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Abstract 

Background  Alternative splicing (AS) of mRNA plays an important roles in transcriptome diversity, involving regula-
tion of plant growth and stress response. Understanding the variation of AS events underlying GWAS loci in a crop 
population can provide insight into the molecular mechanisms of complex agronomic traits. To date, genome-wide 
association studies relating AS events to agronomic traits have rarely been conducted at the population level in crops.

Results  Here, a pipeline was constructed to identify candidate AS events related to complex traits. Firstly, ovule tran-
scriptome data were used to characterize intron retention (IR), the predominant type of AS in plants, on a genome-
wide scale. This was done in a natural population consisting of 279 upland cotton lines. Secondly, splice quantitative 
trait locus (sQTL) analysis was carried out, which yielded a total of 2295 sQTLs involving 1607 genes. Of these, 14.25% 
(n = 427) were cis-regulatory loci. Integration with expression quantitative trait loci (eQTL) revealed that 53 (21.4%) 
cis-sGenes were regulated by both cis-sQTLs and cis-eQTLs. Finally, co-localization analysis integrated with GWAS loci 
in this population showed 32 cis-QTLs to be co-located with genetic regulatory loci related to fiber yield and quality 
traits, indicating that sQTLs are likely to participate in regulating cotton fiber yield and quality. An in-depth evaluation 
confirmed that differences in the IR rates of sQTL-regulated candidate genes such as GhLRRK1 and GhGC1 are associ-
ated with lint percentage (LP), which has potential in breeding applications.

Conclusion  This study provides a clue that AS of mRNA has an impact on crop yield, along with functional sQTLs are 
new genetic resources for cotton precision breeding.

Keywords  Alternative splicing (AS), Intron retention (IR), Cotton (Gossypium hirsutum L.), Fiber yield, Splicing 
quantitative trait locus (sQTL)

Background
Cotton is one of the most important sources of natu-
ral fiber and cash crops worldwide [1]. Allotetraploid 
upland cotton (AD)1 (Gossypium hirsutum L.) accounts 
for more than 90% of cultivated cotton and is the main 
source of renewable textile fiber [2]. The global textile 
industry has a continuous and stable consumer demand 
for cotton fiber, and increasing yield has long been an 
important goal of cotton breeding. However, cotton 
yield traits are complex quantitative traits controlled 
by polygenes and affected by environmental condi-
tions. The mechanisms of genetic impacts on complex 
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quantitative traits include but are not limited to gene 
structural variations and associated effects on alterna-
tive splicing, amino acid coding, and so on.

With the development of high-throughput sequenc-
ing technology, molecular markers have become 
widely used in determination genetic loci that influ-
ence cotton yield traits [3–6]. Genome-wide associa-
tion studies (GWAS) represent an effective method for 
locating genetic factors that underpin complex traits at 
a genome-wide scale. This association study can ana-
lyze the correlations between single nucleotide poly-
morphism (SNP) markers and noted phenotypes to 
identify candidate genomic regions that may impact a 
phenotype. GWAS was first successfully implemented 
in upland cotton for the identification of SNP loci and 
candidate loci for fiber quality and yield traits using a 
China upland cotton population (CUCP1) collected 
from three representative ecological cotton-producing 
regions of China: the Yellow River, Yangtze River, and 
Xinjiang cotton-growing areas [7]. However, GWAS 
signals are localized to regions with genetic structural 
variation, and their resolution is limited by popula-
tion structure and size; moreover, the majority of the 
GWAS often do not identify a specific gene that has a 
deterministic effect on phenotype, due to limitations 
in sample size and marker number. Genetic struc-
tural variation affects the phenotype through multiple 
aspects, including alternations on transcription and 
post transcription levels. Expression quantitative trait 
locus (eQTL) studies have increasingly been integrated 
with GWAS loci to improve the accuracy and inter-
pret those functional variants with potential biological 
mechanisms [8, 9].

In addition to the modulation of the overall transcrip-
tion level, gene transcripts may undergo alternative 
splicing (AS) [10], in which different splice sites produce 
multiple mRNA variants from a single gene [11, 12]. AS 
is an important mechanism for controlling gene expres-
sion and further increasing proteome complexity. In 
plants, intron retention (IR) is the most prevalent form 
of AS [13], accounting for 23–47% of AS events [14–
16]. Retention of an intron can result in the alternative 
mRNA with a possibility of harboring a premature termi-
nation codon (PTC). If this PTC is located upstream of 
an exon–exon junction (more than 50 nucleotides), the 
mRNA will be degraded by nonsense-mediated decay 
(NMD) [17]. However, IR isoforms are usually not targets 
for the NMD pathway [18]. Some mRNAs with PTCs can 
instead be translated into truncated proteins, which may 
potentially lack one or more active structural domains 
of the full-length protein [19]. Some transcripts with 
retained introns have been shown to serve specific func-
tions in plants, such as in flowering [20, 21] and stress 

response [19]. In addition, intron-retaining mRNAs can 
become potential targets of miRNAs to be degraded [22].

