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Abstract 

Background Vegetation spectral reflectance obtained with hyperspectral imaging (HSI) offer non-invasive means 
for the non-destructive study of their physiological status. The light intensity at visible and near-infrared wavelengths 
(VNIR, 0.4–1.0µm) captured by the sensor are composed of mixtures of spectral components that include the vegeta-
tion reflectance, atmospheric attenuation, top-of-atmosphere solar irradiance, and sensor artifacts. Common meth-
ods for the extraction of spectral reflectance from the at-sensor spectral radiance offer a trade-off between explicit 
knowledge of atmospheric conditions and concentrations, computational efficiency, and prediction accuracy, and are 
generally geared towards nadir pointing platforms. Therefore, a method is needed for the accurate extraction of veg-
etation reflectance from spectral radiance captured by ground-based remote sensors with a side-facing orientation 
towards the target, and a lack of knowledge of the atmospheric parameters.

Results We propose a framework for obtaining the vegetation spectral reflectance from at-sensor spectral radi-
ance, which relies on a time-dependent Encoder-Decoder Convolutional Neural Network trained and tested using 
simulated spectra generated from radiative transfer modeling. Simulated at-sensor spectral radiance are produced 
from combining 1440 unique simulated solar angles and atmospheric absorption profiles, and 1000 different 
spectral reflectance curves of vegetation with various health indicator values, together with sensor artifacts. Creat-
ing an ensemble of 10 models, each trained and tested on a separate 10% of the dataset, results in the prediction 
of the vegetation spectral reflectance with a testing  r2 of 98.1% (±0.4). This method produces consistently high 
performance with accuracies >90% for spectra with resolutions as low as 40 channels in VNIR each with 40 nm full 
width at half maximum (FWHM) and greater, and remains viable with accuracies >80% down to a resolution of 10 
channels with 60 nm FWHM. When applied to real sensor obtained spectral radiance data, the predicted spectral 
reflectance curves showed general agreement and consistency with those corrected by the Compound Ratio 
method.

Conclusions We propose a method that allows for the accurate estimation of the vegetation spectral reflectance 
from ground-based HSI platforms with sufficient spectral resolution. It is capable of extracting the vegetation spectral 
reflectance at high accuracy in the absence of knowledge of the exact atmospheric compositions and conditions 
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at time of capture, and the lack of available sensor-measured spectral radiance and their true ground-truth spectral 
reflectance profiles.

Background
Hyperspectral imaging (HSI) provides a powerful non-
invasive diagnostic tool for the near real-time study of 
the physiological status of vegetation. Plant biophysi-
cal characteristics, such as leaf and tissue structure, and 
biochemical features, such as pigments and water con-
tent, drive the interactions between incoming light (irra-
diation) and the leaves. Therefore, light reflected off of 
leaves carries information about the physiological and 
morphological properties of the target vegetation with 
which irradiation interacted [1]. Diseases and stress pro-
duce physiological changes in the plants’ metabolism, 
and can vary significantly in impact with the type of 
plant and cause of stress, including type of pathogen [2]. 
These changes to the vegetation’s characteristics include 
alterations to the biophysical and biochemical features 
that interact with light. Thus, capturing the vegetation 
spectral reflectance, particularly in the visible and near-
infrared (VNIR, 0.4–1.0µm) wavelength range, provides 
information about the plant’s condition. Studies over the 
past two decades have utilized hyperspectral imaging to 
capture detailed information about the spectral charac-
teristics of plants, and use them for a variety of investiga-
tions including the early detection of disease symptoms 
and pest infestations [3–5], and monitoring stress condi-
tions and nutrient deficiency [6–8].

The attainment of vegetation spectral reflectance 
for the performance of such investigations is generally 
done using hyperspectral imaging sensors either prox-
imally, such as by using flux towers [9, 10], or remotely 
using satellite [11, 12], aircraft [13, 14], uncrewed aer-
ial vehicle (UAV) [15, 16], or ground-based platforms 
[17–19]. Regardless of platform, remotely obtained 
spectral radiances are heavily impacted by atmos-
pheric effects, such as absorption and scattering from 
the presence of various gases and aerosols, and highly 
dependent on atmospheric conditions such as tem-
perature, humidity, and solar angle. Additionally, the 
incoming solar spectral irradiance inherently con-
tains wavelength dependent intensities, which interact 
with the atmosphere en route to the target vegetation, 
resulting in further modifications to the down-welling 
spectral irradiance prior to encountering the plant. 
Following the interaction between the down-welling 
irradiance and the vegetation, the reflectance of the 
vegetation impart additional changes to the spectrum. 
Prior to reaching the sensor, the light is also impacted 
by the atmosphere in the line of sight between the 

sensor and the target vegetation, where the impact 
magnitude can vary significantly depending on the 
platform and its distance to the target. Therefore, 
while the sensor-obtained spectral radiance contains 
information regarding the target vegetation, its heavy 
mixing with atmospheric and solar effects significantly 
impacts the quality of the extracted information, and 
its applicability to vegetation health inference in the 
presence of highly covariant variables such as atmos-
pheric conditions and compositions [20, 21].

The spectral radiance reaching the sensor ( L� ) at 
wavelength � can be expressed mathematically using 
the radiative transfer equation:

where Es� is the extraterrestrial solar irradiance, σ is the 
incident angle of the solar irradiance, Ts� is the atmos-
pheric transmission on the sun-target path, while T� is 
the atmospheric transmission on the target-sensor path, 
R� is the spectral reflectance of the target object, ε is the 
spectral emittance of the target object, Lτ� is the spec-
tral radiance of a blackbody with temperature τ , F is the 
shape factor denoting the fraction of the hemisphere 
that is obscured by background objects, Lds� is the solar 
down-welling spectral radiance, Ldǫ� is the atmospheric 
down-welling spectral radiance, Lbs� is the solar reflected 
background radiance, Lbǫ� is the spectral radiance from 
the background due to self-emission, Lus� is the up-well-
ing solar radiance, and Luǫ� is the up-welling radiance 
due to self-emission. By assuming the object is located in 
an open area ( F = 1 ), and since Lτ� contributes less than 
0.1% of the magnitude of the spectral radiance and can 
be considered negligible, the effective radiance at the sen-
sor can be approximated and simplified in the VNIR, as 
shown in [22], to become:

where E� = [Es�
cos σ
π

Ts� + Lds� + Ldǫ�] describes the 
total down-welling radiance incident on the target.

 To study the properties of vegetation using hyper-
spectral remote sensing, the at-sensor spectral 
radiance ( L� ) must be corrected to remove the atmos-
pheric and solar effects ( E� , T� , and Lus� ) and extract 
the reflectance spectrum ( R� ). Algorithmic methods 

(1)

L�= {Es� cos σ
R�

π
Ts� + ε(�)Lτ� + [F(Lds� + Ldǫ�)

+(1− F)(Lbs� + Lbǫ�)] · R�} · T� + Lus� + Luǫ�

(2)L� = E� · T� · R� + Lus�
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used for the solar and atmospheric correction of HSI 
data can be grouped into two broad categories: scene-
based empirical approaches, and radiative transfer 
approaches [23]. Scene-based empirical approaches, 
such as the Quick Atmospheric Correction (QUAC) 
[24], flat-field (FF) correction [25], and the Com-
pound Ratio approach [21], rely on parameters being 
derived through prior knowledge or assumptions 
about in-scene elements. Such methods can be com-
putationally efficient and accurate, but carry large 
uncertainties in the corrected spectral reflectance if 
insufficient information is obtained from the image, 
or when assumptions are idyllic [26]. On the other 
hand, radiative transfer approaches, such as the 
ATmospheric REMoval program (ATREM) [27], the 
Atmospheric CORection Now (ACORN) program 
[28], and Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercube (FLAASH) [29], rely on modeling 
the known physical mechanisms of interactions with 
radiation from first-principles in order to separate the 
atmospheric and solar effects from the target’s spec-
tral reflectance. By modeling the propagation of light 
through an atmosphere of known parameters, these 
deterministic mechanisms can be highly accurate and 
precise. However, modeling radiative transfer from 
first-principles tends to be computationally expen-
sive, and requires either the explicit knowledge of the 
atmospheric parameters, or assumptions and standard 
atmospheres that can create inaccuracies [30]. Alter-
natively, methods such as the inverse modeling of the 
captured spectral radiance allows for the constraining 
of the range of values that the atmospheric parameters 
can possess while exploiting the benefits of radiative 
transfer codes [31]. However, due to the significant 
covariance in the spectral impacts of solar and atmos-
pheric parameters, methods that rely on high sam-
pling of parameter space generally trade-off accuracy 
for computational efficiency.

