traits error
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tassel branches, possibly due to the uneven density of 
the original point cloud data that leads to model learning 
errors. The sampling size also determines the density of 

the output point cloud. Therefore, the density should be 
as large as possible to facilitate organ-scale segmentation. 
As a result, a sampling size of 4000 was selected.

Fig.10  Analysis and statistical results of phenotypic traits of 180 experimental materials. a branch count statistics, b tassel volume statistics, c 
branch angle statistics, d branch lengh statistics, e branch curvature statics, f dispersion statistics
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Problems with compact tassels
Based on the method of the DBSCAN(density-based spa-
tial clustering of applications with noise) [22], the tassel 
point cloud branches can be well segmented for maize 
tassels of dispersed and nearly vertical principal axis, but 
for compact maize tassels, the effect is poor.Our method 
is not affected by the growth direction of maize tassels, 
and is applicable to with compact samples.However, 
for overly compact samples, the phenotypic accuracy 
obtained will be reduced. As shown in Fig. 14a, the red 
and yellow branches cross, causing the shortest paths 
to merge at the intersection point. The two intersecting 
branches will share some of the points after organ divi-
sion (Fig. 14b), where the two intersecting branches share 
the remaining points after the intersection point. For this 
type of branching, the branch length, branch curvature, 

Fig.11  Raw point cloud data quality. a no point cloud missing, b relatively obvious point cloud missing, and c some point cloud missing 
at the seed-branch junction

Fig. 12  Model training results for different sample sizes

Fig.13  Model segmentation results for different sample sizes. a 1000 points segmentation result, b 4000 points segmentation result, c 6000 points 
segmentation result
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and branch angle of the extracted phenotypic traits will 
show some deviations.

In addition, the segmentation network was not tested 
on fully-fitted male spikes, one reason being that the tops 
of the branches of this type of male spike were difficult 
to segment manually, so only those spikes that could be 
manually labeled quickly were experimented with in this 
paper.

Conclusion
In this paper, MaizeTasselSeg system was used to pro-
cess the 3D data based on the 3D point cloud data 
of maize tassels. The entire process includes high-
throughput data acquisition, data pre-processing, data 
annotation, data set production, learning network 
model, and organ extraction. Phenotypic traits of inter-
est, including branch number, branch length, and pinch 
angle, were also obtained. The experimental results 
showed that the system could accurately acquire phe-
notypic traits of maize tassels. The system is also fully 
automated, thus enhancing high-throughput pheno-
typic analysis of maize tassels. Nevertheless, further 
algorithms should be developed in future to solve the 
branch crossing problem in the branches of compact 
maize tassels and quick labeling for fully adherent 
tassels.
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