With the development and application of sequencing 
technologies, a large number of mRNAs that undergo 
alternative splicing have been identified in crops and 
model plants. A number of genome-wide analyses of AS 
using next-generation sequencing (NGS)-based RNA 
sequencing (RNA-seq) have been published for model 
plants and crops such as Arabidopsis [23, 24], soybean 
(Glycine max) [25], maize (Zea mays) [26], rice (Oryza 
sativa) [15], wheat (Triticum aestivum L.) [27], and cot-
ton (Gossypium raiimondi) [16]. Single-molecule real-
time long-read isoform sequencing has also been used 
extensively to predict full-length splice isoforms in sor-
ghum (Sorghum bicolor) [28], maize (Zea mays) [29], and 
cotton (Gossypium davidsonii) [30]. Several methods 
and pipelines have been developed to detect alterna-
tive splicing (AS). These approaches can be categorized 
into two main groups: event-based and isoform-based 
quantification [31]. The event-based method represents 
AS as ratios of a particular event, such as the inclusion 
of an exon or intron. Programs, such as rMATS [32] and 
LeafCutter [33] were designed based on an event-based 
method. In contrast, the isoform-based quantification 
method estimates the abundances of full-length tran-
scripts and calculates the isoform ratios (the count of one 
isoform divided by the total isoform counts for the gene).

When such analyses are extended from a small num-
ber of samples to a population, the variable AS can be 
employed as a molecular phenotype and analyzed in 
association with genetic structure variation to obtain 
splicing quantitative trait loci (sQTLs). sQTL analysis 
can be further integrated with GWAS to identify genetic 
variation loci that are associated with both AS and agro-
nomic traits. Currently, sQTL analyses have only been 
conducted in a few plants, such as Arabidopsis [34], 
maize [35, 36], and rice [37]. Using the above workflow 
in maize identified the trans-regulatory factor ZmGRP1, 
which regulates a trans-cluster that affects downstream 
genes. In rice, OsNUC1 and OsRAD23 were identified as 
candidate genes whose transcripts exhibited significant 
divergence in splicing under salt stress conditions [37].

In this study, transcriptome data from 1-day post 
anthesis (1-DPA) ovules of CUCP1 were used to eluci-
date the frequency of IR events and the stability of the 
transcriptomes of cotton cultivars. Additionally, the 
study aimed to analyze whether IR is a component of 
the genetic basis for the regulation of yield traits in cul-
tivated cotton. Cotton fibers develop from epidermal 
cells on ovules [1], with fiber cell differentiation spanning 
from 3 days before flowering to 1 day after flowering, this 
process determines the number of fiber cells [38, 39] and 
thus constitutes one of the key developmental periods for 
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the formation of yield traits in cotton. eQTL studies have 
shown that genetic structural variants are associated with 
gene expression, which in turn is associated with varia-
tion in traits such as cotton fiber length [2]. Alternative 
splicing and transcription are key steps in gene expres-
sion regulation, and both occur at the mRNA transcrip-
tion stage. However, it is unclear whether the frequency 
of IR in gene transcripts is correlated with variation in 
gene expression in the crop population. Here, IR events 
were identified at the population transcriptome level and 
genome-wide sQTL analysis was conducted to reveal the 
possible regulatory modules involved with AS events in 
this cotton population.

Results
A workflow to identify the candidate AS events related 
to complex traits
Figure 1 illustrates the workflow of the working pipeline 
to mine the AS events related to complex traits. A total 
of 279 Gossypium hirsutum accessions from CUCP1 (34 
wild or local varieties and 245 cultivars) were examined 
in this study (Additional file 2: Table S1) [40]. Transcrip-
tome data from 1-DPA ovules were aligned to the gene 
annotations of the upland cotton, genetic standard line 

Texas Marker-1 (TM-1) [41]. And intron retentions (IRs) 
were quantified using percent spliced in index (PSI), a 
common and intuitive ratio for splicing events, using the 
LeafCutter software [33]. The IR events in population 
were then characterized and subjected for sQTL analysis 
using the EMMAX software [42]. To navigate the poten-
tial functional AS events related to complex traits, the 
GWAS catalog were retrieved from our previous study 
[7] for colocalization analysis.

Genome‑wide identification and characterization of IR 
in a cotton population
PSI was calculated for each intron by dividing the num-
ber of transcript elements presented by the total number 
of reads covering the splicing event, yielding scores rang-
ing from 0 to 1 (A value of 0 indicated that the intron has 
not been spliced at all) [43] (Fig. 2a). A total of 341,491 
IR events and a total of 43,359 genes were expressed in 
the 1-DPA ovule of TM-1. 24,341 (56.14%) of genes were 
identified to harbor IR events (Fig. 2b). Figure 2c showed 
example of IRs and its corresponding PSI scores. The 
per-site PSI range (maximum–minimum) across the 
sequenced population largely concentrated in the interval 
of 0.02–0.99, with a peak at 0.07 (Fig. 2d), indicating that 
most IR events do not vary within the population.