To provide a mechanism for the accurate extrac-
tion of spectral reflectance in hyperspectral images 
without knowledge of the properties of in-scene ele-
ments or atmospheric parameters, deep machine 
learning models have been shown to provide end-
to-end fully data driven methods that can efficiently 
exploit the abundance of information in the at-sensor 
spectral radiance, including the variable covariances 
[32]. Furthermore, deep learning models have been 
shown to be significantly adept at signal extraction in 
numerous applications beyond hyperspectral imaging 
and remote sensing. Such applications include wire-
less signal extraction [33–35], isolating sound and 

correcting audio distortion and interference [36–38], 
and the identification of cardiovascular disorders in 
the recording of the electrocardiogram (ECG) [39, 40]. 
The flexibility of deep neural networks, due to their 
large multi-parametric models and reliance on learn-
ing from large and comprehensive datasets, allows 
such methods to use little to no a priori knowledge to 
analyze noisy and mixed data to estimate the param-
eters of complex systems that range from astrophysics 
[41, 42] to quantum mechanics [43, 44]. In the domain 
of hyperspectral remote sensing, convolutional neu-
ral networks (CNNs) in particular, a subclass of neu-
ral networks that can generate associations between 
spectral features through a sequence of learned filter 
shapes, have seen substantial use in various hyper-
spectral analysis tasks over the past few years, includ-
ing plant health and disease identification [45, 46], 
and plant speciation [47, 48], where it has been found 
to outperform comparable methods [49].

For the atmospheric correction of spectral reflec-
tance in the longwave infrared (LWIR) wavelength 
range of 7.0–12 µ m, [32] proposed a CNN composed 
of two parts: the encoder (Enc) and the decoder (Dec). 
The Enc-Dec CNN is trained and tested on syntheti-
cally produced spectral radiance for the known spec-
tral reflectivity of several materials. Once training is 
complete, the model takes as input the observed at-
sensor spectral radiance obtained at 8 viewing angles, 
and, as output, produces four spectral components 
of the radiative transfer equation (RTE) per viewing 
angle, which when combined using the RTE generates 
the atmospherically corrected spectral reflectance and 
associated uncertainty. This Enc-Dec CNN is further 
adapted by [50] to perform atmospheric correction 
on spectral reflectance in the visible and shortwave 
infrared wavelength range of 0.4−3.0  µ m with the 
addition of a time-dependent component to the deep 
neural network’s architecture. In this modification, 
the dimensionally-reduced encoding of the at-sensor 
spectral radiance (output by the encoder) is concat-
enated with tensor representations of two temporal 
factors: the day and time of capture, prior to pro-
ceeding to the latent space and decoder to generate 
the RTE components. To increase the usability of this 
model in hyperspectral analysis, [50] train the model 
on the spectral reflectance of 42 MODTRAN built-in 
materials [51], 15 of which are vegetation spectra, and 
achieving an average accuracy of 95.72% at estimating 
atmospherically corrected spectral reflectance.

Remote sensing applications in the literature tend to be 
dominated by satellite, aerial, and UAV platforms, which 
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generally have a down-looking (nadir) pointing towards 
the target. Therefore, atmospheric correction methods 
are often geared towards containing scientific modeling 
sufficient to contain the range of potential means that can 
affect spectral radiance arriving at sensors with viewing 
angles on the order of 90◦ . Light reflecting off of a tar-
get object encounters atmospheres that substantially dif-
fer in composition, density, and length if travelling in the 
azimuth direction through to the top of the atmosphere 
and beyond, as opposed to travelling horizontally along 
the troposphere for up to several kilometers. The recent 
utilization of side-facing HSI platforms for the study of 
vegetation [18, 21], demonstrates that there is interest in 
the development of methods for the atmospheric correc-
tion of spectral reflectance for ground-based platforms, 
including for cases in which precise atmospheric param-
eters at time of capture are unknown.

In this paper, we present a method for the accurate 
estimation of vegetation spectral reflectance in the VNIR 
wavelength range from spectral radiance collected by 
ground-based remote HSI sensors. For this purpose, we 
produce numerous simulated unique at-sensor spectral 
radiances blended in various combinations with different 
simulated vegetation spectral reflectances, both gener-
ated using specialized radiative transfer simulation codes. 
We use the large sample of spectral radiance and asso-
ciated spectral reflectance to train, validate, and test an 
ensemble of 10 separate time-dependent Enc-Dec CNN 
models that take the at-sensor spectral radiance as input, 

and output the estimated vegetation spectral reflectance, 
which is of equal spectral resolution and sampling as the 
input spectral radiance. We test and evaluate the trans-
ferability of the model by measuring its capability of 
accurately predicting the spectral reflectance from spec-
tral radiance examples for which the network has not 
encountered either the atmospheric composition or the 
vegetation spectral reflectance in the training process. 
We then examine the limits in spectral resolution for 
which this proposed method remains reasonably viable, 
by repeating the training and testing process using sys-
tematically decreased spectral resolutions for the simu-
lated spectra.

Methods
The framework for the retrieval of vegetation spectral 
reflectance from at-sensor spectral radiance obtained 
using ground-based remote shortwave (VNIR) hyper-
spectral imaging is summarized in Fig. 1. At the core of 
this framework is a time-dependent Enc-Dec CNN, with 
an architecture designed for extracting vegetation spec-
tra from ground-based remote hyperspectral images. For 
this purpose, we use a neural network that is trained and 
tested using large and comprehensive samples of simu-
lated vegetation spectral reflectance and solar and atmos-
pheric attenuation effects. This neural network, once 
trained, takes as input an uncorrected at-sensor spectral 
radiance of target vegetation obtained with a ground-
based remote HSI sensor, together with its capture day 

Fig. 1 A graphic workflow of the time-dependent deep learning solution to extract vegetation spectral reflectance from remote hyperspectral 
imaging using simulated at-sensor spectral radiance
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and time, and outputs the predicted deviation of the veg-
etation’s spectral reflectance ( �reflectance), calculated as 
a ratio from the median reflectance of all simulated veg-
etation spectra. The output is then converted into a spec-
tral reflectance curve using the known median simulated 
vegetation spectral reflectance.

Case study
This work is aimed at providing a method for the extrac-
tion of vegetation spectral reflectance from ground-based 
remote hyperspectral imaging. In particular, it targets 
imaging that was performed in the absence of knowledge 
of the exact atmospheric parameters at times of capture, 
and lack of known examples of concurrent at-sensor 
spectral radiance and vegetation spectral reflectance. 
Since this method requires the production of a large sam-
ple of simulated spectra whose parameters are tuned to 
resemble the properties of the hyperspectral sensor and 
the sensor-target geometry to train the deep neural net-
work, it is most applicable to persistent and static remote 
sensing applications performed over extended periods 
of time. For such an application, the obtained spectral 
reflectance can be utilized for the study of the relative 
temporal changes in the status of vegetation.

To demonstrate a potential case to which this method 
can be applied to extract vegetation spectral reflectance 
from at-sensor spectral radiance, the VNIR hyperspectral 
imaging data collected by the “Urban Observatory” (UO) 
[19] facility in New York City (NYC) is selected as a case 
study. The instrument used in this work is a Specim Ltd. 
ImSpector V10E VNIR hyperspectral imager, a single slit 
scanning spectrograph with 1600 vertical pixels, capable 
of providing a spectral resolution of 1 nm in the 0.4–
1.0µm wavelength range. The instrument is placed atop 
a 120 m ( ∼400 ft) building in Brooklyn, facing south and 
horizontally aligned. To provide push-broom scanning, 
the instrument is mounted on a FLIR pan/tilt unit, allow-
ing for each scan to have a field of view that is roughly 

75◦ × 35◦ with 1600× 1600 pixels and pixel axis ratio of 
∼ 0.45 . The observations were carried daily during the 
month of May 2016, where persistent scans of the same 
scene were obtained at 15  min intervals during the day 
between 08h00 and 18h00. Figure  2 shows a composite 
RGB image of the scene (mapped to 0.61 µ m, 0.54 µ m, 
and 0.48 µm), with the vegetation patch of interest to 
this work highlighted. Given the geometrical setup of the 
scene, the spatial resolution of each of the vegetation pix-
els, which are located at roughly 1 km south of the sensor, 
is approximately 1 m×0.45 m.

Simulations
Combining the output of radiative transfer software 
that simulates a wide range of vegetation spectral reflec-
tance given different plant health indicators, together 
with the output of software that simulates the impact of 
various solar and atmospheric conditions on the spec-
tral reflectance of an object provided different atmos-
pheric parameters and times of day and day of the year, 
results in obtaining simulated examples of possible spec-
tral radiance with their associated spectral reflectance 
known. Creating a sufficiently comprehensive sample 
of simulated atmospheric effects and simulated vegeta-
tion spectral reflectrance allows a deep learning network 
to be trained, validated, and tested to extract the spec-
tral reflectance of vegetation from the at-sensor spectral 
radiance.

Vegetation spectral reflectance
For obtaining a sufficiently representative sample of vege-
tation spectral reflectance for plants under various poten-
tial conditions, we rely on the Soil Canopy Observation 
of Photosynthesis and Energy fluxes (SCOPE) model to 
produce the required simulations. SCOPE provides sim-
ulations of the hyperspectral radiance and net radiation 
for vegetation by combining several radiative transfer 
models with a leaf biochemical model [52, 53]. Due to its 

Fig. 2 A false-color RGB (0.61 µ m, 0.54 µ m, and 0.48 µ m) image of the scene of Downtown and North Brooklyn obtained by the Urban 
Observatory’s hyperspectral imaging system. In the green box are the highlighted vegetation pixels relevant to this work, which are located 
at roughly 1 km south of the sensor that is sited atop a 120 m tall building
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coupling of photosynthetic, hydrological, and radiative 
transfer models, SCOPE has been used in a wide range 
of studies including the exploration of the relationship 
between fluorescence and photosynthesis [54–56], pre-
dicting evapotranspiration [57, 58], and productivity and 
yield monitoring [59]. With the goal of broad applicabil-
ity, SCOPE models are based on physical principles and 
capable of modeling the spectral reflectance of vegetation 
with varying morphological and physiological properties. 
Furthermore, the radiative transfer routines of SCOPE 
are based on the SAIL model (Scattering by Arbitrar-
ily Inclined Leaves) [60, 61], thus providing a vertically 
integrated radiative transfer and energy balance model 
capable of calculating the spectral reflectivity at the level 
of single leaves as well as the canopy level. The canopy 
representation in SCOPE is composed of various layers, 
in each the leaves can have different orientations, where 
the probability of the occurrence of each leaf zenith and 
azimuth are quantified using a leaf inclination distribu-
tion function (LIDF). Therefore, SCOPE is capable of dif-
ferentiating the leaves by their orientation with respect to 
the sun as well as their vertical positions in the canopy 
to discriminate between sunlit and shaded leaves, and by 
exploiting the principle of linearity of the radiative trans-
fer equation, the contributions of the shaded and sunlit 
leaves are vertically integrated to obtain the reflectivity of 
the canopy.

To allow the deep neural network to encounter and 
learn from a wide range of potential spectra for the sake 
of model transferability, it is imperative to generate a 
sufficiently comprehensive sample of vegetation spec-
tral reflectances. For this purpose, 1000 different spec-
tra, shown in Fig.  3, were simulated using SCOPE in 
which each has a unique combination of the following 
parameters:

• Chlorophyll AB content, ranging between 5.0p  µg/
cm2 and 80.0 µg/cm2;

• Carotenoid content, ranging between 5.0 µg/cm and 
20.0 µg/cm2;

• Dry matter content, ranging between 0.0 g/cm2 and 
0.02 g/cm2;

• Leaf water equivalent layer, ranging between 
0.001 cm and 0.02 cm;

• Senescent material fraction, ranging between 0% and 
50%;

• Leaf area index, ranging from 2.0 and 4.0;
• Leaf inclination distribution function parameters 

(LIDFa and LIDFb), ranging from –0.5 and 0.5.

Solar and atmospheric effects
To simulate the use of ground-based VNIR hyperspec-
tral remote sensing, the SMARTS2: Simple Model of the 
Atmospheric Radiative Transfer of Sunshine [62, 63] soft-
ware is used to calculate the at-sensor spectral radiance 
provided solar conditions, a synthetic atmospheric com-
position, and object reflectance. SMARTS2 is a relatively 
computationally efficient and comprehensive radiative 
transfer code written in Fortran77, capable of predicting 
the effect on the observed photon flux at the sensor from 
a given atmospheric composition, and a particular solar 
angle calculated given a user defined location (latitude 
and altitude), height, and pointing angle of the sensor. 
This code was developed using physical and mathemati-
cal principles including radiative transfer theory and 
atmospheric chemistry, with the intention of matching 
the output from rigorous radiative codes such as MOD-
TRAN to within 2% [63], with a significantly lower cal-
culation time (factor of 25) [28]. Numerous examples of 
its use as a means for simulating the solar and atmos-
pheric impacts on radiation in narrowband hyperspectral 
imagery can be found in the remote sensing literature 
[31, 64, 65].

As a demonstration of the framework’s functionality, 
we utilize the experimental setup presented in the Case 
study section to assume a particular HSI camera, a loca-
tion for the sensor and observed targets, and time and 
date of the obtained data. Using SMARTS2, we generate 
a comprehensive sample of atmospheric effects by simu-
lating 1440 different atmospheres, each of which contain-
ing a unique combination of the following indicators:

• Relative humidity at site level, ranging between 1% 
and 99%;

• Precipitable water above the site altitude, ranging 
between 1.0 g/cm2 and 12.0 g/cm2;

Fig. 3 Vegetation spectral reflectance in the VNIR wavelength range 
simulated using SCOPE with varying morphological and physiological 
plant properties
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• Hour of the day, ranging between 08h00 and 18h00;
• Day of the month of May, ranging between 1 and 30;
• Atmospheric temperature at site level, ranging from 

5 °C to 30 °C to 30◦C;
• Aerosol optical depth at 500  nm ( τ5 ), ranging 

between 0.5 to 5;
• Oxygen (O2 ) concentration, ranging from 21% to 

22%;
• Ozone (OAb

3
 ) total-column abundance (excluding 

tropospheric pollution), ranging from 0.2 to 0.5 atm-
cm;

• Volumetric concentrations in the assumed 1-km 
deep tropospheric pollution layer for each of the fol-
lowing pollutants:

– Tropospheric ozone (Op
3
 ) due to pollution, ranging 

from 0 to 0.02 ppmv;
– Nitrous acid (HNO2 ), ranging from 0 to 10.0 ppbv;
– Nitrogen dioxide (NO2 ), ranging from 0 to 

0.2 ppmv;
– Nitrogen trioxide (NO3 ), ranging from 0 to 

0.2 ppbv;
– Sulfur dioxide (SO2 ), ranging from 0 to 0.2 ppmv.