In addition, principal component analysis (PCA) of PSI 
profiles revealed a distinct pattern distinguishing wild 
from cultivar accessions (Fig. 2e), suggesting that the IR 
phenomenon was under selection during the domes-
tication of upland cotton. Overall, 23,946 (55.22%) of 
expressed genes were found to undergo two or more 
IR events (Fig.  2f ). The Pearson correlation coefficients 
(PCCs) of the PSI between the two biological replicates 
(mean r = 0.95) were significantly higher than those of 
different accessions. (mean r = 0.93, p-value < 2.2 × 10–16, 
Mann–Whitney test, Fig. 2g), a result for which both wild 
and cultivated subgroups were in high agreement (Addi-
tional file 1: Figs. S1 and S2); this indicates that the sites 
at which intron retention-associated splicing occurs are 
specific towards each accession in this population.

Genome‑wide association study of IR‑based PSI in cotton 
ovule
To improve the computation efficiency for population-
wide genome scans, the identified IRs were filtered 
according to the following criteria: (i) high expression 
(FPKM ≥ 1 at the gene level for 95% of germplasms in the 
population); (ii) high variation in PSI (for each IR event, 
coefficient of variation of PSI > 0.1 and standard devia-
tion > 0.1 in the population); (iii) intron lengths < 5000 bp. 
At the end, a total 29,492 IR events were retained for 
genome-wide association analysis (GWAS) (Additional 
file 1: Fig. S3).

Gene annotation
TM-1 V2.1

Transcriptome
G.hirsutum cultivar

N = 279

Characterization of intron retention (IR) in population

sQTL

GWAS-sQTL colocalized pair

Genotype

Characterization of sQTL

Two candidate genes：
GhLRRK1 (GH_A06G0890), GhGC1 (GH_D03G1277)

Mapping

Quantifying percentage spliced introns (PSI)

Leafcutter

EMMAX

Cotton GWAS 
catalogs

STAR

PSI scores

sQTL

Fig. 1  The schematic chart for the pipeline of the study. The data 
and software used in this study were in solid-line box and dashed 
box, respectively
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GWAS of these 29,492 IR sites with 1,186,673 bial-
lelic SNPs (MAF > 0.05, missing rate < 20%) was con-
ducted with Efficient Mixed Model Analysis Expedited 

(EMMAX), applying a cutoff of p-value < 2.18 × 10–6 for 
genome-wide significance. In total, 2295 sQTLs (Addi-
tional file 3: Table S2) were obtained, regulating 2199 IR 
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events in 1607 genes (Fig. 3a, Additional file 1: Fig. S4). 
The sQTL-featured SNPs associated with IR events were 
termed sSNPs. These sQTLs were categorized according 
to the distance between sQTL and sSNP: those with a 
separation of less than 1 Mb were defined as cis-sQTLs, 
and all others as trans-sQTLs. Of the 2295 sQTLs found, 
427 were cis-sQTLs and 1868 were trans-sQTLs (Fig. 3b). 
The cis-sQTLs were collectively associated with 1607 

genes (Fig.  3c). As mentioned above, most multi-exon 
genes subject to IR have more than one IR event (Fig. 2f ); 
additionally, an average of three sQTLs was mapped for 
each gene (Fig. 3d). For cis-sQTLs, the associated sSNPs 
were predominantly distributed in adjacent genes and 
enriched for proximity to transcription start or termi-
nation sites (TSS or TTS) (Fig.  3e). The significance of 
each cis-sQTLs was greater than that of trans-sQTLs. 
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(p-value = 7.75 × 10–7, Wilcoxon test) (Fig.  3f ). Trans-
sQTL effect power tended to be smaller, thus we focused 
on cis-sQTLs for further analysis.

The relationship between IR and gene expression in cotton 
population
eQTL analysis using the same transcriptome data has 
been completed by Zhao et al., in which a total of 12,207 
eQTLs were identified [40]. To investigate whether there 
is a co-regulatory relationship between population-wide 
IR and gene transcription, PCC was calculated for PSI 
values and the expression of the corresponding gene 
within the population. The correlation between PSI 
scores and the expression of randomly selected genes was 
used as a control. This analysis revealed that PSI of a gene 
was not typically correlated with its expression, with only 
3.6% of PSI-gene pairs exhibiting substantial correlation 
(PCC > 0.6) (Fig. 4a and Additional file 1: Fig. S5).

The genes found here to be associated by a cis-sQTL 
or cis-eQTL can be categorized into three types accord-
ing to the effects of sQTL and eQTL on the same gene, 
cis-sQTL only, cis-eQTL only and under both cis-sQTL/
eQTL. To determine whether sQTLs and eQTLs are 
cis-regulated by the same genetic loci, co-localization 
of the two QTL types was examined. A cis-sQTL and a 
cis-eQTL in the same gene were defined to co-localized, 
if their corresponding regulatory SNPs were within 
100 Kb of each other, and they were in linkage disequi-
librium (LD, r2 > 0.1). There were 194, 575, and 53 genes 
detected for the above three types, respectively (Fig. 4b). 
Of the 247 cis-sQTL-regulated genes, merely 53 (21.4%) 
cis-sGene were found to co-localize with significant cis-
eQTLs (Fig.  4b), suggesting that the majority of mRNA 
alternative splicing are independent to eQTLs. Simi-
lar trend was observed in maize [35] and rice [37]. This 
implies that AS of mRNA may provide a novel avenue for 
further study of SNP-phenotype associations and investi-
gation of phenotypic genetic mechanisms.

For example, GhVTE5 (GH_A05G2930), a gene asso-
ciated with vitamin E synthesis, is a significant cis-
sQTL detected in the fourth intron (A05:35114070:351
14325:clu_28489, p-value = 1.01 × 10–8). The associated 
SNP (A05:35150218) has two haplotypes, GG and AA. 
PSI values were significantly higher for the GG haplo-
type than the AA haplotype (p-value = 7.2 × 10–9, Stu-
dent’s t-test), however no significant transcriptional 
variation was detected on this gene (Fig.  4c). GhSQN 
(GH_A02G1850), encoding cyclophilin 40, achieved 
significance (p-value = 2.96 × 10–11) for genetic asso-
ciation with gene expression but is not regulated by 
any identified sQTL (Fig.  4d). The gene encoding fruc-
tose-1,6-bisphosphatase, GhFBP (GH_A04G1526), 
which is associated with a cis-sQTL (A04:85441592:

85442088:clu_32861, p-value = 4.85 × 10–7) and a cis-
eQTL (p-value = 5.69 × 10–11). The AA haplotype of 
the linked eSNP was associated with higher expres-
sion (p-value = 6.9 × 10–12, Student’s t-test (Fig.  4e), 
and it was in linkage disequilibrium with the sSNP 
(p-value = 5.69 × 10–11).

Association analysis of IR events as markers for agronomic 
traits
To investigate the role of sQTLs in determining agro-
nomic traits in cotton, we further co-localized the sQTL 
with GWAS loci [7]. The 187 independent GWAS loci 
from Fang et al.’s study were represented as pSNPs, which 
are phenotypic SNPs associated with agronomic traits 
[7]. This analysis yielded 32 functional cis-sQTL loci, 
of which 30 were associated with yield traits and 2 with 
fiber quality traits (Additional file 4: Table S3).

One locus on chromosome A06 featured by a lead 
pSNP (A06:23741067, Fig.  5a) is significantly associ-
ated with LP (p-value = 1.24 × 10–6). The GWAS signal 
for this locus colocalizes with a cis-sQTL (A06:237103
48:23710428:clu_38722, p-value = 1.35 × 10−6) featured 
by a sSNP (A06:23513733) (Fig.  5a). The cis-sQTL is 
located in the sixth intron of GhLRRK1 (GH_A060890), 
a gene encoding a leucine-rich repeat protein. Analy-
sis of pairwise LD and r2 showed the corresponding 
pSNP and sSNP to be in high LD; moreover, the entire 
gene fell in a single LD block (Fig. 5b). Next, the mRNA 
splice junction was visualized in Integrative Genom-
ics Viewer (IGV). As illustrated in Fig. 5c, this revealed 
differences in intron retention at this locus among dif-
ferent accessions. The two haplotypes were each associ-
ated with distinct rates of IR. This is consistent with PSI 
determinations, accessions with intron retention (GG 
haplotype) to have significantly lower PSI scores than 
those with no retention (AA haplotype) (p < 4.4 × 10–7, 
Student’s t-test, Fig.  5d). Protein sequence transla-
tion prediction was then carried out for both alleles, 
which determined that retention of the sixth intron 
(A06:23710348:2310428:clu38722) introduced a PTC 
and caused a 125-amino-acid deletion in the protein. 
In addition, the LP of the homozygous genotypes were 
analyzed, which reveal accessions with intron reten-
tion (GG haplotype exhibited significantly increased 
LP (~ 26% greater, p-value < 1.5 × 10−11, Student’s t-test; 
Fig. 5e). This suggests that retention of the sixth intron 
of GhLRRK1 is positively correlated with cotton yield. 
Notably, accessions with AA haplotype at this locus are 
dominant in all wild-type cottons while those with GG 
haplotype (freq_(GG) = 0.79) are the majority in the 
cultivated accessions. In addition, this gene is near to 
a putatively selected region of upland cotton chromo-
some A06 identified by Yuan [44], so it is feasible that 
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this difference in intron retention may be related to cot-
ton domestication. RNA-seq data from different stages 
of fiber development showed GhLRRK1 to be highly 
expressed in ovules and fibers (Fig.  5f ), and RT-PCR 
analysis of 1-DPA ovules representing the two hap-
lotypes (AA and GG) confirmed the retention of this 
intron in accessions with GG haplotype (Additional 
file 1: Fig. S6). Therefore, GhLRRK1 is presumed to be a 
novel gene that controls fiber development by its alter-
native splicing.

As another example, a significant pSNP 
(D03:43283363) associated with the LP GWAS locus 
on chromosome D03 (p-value = 1.24 × 10–6) was co-
localized with a cis-sQTL locus (D03:43241915:43
241985:clu_81849, p-value = 7.75 × 10–7) (Fig.  6a). 
Analysis of pairwise LD and r2 showed that the sSNP 
(D03:43244243), pSNP (D03:43283363), and gene 
GhGC1 (GH_D031277) were all in an LD block 
(Fig.  6b). Visualization of read data with IGV showed 
that the transcriptional structure at this position 
varied across the population (Fig.  6c), with the first 
intron of GhGC1 being differentially retained: gener-
ally included with the TT haplotype and spliced out 
with the CC haplotype (Fig.  6d); this is consistent 
with PSI determinations, with the TT genotype corre-
sponding to significantly lower PSI score than the CC 
haplotype (p-value < 0.4 × 10–3, Student’s t-test). Pre-
diction of the protein sequence of the two transcript 
isoforms revealed retention of intron one (D03:432419
15:43241985:clu_81849) to produce a frameshift muta-
tion and a PTC (Fig.  6c). Notably, accessions with no 
intron retention (CC haplotype) exhibited 4% greater 
in LP compared to those with retention (TT haplotype) 
(p-value < 5.3 × 10–8, Student’s t-test; Fig.  6e), suggest-
ing a positive correlation between splicing of this intron 
and modest cotton yield enhancement. RNA-seq data 
from different stages of fiber development showed high 
expression of GhGC1 in ovules (Fig.  6f ), and RT-PCR 
confirmed differences in retention of the first intron 