While SMARTS2 is capable of varying the concentrations 
of numerous other gases, including CH2 O, CH4 , CO, 
CO2 , HNO3 , NO, BrO, ClNO, N 2 O, N 2 , and NH3 , the 
absorption coefficients of these molecules are outside the 
VNIR range of wavelengths explored in this work. Since 
varying these parameters does not have an impact on the 
simulated atmospheric effects in the 0.4 – 1.0 µ m wave-
length range, they were therefore held constant for all 
simulations. Other user-defined parameters that did not 
vary throughout the generation of the simulations are:

• The extraterrestrial top-of-atmosphere solar spectral 
irradiance, which was set to the synthesized spec-
trum from [66];

• The latitude, longitude, and altitude, which were set 
to the location of the UO’s hyperspectral camera 
in NYC, the height of the building on which it was 
placed, and its tilt angle and surface azimuth of the 
setting as described in the Case study section;

• The aerosol model, which was set to a humidity-
dependent urban aerosol model [67].

A sample of 1440 unique at-sensor spectral radiances 
for each vegetation spectral reflectance obtained using 
SCOPE were generated using SMARTS2. Dividing the 
spectral radiances in Eq.  (2) by the vegetation spec-
tral reflectance ( R� ) produces the wavelength depend-
ent spectral effects of each of the atmospheres and 
solar angles, which are visualized in Fig.  4. Multiplying 

a vegetation spectral reflectance spectrum ( R� ) from 
Fig.  3 obtained from SCOPE with the L�/R� spectrum 
from Fig. 4 obtained from SMARTS2, with the addition 
of Gaussian-distributed random noise and sensor arti-
facts such as quantum efficiency, results in generating the 
radiance as measured by the sensor while retaining the 
“ground-truth” reflectance of the observed object.

Encoder‑decoder network
Convolutional neural networks are prevalent in the 
field of hyperspectral image analysis due to their effec-
tiveness at tasks such as image segmentation [68–70] 
and pixel classification [71–73]. In recent years, CNNs 
have been utilized to develop deep learning models to 
address the problem of extracting the spectral reflec-
tance from the spectral radiance. Such a problem 
requires a model capable of handling redundant infor-
mation in both input and output, the inclusion of tem-
poral factors, and producing an output vector of similar 
dimension to the input vector. Therefore, we opt to use 
a variation of the architecture introduced in [50], modi-
fied to enhance the accuracy of the extraction of the 
reflectance spectra, primarily by narrowing its scope of 
use to vegetation only.

In Fig.  5, we show the architecture of our time-
dependent encoder-decoder neural network (Enc-Dec 
CNN) for atmospheric correction of vegetation spec-
tral reflectance obtained using ground-based remote 
hyperspectral sensors. The model relies on three main 
blocks, namely a convolutional encoder, fully encoded 
layers in latent space, and a convolutional decoder. The 
Enc-Dec CNN takes in as inputs the spectral radiance 
as observed by the sensor, together with capture time 
of the day and day of the year. The input spectrum is 
a min-max normalized spectral radiance curve, with a 

Fig. 4 A sample of the 1440 SMARTS2 simulated at-sensor spectral 
radiances ( L� ) in the VNIR wavelength range for a single SCOPE 
simulated spectral reflectance ( R� ), divided by the reflectance 
to show the atmospheric and solar effects from varying their 
conditions for a static sensor with known location and pointing
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spectral sampling of 1  nm in the wavelength range of 
0.4 µ m to 0.85 µ m (450 wavelength bands). This spec-
trum also includes sensor artifacts, such as noise and 
quantum efficiency.

Spectral information, particularly at high spectral 
resolutions, contains significant redundancies due to 
correlations between adjacent bands, and the presence 
of multiple absorption and emission features for indi-
vidual gases and materials [74]. Therefore, the purpose 
of the encoder in our architecture is to reduce the spec-
tral dimensionality and remove correlated and repeti-
tive information from the input spectral radiance. The 
encoder is composed of four convolutional blocks, each 
consists of a convolutional layer, a batch normalization 
layer, and a Leaky Rectified Linear Unit (LeakyReLU) 
activation function. The hyperparameters for each 
layer, including numbers and sizes of convolutional fil-
ters, stride parameters, and output shapes, are listed in 
Table 1. Strided convolutional layers were selected for the 
encoder block rather than max pooling layers in order to 
reduce the input’s spectral dimensionality while main-
taining necessary detailed information from the spectral 
radiance.

To account and control for the crucial impact of 
diurnal and seasonal variations on vegetation spec-
tral reflectance, solar angles, and the atmosphere, the 
day and time of capture are fed into individual fully 
connected layers. Concurrently, the output from the 
encoder is flattened into a 1D representative tensor 
and fed through a similar fully connected layer. Con-
catenating the encoded output of the spectral radiance 

with the outputs of the two independent fully con-
nected layers produces the input for the latent space 
block. This block is composed of three fully connected 
layers with LeakyReLU activation functions and 64 
neurons in each. The purpose of the latent space block 
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Fig. 5 The architecture of the time-dependent encoder-decoder convolutional neural network (Enc-Dec CNN)

Table 1 Parameters of the time-dependent encoder-decoder 
convolutional neural network (Enc-Dec CNN)

Layer Number 
of filters

Size of 
each 
filter

Stride Output size

Input Radiance – – – 450 × 1

Encoder Conv1 64 50 2 225 × 64

Conv2 128 25 2 113 × 128

Conv3 256 5 2 57 × 256

Conv4 64 256 1 57 × 64

Fully con-
nected 
layers

FCrad – – – 64 × 1

FCday – – – 64 × 1

FCtime – – – 64 × 1

FC1 – – – 64 × 1

FC2 – – – 64 × 1

FC3 – – – 64 × 1

Decoder ConvTrans1 256 5 2 128 × 256

ConvTrans2 128 25 2 256 × 128

ConvTrans3 64 50 2 512 × 64

ConvTrans4 1 64 1 512 × 1

FCdec – – – 450 × 1

Output �reflectance – – – 450 × 1
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is to summarize the input representative tensor (radi-
ance, time, and day) into a tensor representative of the 
deviation of the vegetation spectral reflectance from 
that of the median simulated spectrum ( �reflectance).

Finally, the purpose of the decoder block is to expand 
and upsample the output representative tensor. Given 
that the spectral reflectance and spectral radiance share 
similar dimensions, the parameters of the four trans-
posed convolutional layers in the decoder block are 
approximately the inverse of those in the encoder block, 
as shown in Table  1. The first three transposed convo-
lutional layers are each followed by a combination of a 
batch normalization layer and LeakyReLU activation, 
while a fully connected layer with a linear activation fol-
lows the last layer to output the �reflectance vector.

It is worth noting that due to the low variance among 
vegetation spectral reflectance, a machine learning algo-
rithm can simply output the median spectral reflectance 
and be able to achieve r2 ∼ 90% . To avoid underfitting, 
we opt to utilize the wavelength-dependent deviation �
reflectance, calculated as a ratio of the spectral reflec-
tance to the median simulated spectral reflectance, 
instead. This treatment produces output with greater 
variance among its members, which provide greater 
confidence in the r2 score being representative of the 
model’s performance in learning to extract the output 
spectrum from the spectral radiance given capture time 
and day.

Results
Data preparation
The at-sensor spectral radiance is modeled by combin-
ing a SCOPE simulated vegetation spectral reflectance, a 
SMARTS2 simulated atmospheric absorption and solar 
effects spectrum, and sensor artifacts such as noise and 
quantum efficiency. Creating every possible unique com-
bination of the 1000 simulated vegetation spectral reflec-
tances and the 1440 solar and atmospheric effects spectra 
generates 1,440,000 unique L� instances. These instances 
can then be split into training, testing, and validation sets 
to use with the machine learning model. In this treat-
ment, while the instances are unique since each has a 
particular combination of vegetation, atmospheric, and 
solar parameters that solely belong to it, many instances 
share either a spectral reflectance or a spectral emission 
and transmission profile across sets.

The purpose behind utilizing independent data sets 
in machine learning is to reduce overfitting, and assure 
the model performance metrics reflect its transferability 
to unseen instances in which neither spectral reflectance 
nor emission and transmission have been previously 
encountered by the model. Therefore, to assure inde-
pendence between sets at the cost of a reduced total 

number of available instances, we randomly divide our 
simulated vegetation spectral reflectance into three sets: 
50% training, 30% testing, and 20% validation. Similarly, 
we divide our simulated atmospheric and solar profiles 
into three sets of the same ratios as the spectral reflec-
tance sets. The final sets are obtained by creating all pos-
sible combinations of spectral reflectance and solar and 
atmospheric effects within each set separately to produce 
360,000 training instances, 129,600 testing instances, and 
57,600 validation instances, which are shown in Fig.  6. 
Since this method is directed at hyperspectral analysis 
cases in which ground-truth spectral reflectances are 
unavailable, we exploit the large simulation sample size to 
increase the confidence in the model performance met-
rics being reflective of the accuracy when applied to real-
world measurements. We randomly divide each of the 
training, testing, and validation dataset into 10 equal and 
separate subsets. Each subset is then independently used 
to train and test a neural network model, for a total of 10 
models. This allows for the prediction of the final output 
using an ensemble of 10 independently trained and tested 
models, and provides an uncertainty range for the predic-
tion and for the model’s overall accuracy.

The �reflectance spectra shown in Fig.  6 are calcu-
lated as the deviation from the median simulated spec-
tral reflectance. Each spectral radiance curve is generated 
by combining a vegetation spectral reflectance with a 
solar and atmospheric effects profile. To simulate the 
effects of the sensor as described in the Case study sec-
tion, the resulting spectrum is multiplied by the sensor’s 
quantum efficiency curve. In this study we chose the 
Specim ImSpector V10E efficiency curve, which rises 
from slightly above 30% at 0.4 µ m to approximately 60% 
at 0.6 µ m, returning to slightly above 30% at 0.8 µ m, and 
falling to less than 5% at 1.0 µ m. This produces the pho-
ton flux curve (units of photons·m−2·sr−1 ), which can 
be converted into spectral radiance (units of W ·m−2·

sr−1·nm−1 ). Due to the presence of sensor noise in the 
recorded spectral radiance, a peak signal-to-noise ratio 
(SNR) of 20:1 is commonly assumed for HSI sensors 
[75–77]. Provided that the instrument in the case study 
utilizes a charge-coupled device (CCD) sensor to meas-
ure the incident photon flux and convert the signal from 
analog to digital output, various sources of noise, includ-
ing photon noise, dark current, photo response nonu-
niformity, and read-out noise, contribute to the SNR. 
Modeling noise in hyperspectral imaging is a challeng-
ing task due to the presence of these multiple and var-
ied noise sources, and remains an active topic of research 
[78, 79]. A common approach to noise modeling is to 
consider it as a mixture of two types: signal dependent 
noise, and signal independent noise [80]. Signal depend-
ent noise, which includes photon (shot) noise, can be 
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estimated by a Gaussian distribution where the noise var-
iance is spectrally correlated [81]. Therefore, to account 
for this type of noise, a Gaussian distribution with a 
standard deviation of 5% of the spectral radiance at each 
wavelength channel is stochastically sampled, and added 
to the spectral radiance at each wavelength channel. On 
the other hand, signal independent noise, which includes 
sources such as thermal noise and quantization noise, 
are typically modeled by a simpler signal independent 
Gaussian additive noise [82, 83]. To include these types of 
noise, and provided that the spectral radiances were nor-
malized to have values in the 0–1 range, a Gaussian dis-
tribution with a standard deviation of 0.05 was randomly 
sampled for each wavelength in each spectral radiance, 
and added to the spectral radiances.

Training, validation, and testing
Each individual Enc-Dec CNN model presented here is 
trained using a unique set of 36,000 training examples. 
During the training, 5760 instances are used as valida-
tion examples, and following the training, 12,960 test-
ing instances are used to measure the neural network’s 
performance and transferability. For the training, the ℓ2
-norm (Euclidean distance) is chosen to measure the 

distance between the network’s output and �reflectance 
ground-truth. To optimize the parameters in the model 
while minimizing the objective function, the Adaptive 
Moment Estimation (ADAM) optimizer [84] is selected 
with an initial learning rate of 1× 10−4 , and the mean 
squared error (MSE) as the loss function. At each epoch, 
to reduce the memory usage and contribute to reducing 
overfitting, a batch size of 100 training instances is used 
in each forward and backward pass in the backpropa-
gation process. The training is allowed to run up to 500 
epochs, with an early stopping mechanism implemented 
to monitor the validation loss, and stop the learning 
process if 20 epochs pass without a sufficient change in 
validation loss. Once stopped, the parameter weights are 
brought back to the values they were assigned at the best 
performing epoch in the callback history.

When a neural network’s training is complete, 12,960 
unseen testing instances are used to evaluate the trained 
model’s capability in predicting the vegetation spectral 
reflectance given the at-sensor spectral radiance and time 
and day of image capture. Table  2 shows a summary of 
the evaluation metrics for each of the three independ-
ent sets: training, validation, and testing, presented as 
the median of 10 independent models and their standard 

Fig. 6 A subset of the normalized simulated at-sensor spectral radiance (left) from the training (top), testing (middle), and validation (bottom) 
sets, and their associated �reflectance (deviation of spectral reflectance from the median, right). After splitting both reflectance and solar 
and atmosphere simulations into 3 independent sets (50% training, 30% testing, and 20% validation) each, we generate 360,000 training instances, 
129,600 testing instances, and 57,600 validation instances. Each of the 3 sets are separated into 10 equal subsets, where each subset is used to train, 
validate, and test a neural network model independently for a total of 10 models
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deviation (1σ ) uncertainty. The similarity in all evalua-
tion metrics between the three sets provides assurance 
that overfitting can be excluded from consideration as 
an influential factor in this study. Furthermore, the per-
formance on the training set provides an indication of 
the model’s transferability to unseen examples of either 
reflectance, atmospheric absorption and scattering, solar 
angles, or all simultaneously. Here, the testing set in total 
shows a coefficient of determination r2 = 92.0%(±1.0) 
between the actual and predicted �reflectance values at 
all wavelengths.

To examine the factors contributing to this high r2 , 
Fig. 7 shows the predicted �reflectance against the actual 
simulated �reflectance at all wavelengths for all testing 
instances. The high testing score is evidently the prod-
uct of high accuracy (inferred from the dense distribu-
tion of points about the diagonal where the predicted 
and actual values are similar), and high precision (from 
the consistent and low error variance, as demonstrated 
by the spread of values around the diagonal). This can be 
qualitatively observed in Fig. 8, which shows 99 randomly 
selected example instances of the actual wavelength-
dependent �reflectance spectra against predicted spectra 
from all 10 models and their median curve. The majority 
of instances show high correlation and similarity between 
the actual �reflectance and the model prediction, with 
relatively high agreement among the individual models.

To assess the capacity of the proposed framework at 
accurately estimating the vegetation spectral reflectance 
from the at-sensor spectral radiance and two temporal 
factors (time and day), we must first obtain the model-
predicted spectral reflectance. Using the known vegeta-
tion median spectral reflectance, the model-predicted 
�reflectances are converted into reflectances. These 
spectral reflectances are smoothed by convolving with 
a Gaussian filter that has a standard deviation equal to 
the full width at half maximum (FWHM) of the sensor 
(6 nm), while maintaining the spectral resolution of the 
output spectral reflectance at 1 nm channels. Compar-
ing the final, smoothed, model-predicted spectral reflec-
tance with their ground-truth, simulated vegetation 
spectral reflectance yields a coefficient of determination 

r2 = 98.1%(±0.4) . This high accuracy is qualitatively 
evident in Fig. 9, which shows a sample of 99 randomly 
selected testing instances that compare the model predic-
tions with their respective spectral reflectance ground-
truths. The vast majority of instances show prediction 
results indistinguishable from the ground-truth with 
r2 = 100% , the remaining instances show r2 > 96% , with 
uncertainties that rarely exceed 1%.