between the two haplotypes (Additional file 1: Fig. S7). 
Thus, GhGC1 is speculated to be a candidate gene regu-
lating fiber lint.

Collectively, these findings suggest that IR is stable and 
genetically variable in cotton cultivar populations. Inte-
grative analysis of sQTL and GWAS results revealed a 
significant association of IR variation with cotton fiber 
traits, and further validate such genes as candidates for 
causing phenotypic variation. Because these trait-associ-
ated sQTLs were obtained from analysis of genetic struc-
ture variation in natural populations, they constitute a 
considerable genetic resource for uncovering candidate 
genes for breeding applications.

Identification of sQTLs harbored in transcription factors
Several studies have shown that the occurrence of IR 
in genes encoding transcription factors may result in 
the loss of protein activity due to the deletion of key 
functional domains [45, 46], and that IR can act as an 
important mechanism for regulating DNA binding and 
transcriptional activity [47]. To explore the possibility of 
IR effects on transcription factor function, a predictive 
analysis was performed on the 5409 transcription factor 
genes annotated in TM-1 [41]. A total of 13 genes encod-
ing transcription factors from nine families (HB, NAC, 
ARF, bZIP, C3H, C2H2, NF-YB, M-type, and C2C2-
GATA) were found to be represented by the cis-sQTL 
genes (Fig. 7a and b, Additional file 5: Table S4).

As one example, there is a significant cis-sQTL (A06:
10484673:10484791:clu_39823) in the auxin response 
factor (ARF) gene GhARF3 (GH_A06G1554), which 
encodes three conserved structural domains: a plant-spe-
cific B3 DNA-binding domain at the N-terminal end, an 
Auxin_resp (ARP) domain and an unnamed conserved 
domain at the C-terminal end. Visualization in IGV 
confirmed a difference in retention of the gene’s third 
intron between the two sSNP alleles (Fig.  7c). In plants 
with the AA haplotype, this intron region is almost uni-
formly retained, whereas in those with the GG haplotype, 

(See figure on next page.)
Fig. 6  The IR event in GhGC1 (GH_D03G1277) and its association with cotton lint percentage (LP). a Manhattan plots for LP based on GWAS [51] 
and sQTL mapping (bottom). Each dot represents a single SNP. The GWAS plot shows a signal on chromosome D03 that is associated with lint 
percentage, and the cis-sQTL plot shows a signal in GhGC1 (D03:43241915:43241985:clu_81849). b Local Manhattan plot [51] and LD heat map 
(bottom) for the sSNP (D03:43244243). The arrowhead indicates the SNP in the candidate gene. The horizontal dashed line indicates the significance 
threshold (p-value < 1 × 10−5). Red box shows the sSNP locus, the orange box shows the pSNP locus, the blue box shows the GhGC1. c Visualization 
of GhGC1 transcript structure and genotype-specific splicing (TT, TC, and CC). The IGV screenshot [51] shows the total read numbers for each 
junction among individuals of different haplotypes. The structural schematic (bottom) shows the impact of IR on the GhGC1 protein. Retention 
of the 1st intron alters the predicted protein sequence and produces a premature stop codon (PTC). The red dotted box shows the IR locus. d 
Boxplot showing the difference of PSI explained by the haplotype (TT, TC, and CC) of sSNP D03:43244243. Boxes in box plots span from the first 
to third quartiles, and center lines indicate the second quartile (median). p-values were calculated by two-sided Student’s t-test. e Boxplot showing 
the difference in lint percentage (%) explained by the haplotype (TT, TC, and CC) of sSNP D03:43244243. Boxes in box plots span from the first 
to third quartiles, and center lines indicate the second quartile (median). p-values were calculated by two-sided Student’s t-test. f Transcriptomic 
level of GhGC1 in different tissues, including R (root), S (stem), and L (leaf ), during ovule and fiber development, based on the FPKM values 
from a single experiment
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it is spliced. This observed difference was consistent 
with the calculated PSI scores, and achieved significance 
(p-value < 2.22 × 10–16, Student’s t-test). Retention of the 
third intron (GG haplotype) results in loss of the ARP 
domain (Fig.  7c), and overall gene expression is signifi-
cantly increased (GG, mean = 1.25; AA, mean = − 0.16) 

(p-value < 1.7 × 10–7, Student’s t-test; Fig.  7d). RNA-seq 
showed GhARF3 to be highly expressed in ovules (Addi-
tional file  1: Fig. S8). Two accessions, one representing 
each haplotype, were selected for RT-PCR validation and 
confirmed presence of the splicing variant in the third 
intron of GhARF3 (Additional file 1: Fig. S9). In summary, 
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a naturally occurring alternative splicing variant (IR) of 
a transcription factor could impact protein function via 
producing an early termination codons or disrupting 
structural domains.