In Fig.  7, it can be noted that instances belonging to 
longer wavelengths appear to have a large concentration 
of points with actual and predicted �reflectance values 
around 1. On the other hand, instances belonging to 
shorter wavelengths are more apparent at the extremes 
of the �reflectance distribution. This indicates that the 
spectral reflectance in general shows relatively little vari-
ability from the median at longer wavelengths than at 
shorter wavelengths. This deviation from the median at 
short wavelengths could be explained as the product of 
Mei and Rayleigh scattering [85], which refer primarily 
to the elastic scattering of light from atomic and molecu-
lar particles with diameter ranging from approximately 
one-tenth to slightly larger than the wavelength of the 
incident light. Provided that aerosol optical depth was 
used in SMARTS2 to produce simulations with aero-
sol conditions that vary from the clear to the extremely 
polluted atmospheres in an urban setting, it is expected 
that such variations from the median in the �reflectance 
spectra are primarily the products of scattering of light 
from aerosols. From Rayleigh’s law, it can be inferred that 
scattering at shorter wavelengths in the visible spectrum 
( ∼0.4 µ m) is higher by a factor of ∼ 10 compared with 

Table 2 Model evaluation on the training, validation, and testing 
sets, showing the median and 1 σ uncertainty for r2 , root-mean-
square error (RMSE), mean absolute error (MAE), and mean 
absolute percentage error (MAPE)

Data set r
2 [%] RMSE MAE MAPE

Training 94.0±1.0 0.107±0.009 0.089±0.009 7.3±0.6

Validation 92.9±1.1 0.128±0.008 0.105±0.009 8.3±0.7

Testing 92.0±1.0 0.134±0.009 0.105±0.009 8.3±0.7

Fig. 7 The actual �reflectance of the simulated spectra in the testing 
set at each wavelength against model predicted values. The black 
dashed diagonal line has a slope of 1 and shows the case of perfect 
agreement between predicted and actual values. Overall, the models 
show r2 = 92.0%(±1.0) between the actual and predicted values
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that at longer wavelengths ( ∼0.7 µm). However, in Fig. 9 
we see that in the examples in which there is misalign-
ment between actual and predicted spectral reflectance, 
the disagreement is visible only at longer wavelengths. 
Vegetation spectral reflectance exhibit similar gen-
eral profiles across species, health status, etc., primar-
ily due to chlorophyll and photosynthesis. As shown in 
Fig.  10, all instances belonging to shorter wavelengths 
have low reflectance values in comparison with instances 
belonging to longer wavelengths. Although the spectral 
reflectances show relatively greater variance at shorter 
wavelengths, due to the low magnitude of the reflectance, 
the model is capable of predicting the spectral reflec-
tance at lower wavelengths with greater accuracy than at 
greater wavelengths. The distribution of points around 
the diagonal is compact and dense for instances belong-
ing to wavelengths that range from 0.4µ m to ∼ 0.75µ m, 

beyond which the diffusion of points markedly diverges 
away from the diagonal.

Spectral resolution
A wide range of remote sensing devices are used to 
uncover information on the status of vegetation from 
the properties of their spectral reflectance at various 
wavelengths. Some spectrographs offer a high charac-
teristic spectral resolution, such as the Specim ImSpec-
tor V10E with a possible spectral resolution of 1 nm, to 
allow the user to obtain a wide range of detailed infor-
mation regarding the vegetation and the atmosphere, 
including redundant information. Other spectrographs 
focus on capturing spectral reflectance only at required 
wavelengths to be used in calculating specific vegetation 
indices, such as the Apogee Instruments, Inc.’s Normal-
ized Difference Vegetation Index (NDVI) sensor that 

Fig. 8 A randomly chosen sample of 99 spectra from the testing set, showing the actual simulated deviation from the median reflectance 
spectrum, �reflectance, in black, each of the 10 Enc-Dec CNN model predicted �reflectance spectra in light blue, and the median predicted model 
in blue. The median r2 and associated 1 σ uncertainty from all models are listed for each instance at the top of each plot
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captures light intensity in only 2 spectral bands—650 nm 
and 810  nm—with 65  nm FWHM each. Therefore, we 
examine the capability of the proposed framework at 
estimating the vegetation �reflectance from the spectral 
radiance obtained with sensors that have spectral reso-
lutions ranging proportionally from high (450 channels 
between 0.4 µ m and 0.85 µ m, with 1 nm FWHM), to low 
(2 NDVI channels, with 65 nm FWHM).

Individual and independent Enc-Dec CNN mod-
els with the architecture presented in Fig. 5 are trained, 
validated, and tested using vegetation spectral reflec-
tance of systematically reduced spectral resolution. 
CNN models applied to spectral analysis are known to 
be sensitive to the filter sizes in their convolutional lay-
ers [72]. Therefore, in each model the number of filters 

and their kernel sizes were reduced in proportion to the 
reduction in spectral resolution in order to maintain an 
equivalent spectral filter across models. The metrics from 
the comparison of each model’s predicted �reflectance 
for its respective testing set with the ground-truth, are 
presented in Fig. 11 for all models. For spectra with the 
highest resolutions starting at 1 nm FWHM (450 bands 
in 0.4–0.85  µm, or 600 channels in VNIR) down to 40 
nm FWHM (29 bands in 0.4–0.85 µm, or 40 channels in 
VNIR), the model was consistently and equally capable 
of extracting the vegetation �reflectance, with r2 > 90% 
within uncertainty. Following which, a decrease in r2 with 
decreasing spectral resolution becomes apparent, how-
ever, r2 remains within the range of 80% for all but the 

Fig. 9 A randomly chosen sample of 99 spectral reflectance curves from the testing set, showing the actual simulated spectral reflectance 
in black, each of the Enc-Dec CNN model predicted spectral reflectance in light blue, obtained by multiplying the model’s output �reflectance 
by the median simulated spectral reflectance and convolving the result using the FWHM of 6 nm. The median model predicted spectral reflectance 
is shown in blue, and the median r2 and associated 1 σ uncertainty from all models are listed at the top of each plot
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lowest possible spectral resolution of two 65  nm wide 
channels.

Application to case study
The method for solar and atmospheric correction of 
vegetation spectral reflectance presented in this work is 
aimed at ground-based, remote hyperspectral imaging in 
the VNIR wavelength range, for which the detailed and 
synchronous knowledge of atmospheric and solar param-
eters are unknown. Provided that this method relies on 
the generation of a large sample of simulated spectral 
reflectance and spectral radiance, and the training of 
a deep learning model, the utilization of this method is 
most applicable to temporally persistent imaging of the 
same scene, for which a single model can be used to cor-
rect the spectral reflectance of all obtained scans. In this 
work, we select such an application to demonstrate the 
capabilities of this method at extracting the vegetation 
spectral reflectance from “real-world” sensor obtained 
spectral radiance, as described in the Case study section.

The ground-based, horizontally-aligned, south-facing 
HSI sensor in New York City captured approximately 

Fig. 10 The actual spectral reflectance of the simulated spectra 
in the testing set at each wavelength against the model predicted 
values. The black dashed diagonal line has a slope of 1 and shows 
the case of perfect agreement between predicted and actual 
values. The model shows r2 = 98.1%(±0.4) between the actual 
and predicted values. In contrast with Fig. 7, vegetation spectral 
reflectance generally exhibit greater reflectance at longer 
wavelengths, as is expected beyond the red edge ( ∼ 0.7µm)

Fig. 11 Performance metrics of the testing set for models trained and tested with spectral radiance and reflectance at systematically reduced 
spectral resolution and increased FWHM. Noting the range of the spectral channels on the x-axis are presented in logarithmic scale, the model’s 
accuracy remains consistently > 90% down to a resolution of 29 channels (width of 15.5 nm). Accuracy lower than 80% occurs only at the lowest 
possible resolution of 2 channels
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1100 scans of the scene shown in Fig. 2 over the month 
of May 2016. The vegetation located approximately 1 km 
south of the sensor are identified, and their spectral radi-
ance averaged to produce a single canopy spectral radi-
ance per scan. The at-sensor obtained spectral radiances 
are shown in Fig. 12, and are the uncorrected photon flux 
measurements by the sensor, which are then min-max 
normalized and cut-off at 0.85 µ m. Following the training 
of the Enc-Dec CNN using simulated spectral radiance 
that reflect the properties of the sensor, the normalized 
spectral radiance are used as input to the model, together 
with their known time and date of capture, and the out-
put predicted vegetation spectral reflectance, corrected 
for atmospheric and solar effects, are shown for each of 
their associated spectral radiance in Fig. 12.