IR‑induced regulation potentials by miRNA targeting
Increasing evidence supports that miRNAs play a very 
important role in the regulation of gene expression [48]. 
To assess whether the identified intron retention sites 
might be targets for miRNA, miRNA target prediction 
was performed for all retained intron sequences using 
the psRNATarget website and 80 published miRNAs in 
the upland cotton database [49]. The results showed that 
29,005 of the 341,492 IRs (8.5%) have potential miRNA 
target sites, as did 30.4% (n = 108) of the identified cis-
sQTLs (Fig. 8a, Additional file 7: Table S6).

To validate the potential miRNA target sites in IRs, the 
degradome data from the fiber of upland cotton cultivar 

R15 were adapted [50]. The 29,005 IR sequences with 
potential miRNA target site were mapped to degradome 
library and revealed 11,759 cleavage sites (Additional 
file 1: Fig. S10). Among of which, 131 cis-sQTL were vali-
dated with cleaved fragments in the degradome library 
(Additional file 1: Fig. S10). This result confirmed the IR 
and cis-sQTL have an effective potential to be regulated 
by the predicted miRNA targeting.

As an example, a significant cis-sQTL 
(A05:4805506:4806040:clu_24377, p-value = 8.31 × 10–15) 
was detected for the Dicer-like protein GhDCL4 
(GH_A05G0514) gene, which is regulated by an sSNP 
(A13:105444599). Retention of the 21st intron of 
GhDCL4 was found to provide a target sequence for 
miRNA479. Visualization of the site in IGV is con-
sistent with PSI calculations (Fig.  8b and c), as TT 
show retention of this intron and CC haplotype largely 
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splice it out. The PSI scores of TT haplotype were sig-
nificantly lower than those of accessions with CC hap-
lotype (p-value < 2.22 × 10–16, Student’s t-test), and 
the TT haplotype was found to significantly associ-
ated with the lower transcriptional activity of the gene 
(p-value < 9.4 × 10–5, Student’s t-test, Fig.  8c). RNA-seq 
showed GhDCL4 to be highly expressed in ovules (Addi-
tional file  1: Fig. S11) and RT-PCR confirmed that the 
21st intron was alternatively spliced in accordance with 
haplotypes (Additional file  1: Fig. S12). Importantly, 
Dicer-like proteins are a class of exonuclease enzymes 
whose function is to cleave double-stranded RNA into 
small RNAs of 21 or 24  nt, including miRNAs. These 
proteins play important roles in RNA silencing mecha-
nisms, and serve to control gene transcription regulation 
and antiviral protection in plants. Taken together, these 
findings support that intron retention might be preva-
lently coupled with miRNA regulation.

Discussion
Improving fiber yield is one of the main objectives of cot-
ton breeding, and the flow of GWAS can identify candi-
date trait loci associated with cotton yield [7]. However, 
moving from association to the identification of specific 
causal genes and their biological mechanisms remains 
a major challenge. In plants, IR has been shown to be 
the predominant and conserved AS type, playing an 
important role in plant growth, development, and stress 
response. Current software tools applied to NGS data to 
identify AS events include MISO [51], rMATS [32], and 
Leafcutter [33]; such analysis is followed by experimen-
tal verification such as with RT-PCR. However, despite 
the potential for providing insight into the mechanisms 
of genetic regulation of phenotypic traits, few studies 
have applied population transcriptome analysis to dissect 
the relationship between AS of mRNAs and agronomic 
traits in crops. Although splicing variation and complex 
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transcript variations have been identified in individ-
ual plants, transcript isoform variation remains poorly 
understood in natural populations. In this study, we iden-
tified IR events in 1-DPA ovules using transcriptome data 
from a population of 279 upland cotton accessions, and 
conducted a genome-wide analysis of the distribution 
and potential function of IR. A total of 341,491 IR events 
were identified in this study using a population transcrip-
tome. As this study employed a population transcrip-
tome, the number of IR events identified was much larger 
than those studies mining AS events in a single individual 
plant. The subsequent genome-wide association analysis 
of IR event frequency with genetic structural variation in 
the population identified 2295 sQTLs.

Recent studies have found that genetic variants play 
roles in regulating gene expression in a population, and 
a proportion of eQTLs are associated with agronomic 
traits [8]. Here, we further analyzed the correlations 
between eQTLs and sQTLs. Our findings suggest that 
the probability of simultaneous effects of genetic struc-
ture variation on transcriptional activity and alternative 
splicing of a given gene is low, which in turn implies that 
elucidation of cis-sQTLs could be an effective means of 
uncovering genetic variation that influences agronomic 
traits.

LP in cotton is a complex quantitative trait associated 
with seed size and lint yield, and is known to be regulated 
by a variety of genes [4]. In this study, our integrated 
sQTL and GWAS revealed two causal genes that influ-
ence LP, GhLRRK1 and GhGC1, both of which are regu-
lated by cis-sQTLs and show significant differences in 
LP between their respective splicing variants. LRR-RLK 
family members are important in regulating plant growth 
and development and stress response, and prior studies 
of the family member SERK suggest it to have a regula-
tory role in ovule development in both Arabidopsis [52] 
and maize [53]. Here, we found that intron retention 
events in the cotton population to alter the structure of 
LRRK1, with the IR positively associated with LP. In addi-
tion, the wild cotton does not undergo intron retention, 
while the cultivated accessions exhibited intron retention 
and higher LP, suggesting that cotton domestication may 
have selected for this intron retention locus. Meanwhile, 
another candidate gene, GhGC1 is predicted to encode 
the Golgi structural component golgin, for which no spe-
cific function has yet been reported in plants. This gene 
is also associated with LP, with accessions that retain the 
first intron (TT haplotype) having low LP, whereas in the 
natural population, 58.82% (n = 120) of the varieties were 
low-LP materials with intron retention (TT haplotype). 
This finding suggests that new high-LP cotton varieties 
could be cultivated by genetic engineering on this locus.

Another significant cis-sQTL (A06:10484673:10484791
:clu_39823) was identified in GhARF3. ARF family tran-
scription factors regulate the growth hormone response 
[54], and ARF2b is reported to promote cotton fiber 
initiation [55]. Han et  al. [56] found that GhARF3 (Gh_
A10G0304) is associated with cotton fiber length and 
strength, and may be a key gene for cotton fiber devel-
opment. The GhARF3 locus (GH_D06G1524) identified 
in this study is orthologous to Gh_A10G0304, according 
to phylogenetic tree analysis (Additional file 1: Fig. S13), 
and may also be involved in cotton fiber development.

Collectively, the results from this study support that 
intron retention have important impact on cotton fiber 
yield traits. Moreover, it is possible to identify high-yield-
ing cotton through analysis of intron retention and the 
genetic variation that regulates it, which will be of impor-
tance in breeding new high-yielding varieties.

However, there are several limitations to this study. 
First, the study only used bulk RNA data from 1-DPA 
ovules of this natural population; future single-cell 
sequencing and development of spatiotemporal tran-
scriptomes could yield RNA transcript datasets with 
higher spatial and temporal resolutions that more accu-
rately capture key fiber development genes. Second, 
although the effects of other confounding factors on 
AS events were fully considered and tightly controlled 
for, the sample size in this sQTL analysis was limited 
(n = 279) and only one type of AS was considered, which 
might not be sufficient for the confident identification of 
all sQTLs in the population. In future studies, larger sam-
ple cohorts with multiple developmental stages repre-
sented will be favorable for mining genetic variations that 
impact gene transcription regulation. Third, although 
linkages between sQTL-regulated genes and cotton yield 
traits were identified in this study, differential intron 
retention was only confirmed by RT-PCR; the effect of 
differential intron retention on gene function and cotton 
yield traits as well as the biological process involved all 
remain to be confirmed in more detail.

In conclusion, as the first population-level sQTL analy-
sis in upland cotton, this study provided a fundamental 
resource for exploring AS based on intron retention, 
resolved the potential functions of sQTLs, proposed for 
the first time a potential mechanism by which sQTLs can 
explain phenotypic traits in cotton, and identified two 
candidate genes associated with LP for subsequent stud-
ies on cotton trait formation. Subsequent studies investi-
gating the mechanisms of cotton trait formation will aid 
our understanding of the role of alternative splicing and 
genetic variation in this process and identify candidate 
loci for use in cotton breeding.
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Conclusion
A pipeline for identify the IR events, the predominant 
type of AS in plants, were was established at the popula-
tion transcriptome level. And genome-wide sQTL analy-
sis was conducted according to the PSI on IRs. This study 
provides population-level genetic clues that AS of mRNA 
has impacts on crop yield, along with functional sQTLs 
as new genetic resources for cotton precision breeding.

Materials and methods
Plant materials and sampling
In total, 279 accessions of CUCP1, upland cotton popula-
tion were collected from the Institute of Cotton Research 
at CAAS, including 34 wild/landrace Gossypium hir-
sutum accessions and 245 core germplasm samples 
(Additional file  2: Table  S1). The 245 core germplasm 
accessions and 32 of the wild accessions had whole-
genome sequencing were previously genotyped by our 
lab [7]. RNA-seq was previously performed on ovule tis-
sue at 1  day post anthesis (DPA) for all 279 accessions 
[40], which transcriptome data was used for IR analysis 
in this study. Detailed information on the transcriptome 
sequencing can be found in the previous study. In brief, 
16–18 plants were grown for each accession, and the col-
lected 1-DPA ovules were bulked for total RNA extrac-
tion and sequencing in two replications.

The 279 accessions were grown and phenotyped 
(seed index [SI], boll weight [BW], boll number [BN], 
lint percentage [LP], fiber elongation [FE], fiber micro-
naire [FM], fiber length [FL], and fiber strength [FS]) for 
3 years (2007, 2008, and 2009) in three environments: the 
city of Anyang (AY) in the Yellow River cotton-growing 
area, the city of Nanjing [57] in the Yangtze River cotton-
growing area, and Kuero in the Northwestern cotton-
growing area [7].