The model behaves as anticipated with “real” at-sen-
sor spectral radiance data, where the predicted spectral 
reflectance all exhibit the known signature features that 
are unique to those of vegetation, including the chloro-
phyll bump and red edge. Given that we lack the knowl-
edge of the exact solar and atmospheric parameters of 
each obtained scene, to provide further confidence in 
the ability of the model to extract the vegetation spec-
tral reflectance from at-sensor spectral radiance, we 
compare the Enc-Dec CNN predicted output to those 
produced by another method that does not rely on 
the synchronous knowledge of such parameters. The 
Compound Ratio, as presented in more detail in [21], 
exploits the temporally static nature of the spectral 
reflectance of built structures to produce the relative 
change in the apparent reflectance of adjacent veg-
etation. Provided the assumptions that buildings have 
constant reflectivity over moderately short time spans 
( RB

�,t = RB
�,t=0

 ), that the total irradiance incident on 

the target vegetation is identical to that incident on 
immediately adjacent buildings ( EV

�,t = EB
�,t ), and that 

atmospheric transmission between the target and sen-
sor is identical to that between the building and sensor 
( TV

�,t = TB
�,t ), the Compound Ratio of vegetation ( CV

�,t ) at 
time t is calculated as:

Using the spectral radiance of the buildings immedi-
ately adjacent to the vegetation, and considering the 
first obtained scan as having time t = 0 , we compute the 
Compound Ratio of the vegetation in each scene. In order 
for the output of the Enc-Dec CNN to be comparable 
to those from the Compound Ratio, 10 predicted spec-
tral reflectances are produced for each scan from the 10 
independently trained Enc-Dec CNN models, each pre-
diction is then divided by the prediction from the same 
model for the initial scan at time t = 0 to produce the 
relative change of spectral reflectance. Figure  13 shows 
99 randomly chosen scans to compare the output from 
the Compound Ratio to those from the Enc-Dec CNN. 
Considering the variation in prediction between the 10 
models to be the range of uncertainty in obtained spec-
tral reflectance, the predicted ratio of spectral reflectance 
from the Enc-Dec CNN models are consistent with those 
produced by the Compound Ratio in nearly every scan.

Discussion
The results of this study demonstrate that a framework 
that uses a time-dependent encoder-decoder convo-
lutional neural network (Enc-Dec CNN), is capable of 
accurately obtaining the vegetation spectral reflectance 

(4)CV
�,t ≡

LV
�,t/L

V
�,t=0

LB
�,t/L

B
�,t=0

=
R∗,V
�,t

R∗,V
�,t=0

.

Fig. 12 Left: the sensor-obtained uncorrected averaged and normalized spectral radiance of the vegetation canopy as identified in Fig. 2. Right: 
the associated solar and atmosphere corrected vegetation spectral reflectance as predicted by the Enc-Dec CNN
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from at-sensor hyperspectral radiance data with two 
temporal factors representing the time and day of 
image acquisition. The framework presented here can 
be compared with that of a “mixed” trained network 
with similar architecture, trained on 21 different mate-
rials, including 15 vegetation spectral reflectances and 
6 opaque Lambertian gray bodies with constant reflec-
tivities, to predict the spectral reflectance of 27 other 
materials [50], in contrast to the 1000 unique vegeta-
tion spectral reflectances generated using SCOPE in 
this work. The method introduced in [50] is aimed at 
efficiently maximizing the transferability of a single 
model to various materials and sensor acquisition ele-
vation angles (30◦–90◦ ). Therefore, the mixed trained 
network is designed to output six normalized radiative 
transfer equation (RTE) components that can then be 
combined with the estimated temperature to generate 

the retrieved target reflectivity from input spectral 
radiance obtained under 13 different elevation angles. 
In contrast, our models are aimed at increasing the pre-
diction accuracy of the spectral reflectance of vegeta-
tion from at-sensor spectral radiance obtained from a 
static ground-based hyperspectral sensor of known 
location, pointing, and angles. Consequently, we have 
developed a neural network that takes a single at-sen-
sor spectral radiance as input and outputs a predic-
tion of the wavelength-dependent deviation from the 
median simulated vegetation reflectance, �reflectance, 
which is then trivially converted to the vegetation’s 
spectral reflectance. The mixed trained network of [50], 
used to predict the reflectance of 42 different materials, 
is reported to have an overall test dataset accuracy for 
predicting spectral reflectance of 95.7% [50]. The mod-
els we present here exhibit a test dataset r2 of 92.0% 

Fig. 13 A randomly chosen sample of 99 scans showing the ratio of apparent reflectances of vegetation as computed using the Compound Ratio 
(red), together with the ratio of the atmospheric and solar corrected spectral reflectances as predicted by each of the 10 independently trained 
Enc-Dec CNN models (blue)



Page 17 of 21Qamar and Dobler  Plant Methods           (2023) 19:74  

(±1.0) with the �reflectance, and 98.1% (±0.4) when 
converted to spectral reflectance. It is worth noting that 
while the proposed treatment in this work provides a 
significant enhancement to the accuracy of extracting 
reflectance, it does so at the expense of removing the 
flexibility to handle multiple materials other than veg-
etation and radiance received under variable elevation 
angles.

In addition to the high r2 showing the capability of 
this model at overall correctly predicting the vegetation 
spectral reflectance, the errors are evenly and compactly 
distributed around the actual values, for all �reflectances 
and wavelengths. This shows that the model exhibits both 
high accuracy and high precision when predicting the �
reflectance from the at-sensor spectral radiance and two 
temporal factors. While qualitative examinations of the 
�reflectance results yield little insights into the pres-
ence of systematic mispredictions, when converted to 
spectral reflectance, a clear imbalance in the magnitude 
of errors (when they occur) is apparent between long 
and short wavelengths. Despite the variance in spec-
tral reflectance at longer wavelengths being generally 
lower than the variance at shorter wavelengths, errors 
in prediction of reflectance are significantly larger at 
wavelengths > 0.75µ m. This imbalance can be partially 
attributed to the greater amplitude of the spectral reflec-
tance in the infrared relative to the reflectance in the 
visible spectrum, which is a well-known characteristic 
of vegetation spectral reflectance, amplifying the effect 
of lower relative variance. Nevertheless, it is important 
to note that these errors overall are relatively small and 
infrequent. The overall r2 of the predicted and actual 
reflectance spectra is 98.1% (±0.4), with the vast major-
ity of instances having r2 = 100% and being qualitatively 
indistinguishable from the ground-truth. Furthermore, 
the greatest deviation of prediction from reality produces 
spectral reflectance with r2 > 96% , and the uncertainties 
for all instances rarely exceed 1%.

Provided that the spectral radiance is a combina-
tion of the vegetation spectral reflectance and solar and 
atmospheric effects, the process for learning to extract 
the �reflectance from the at-sensor spectral radiance is 
equivalent to that for learning to identify the absorption 
spectrum produced by solar and atmospheric effects. The 
encoder in the neural network reduces the dimensional-
ity of the input spectral radiance to minimize redundant 
information and identify the particular features that can 
correctly provide either the dimensionally reduced �
reflectance spectrum or the complementary solar and 
atmospheric effects spectrum. Therefore, the dimen-
sionally reduced encoding of the spectral radiance must 
contain sufficient information regarding both the vegeta-
tion spectral reflectance, and the solar and atmospheric 

effects. As evident by the common use of vegetation indi-
ces, in carefully selected couplings, the reflectance in only 
two channels can carry sufficient and specific informa-
tion regarding the health and status of vegetation. How-
ever, atmospheric effects on radiation, particularly those 
from the absorption of gases and molecules, occur in 
signature narrow bands that can quickly dilute the infor-
mation if captured at sufficiently low spectral resolutions. 
Despite this, reducing the resolution of the simulated 
spectra, while proportionally adjusting the network’s 
hyperparameters, results in consistently high testing 
accuracy for spectra modeled with spectral resolutions 
ranging from FWHM of 1 nm (450 bands between 0.4–
0.85 µm, or equivalently, 600 bands in VNIR 0.4–1.0 µm), 
down to 40 nm FWHM (29 bands between 0.4–0.85 
µm, or equivalently, 40 bands in VNIR 0.4–1.0 µm). This 
result indicates that the relevant impacts of atmospheric 
absorption and attenuation on light traversing the atmos-
phere and reflecting off of vegetation remain equally and 
highly identifiable in the VNIR wavelength range with 40 
channels, as it does with 600 channels. Spectra at lower 
resolutions are expected to begin to lose this informa-
tion, but even at resolution as low as 60 nm FWHM with 
the equivalent of only 10 channels in VNIR (7 channels 
between 0.4–0.85  µm), results in maintaining sufficient 
information on atmospheric effects to produce �reflec-
tances with r2 in the range of 80% for the test dataset. 
At resolutions of single digit channels in the VNIR, any 
information on the impacts of the atmosphere on the 
vegetation spectral reflectance are quickly diluted beyond 
recognition, resulting in the incapability of the model as 
it stands to correctly predict the spectral reflectance.

Separating the training (50%), testing (30%), and vali-
dation sets (20%), both for the 1000 simulated spectral 
reflectance and 1440 emission and transmission pro-
files, and combining the sets produces a total of 547,200 
instances. This is significantly fewer than the 1,440,000 
instances that could be generated if the spectral radi-
ance calculation took place prior to separating the sets. 
However, by separating first, it can be guaranteed that 
the model does not encounter either the spectral reflec-
tance or the solar and atmospheric profiles, of which the 
testing spectral radiance is composed, prior to testing. 
This provides confidence in the model’s testing metrics 
being truly reflective of the transferability of the model 
to predict spectral reflectances in atmospheres it has not 
previously encountered. Repeating this process a total of 
10 times, each using separate and unique sets of training, 
validation, and testing instances from the others, shows 
the range and consistency of the performance of the 
model when using 10% of the total available number of 
instances. When the number of available training exam-
ples is further reduced, we find a measurable reduction in 
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the model’s accuracy, which indicates that the model may 
be able to provide greater accuracy if trained and tested 
on the full sample of instances rather than as an ensem-
ble. Naturally, it can also be expected that such a treat-
ment may also result in greater risk of overfitting.

Applying this framework to field obtained ground-
based remote hyperspectral radiance validates that the 
model behaves as expected in terms of producing vegeta-
tion spectral reflectances that contain the known signa-
ture features of the interaction of plants with light in the 
VNIR wavelength range. Training the Enc-Dec CNN on 
synthetic spectral radiance by using the known param-
eters of the sensor, including location, orientation, and 
optics, which resemble the true normalized photon flux 
radiance obtained by the sensor, together with the known 
date and time of image acquisition results in the model 
producing corrected spectral reflectance that demon-
strate the general validity of this framework. Compar-
ing the ratio of predicted spectral reflectance to those 
produced using the Compound Ratio approach, which 
exploits the temporal independence of nearby buildings’ 
albedo, shows that both methods provide results within 
the bounds of the uncertainty ranges. While it is not pos-
sible to extract the true spectral reflectance of vegetation 
from the spectral radiance without explicit, accurate, 
and synchronous knowledge of the solar and atmos-
pheric parameters of each obtained image, the agreement 
between the two methods demonstrates the merit and 
utility of the proposed Enc-Dec CNN framework in a real 
world application.

Sources of uncertainty in the spectral reflectance pre-
diction can be attributed to the difficulty in producing 
perfect analogues for real at-sensor spectral radiance. 
For example, despite the ability of SCOPE to produce the 
spectral reflectance of the vegetation canopy mixed with 
the reflectance of the soil at the bottom layer, the spa-
tial resolution of the sensor together with its horizontal 
orientation and the presence of various materials in an 
urban setting result in numerous potential spectral mix-
ing scenarios that could not be considered in this frame-
work. Furthermore, SCOPE assumes a 1-dimensional 
(vertical) turbid medium canopy, and is thus less adept 
at simulating discontinuous or open canopies. Therefore, 
aside from the apparent process of increasing the abun-
dance of training instances, model performance can be 
enhanced with other means that may address the afore-
mentioned sources of uncertainty. Given that the adjust-
ment of the model towards increased specialization in 
target material results in increased model performance, 
as evident in this study, further restriction of the scope of 
materials addressed by the model to one or a few known 
target species may result in increased prediction accu-
racy. While model specialization may provide prediction 

accuracy enhancement, it provides it at the cost requir-
ing the remodeling of spectra for each specific configu-
ration rather than a generalized approach. Similarly, this 
model may benefit in increased prediction accuracy with 
fewer synthetic instances needed if performed with the 
knowledge of some atmospheric parameters or vegeta-
tion characteristics to reduce the total number of possi-
ble permutations.

Conclusions
In this work, we propose a framework for the extraction 
of vegetation spectral reflectance in hyperspectral remote 
ground-based images in the presence of unknown atmos-
pheric and solar effects. This method relies on using a 
time-dependent encoder-decoder convolutional neural 
network (Enc-Dec CNN), trained and tested using simu-
lated at-sensor spectral radiance produced from com-
bining 1440 unique simulated solar and atmospheric 
profiles, and 1000 different spectral reflectances of veg-
etation with various health indicator values, both pro-
duced using the specialized radiative transfer modeling 
codes SMARTS2 and SCOPE, respectively. The total 
dataset is separated into 10 subsets, each divided into 
independent training, testing, and validation sets, where 
instances between sets differ in both spectral reflectance 
and solar and atmospheric profiles, and 10 separate mod-
els are independently trained, validated, and tested, each 
on one of the synthetic sample subsets. These treatments 
to the simulated dataset are performed to provide confi-
dence ranges for the performance metrics of the model, 
and ensure that the model is being tested for its transfer-
ability to instances it has not previously encountered in 
the training.

For spectra simulated with 600 channels in the VNIR 
wavelength range with a FWHM of 1 nm, the proposed 
method is capable of predicting the deviation of the 
spectral reflectance from the median simulated spec-
trum ( �reflectance) with a testing r2 of 92.0% (±1.0). 
When converted to the spectral reflectance, the model 
results in an r2 of 98.1% (±0.4), where the vast major-
ity of predicted spectral reflectances show r2 = 100% , 
and, when present, errors in prediction are mainly 
confined to wavelengths > 0.75µ m. Furthermore, the 
high performance of this method at predicting �reflec-
tance is consistently sustained at r2 > 90% for spec-
tral radiances captured at reduced resolution, down 
to a FWHM of 40 nm with 40 channels in VNIR. This 
method remains viable, with r2 > 80% down to resolu-
tions of 10 channels in VNIR with FWHM of 60  nm, 
beyond which the information contained in the spectral 
radiances regarding atmospheric composition and veg-
etation spectral reflectance is quickly diluted and lost.
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Therefore, this proposed method is shown to be highly 
adept at accurate and precise solar and atmospheric cor-
rection of vegetation spectral reflectance from remote 
ground-based sensor-measured spectral radiance with-
out explicit knowledge of atmospheric compositions and 
conditions. While focusing a network on solely predict-
ing the spectral reflectance of vegetation,

rather than a variety of different material types, comes 
at the cost of reduced transferability of the trained model 
to predict the spectral reflectance of other materials, 
our results indicate that generating large sets of train-
ing instances that adequately encompass true vegetation 
spectral reflectance yields significant improvements in 
prediction accuracy, suggesting that generating the asso-
ciated tailored simulations and model retraining may 
potentially result in similar model improvements for 
other materials as well.
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