SNP identification and annotation
Quality control and filtering of the short sequencing 
reads was carried out using fastp (V 0.12.2) with default 
parameters [58]. The remaining clean data were mapped 
to the allotetraploid cotton TM-1 (V 2.1) genome [41] 
with the STAR software [59]. The mapping results were 
converted to BAM files and sorted using SAMtools (V 
1.16) [60]. Duplicated reads were filtered using Picard 
(http://​picard.​sourc​eforge.​net), and only reads with a 
unique mapping were used for SNP calling using the 
Genome Analysis Toolkit (GATK) (v3.7) [61]. Only those 
SNPs that were supported by GATK were retained. For 
GWAS and sQTL analyses, SNPs with a minor allele fre-
quency of less than 5% were filtered using VCFtools (V 
0.1.13) [62]. Missing genotype data were imputed using 

Beagle [63]. The ANNOVAR software was used to anno-
tate the remaining SNPs [64]. Ultimately, 1,186,673 auto-
somal SNPs were identified.

Identification of IR
RNA-seq reads were mapped using STAR (V 2.5.2) to 
TM-1 (V 2.1) genome annotations [41]. To quantify 
expression of intron-retaining transcripts, we used Leaf-
Cutter [33], which does not use annotation for splice 
junction quantification, potentially allowing for the dis-
covery of uncharacterized junctions along with anno-
tated splice sites. Splice junction counts were required 
to have five reads in at least 25% of samples; this filtering 
yielded a set of 341,491 IR events.

sQTL mapping
An integrative sQTL analysis was conducted for variant 
genotypes and IR events by using EMMAX with a mixed 
linear model and default parameter [42]. In total, 29,492 
high quality IR events were selected for further popula-
tion, the flowchart for which is illustrated in Additional 
file  1: Fig. S3: high expression of gene (FPKM ≥ 1); high 
variation in PSI (for each IR event, coefficient of varia-
tion of PSI > 0.1 and standard deviation > 0.1 in the popu-
lation); and intron length < 5000  bp. The PSI of each IR 
event was normalized using QQ-normal in R [65]. To 
control potential confounding factors, population struc-
ture and a kinship matrix were incorporated. Population 
structure (PCs) was calculated using GCTA (V 1.92.1) 
[66], and the first two PCs were included as covariates in 
the association analysis. Kinship matrices were obtained 
using the emmax-kin function of EMMAX with param-
eters (-v -d 10) [42]. Pairwise linkage disequilibrium 
(LD) and r2 values were evaluated by plink (V 1.90) with 
parameters (-r2 -l -window 99999) [67]. A unique sQTL 
was defined when the associated SNP was not in LD 
(r2 < 0.1) with any other SNPs on the same chromosome 
that were also associated with the target gene. Finally, the 
threshold of genome-wide significance was taken as the 
Bonferroni-corrected p-value < 2.18 × 10–6 suggested by 
GEC [68], under which a total of 2295 sQTLs were con-
sidered statistically significant.

Gene Ontology analysis
Gene Ontology (GO) term enrichment analysis of genes 
associated with cis-sQTLs was performed using the R 
package ClusterProfiler [69]. All genes in the cotton 
genome were used as background. The GO annotation 
for cotton was obtained from TM-1 v2.1 [41]. Terms were 
considered significantly enriched at a corrected (after 
false discovery rate adjustment) p-value < 0.05.

http://picard.sourceforge.net
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Functional effect of cis‑sQTLs in transcription factors
The DNA sequences of candidate genes were extracted 
from the reference genome TM-1 v2.1, and the corre-
sponding protein sequence was predicted through the 
NCBI website (https://​www.​ncbi.​nlm.​nih.​gov/​Struc​ture/​
cdd/​wrpsb.​cgi) to identify conserved structural domains 
[70]. The position of the IR loci was used to determine 
whether the site had an effect on any structural domain 
of the transcription factor.

miRNA target prediction
To determine whether IR is conducive to miRNA-medi-
ated regulation, the sequences of identified retained 
introns were extracted from the reference genome (TM-
1. v2). Firstly, sequences were queried via BLASTn against 
the G. hirsutum miRNAs in miRbase [71] to identify con-
served miRNAs; no mismatches were allowed. Targets 
of miRNAs transcribed from retained intron were then 
predicted by the web tool psRNA-Target (http://​plant​grn.​
noble.​org/​psRNA​Target/) using default parameters [49]. 
To reduce false positives when predicting targets, only 80 
miRNAs that were annotated as high-confidence mature 
miRNAs were used for prediction. Sequences having no 
mismatches of longer than 3 nt with the query sequence.

RT‑qPCR analysis
We used reverse transcription PCR (RT-PCR) to validate 
the presence of selected previously uncharacterized IR 
events among CUCP1. RNA was isolated from 1-DPA 
ovule tissue samples of six individuals with two of each 
genotype for each SNP. First-strand cDNA was reverse 
transcribed according to the manufacturer’s instruc-
tions (Vazyme) and amplified with primers located in 
these candidate genes. The primers used are listed in 
Additional file  6: Table  S5. PCR products were electro-
phoresed on a 2% agarose gel.
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