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Abstract 

Background  Measuring stem diameter (SD) is a crucial foundation for forest resource management, but current 
methods require expert personnel and are time-consuming and costly. In this study, we proposed a novel device and 
method for automatic SD measurement using an image sensor and a laser module. Firstly, the laser module gener-
ated a spot on the tree stem that could be used as reference information for measuring SD. Secondly, an end-to-end 
model was performed to identify the trunk contour in the panchromatic image from the image sensor. Finally, SD was 
calculated from the linear relationship between the trunk contour and the spot diameter in pixels.

Results  We conducted SD measurements in three natural scenarios with different land cover types: transitional 
woodland/shrub, mixed forest, and green urban area. The SD values varied from 2.00 cm to 89.00 cm across these sce-
narios. Compared with the field tape measurements, the SD data measured by our method showed high consistency 
in different natural scenarios. The absolute mean error was 0.36 cm and the root mean square error was 0.45 cm. Our 
integrated device is low cost, portable, and without the assistance of a tripod. Compared to most studies, our method 
demonstrated better versatility and exhibited higher performance.

Conclusion  Our method achieved the automatic, efficient and accurate measurement of SD in natural scenarios. In 
the future, the device will be further explored to be integrated into autonomous mobile robots for more scenarios.

Keywords  Measurement, Forest inventory, Laser module, Image sensor, Deep learning

Background
Stem Diameter (SD) is a key parameter for estimating 
standing timber volume [1], assessing economic value 
[2], and planning silvicultural interventions [3]. Larger 
trees are normally measured using the diameter at breast 
height (DBH) [4, 5], whereas for trees below breast height 

including multi-stemmed trees [6], shrubs [7] and sap-
lings [8], measurements are generally taken below the 
most common location where the stem section forms 
multiple leaders [5, 9]. In such vegetation, the traditional 
methods of measuring SD require trained personnel to 
determine the location and angle of the measurement. 
Automatic and cost-effective methods of measuring have 
become much-needed tools for forest inventories.

The main challenge in automatically measuring DBH 
of individual tree largely lies in the limitations of con-
ventional measurement methods. In earlier studies, 
foresters manually measured trees using altimeter, tape 
measure, and diameter tape [10–12]. These methods are 
relatively reliable and low-cost, but they are also time-
consuming, labor-intensive, and error-prone [13–16]. 
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Other studies have compared and evaluated differ-
ent manual measurement methods, such as the angle 
gauge [17], Bitterlich sector fork [18, 19], electronic 
tree measuring fork [20] and Bilt-more stick [21]. The 
measurement method based on projection geometry 
improves the efficiency. However, the accuracy of the 
device depends on the forester experience, and addi-
tional auxiliary tools are required to indicate altitude 
[10, 22]. Similarly, some methods were designed based 
on optical measurement principles such as optical 
calipers [23, 24], optical forks [25]. The measurement 
uncertainty increases with DBH. The inaccessibility of 
the target area and the limitations of the device accu-
racy constrain the application of above methods.

Some semi-automatic methods based on light detec-
tion and ranging (LiDAR) have gained popularity 
recently. Terrestrial laser scanning (TLS) is proved to be 
a promising solution for deriving DBH from TLS data 
through either direct geometric fitting or tree stem mod-
eling and separation [26–29]. The advantage of TLS data 
is that it can capture forest data in detail and enable time 
series analysis. However, the device is high-cost, complex 
data processing and demands high expertise [30]. Back-
pack and vehicle-based LiDAR systems are spatially flex-
ible [31, 32], but vehicle-based LiDAR is constrained by 
difficult terrain and available roads, while the stability of 
backpack LiDAR system is affected by irregular move-
ment. Despite the acceptable accuracy of LiDAR-based 
methods, automation of these methods still faces the 
challenges of cost of hardware, complexity of data pro-
cessing, and portability.

To achieve high automation in acquiring tree structure 
information, close-range photography technology and a 
segmentation and fitting algorithm based on point cloud 
data are widely applied. However, some challenges still 
exist. The automated methods to generate dense point 
clouds for estimating DBH using close-range photog-
raphy are attempted, but are susceptible to light condi-
tions [33–35]. Gao et al. [29] modeled the forest based on 
structure from motion photogrammetry to automatically 
estimate DBH by circular fitting. The method is economi-
cal but not applicable to scenarios with deviations in tree 
and circularity. Machine vision methods can obtain the 
pixel size of objects from rich image information. Wu 
et  al. [36] used machine vision and close-range photo-
grammetry to measure the DBH of multiple trees from 
an image taken by a smartphone. The method is conveni-
ent, efficient and has great potential for development to 
bring to a wide range of users. However, the coordinate 
system conversion in photogrammetry is very compli-
cated and cannot guarantee the accuracy of transforma-
tion from 2D images to 3D coordinates [37]. The tree tilt 

angle, ground slope and photographic distance limit its 
use in daily practice.

This paper aims to achieve automated stem diame-
ter measurements by integrating a laser module and an 
image sensor. It also considers relevant factors to reduce 
the professional and economic costs of the method. The 
accuracy of the method is evaluated and analyzed in dif-
ferent scenarios to verify its generality and feasibility.

Materials and methods
Device description
The device proposed in this paper is used to estimate the 
stem diameter of trees in the field, including image sen-
sor, laser module, development board, stepper motor, 
GPS receiver, touch screen, and acrylic board. The image 
sensor was used to capture panchromatic images of the 
target tree while the laser module formed a fixed size 
spot on the tree trunk. Then, analysis module calculated 
the panchromatic image to obtain the SD. The device is 
highly integrated, eliminating the need for tripods and 
other external auxiliary devices (Fig. 1). Table 1 lists the 
core parameters of the laser module and image sensor 
used in this device.

The development board has an embedded system 
module with a GPU and CPU built-in. When the device 
is running, the embedded system module reads live 
video from the image sensor interface and displays it on 
the touch screen. The image sensor and the laser mod-
ule are coaxial. The horizontal angle between the image 
sensor and the optical axis of the laser module is fixed. 
The laser module is situated right above the image sen-
sor and is controlled by a stepper motor that rotates at a 
modest speed. When the spot emerges on the tree trunk, 
the operator clicks a touch screen button to capture an 
image of the target tree. In order to avoid repeated meas-
urements, the GPS receiver is in charge of recording the 
location of the target tree.

Workflow
The logical structure of our automated approach consists 
of three parts (Fig.  2), i.e., the spot detection algorithm 
(SDA), our improved U 2-Net, and the analysis module. 
The SDA provides reference information for the analysis 
module and key point information for our improved U 2
-Net. Our improved U 2-Net obtains visual saliency map 
and segments trunk contour. Finally, the analysis module 
combines the reference information and the trunk con-
tour information to calculate the SD.

Algorithms
SDA
The SDA is proposed to retrieve the location of the spot 
centroid and to calculate the number of pixels in the 
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spot diameter. Reducing the impact of lighting noise on 
the algorithm of panchromatic images is a key issue [38, 
39]. The angle α between the image sensor and the laser 
module also causes the spot to form a slight distortion in 
original image. Therefore, SDA keeps the image features 
invariant during processing by constructing a pixel coor-
dinate system, and detects the spot by multi-scale images 
and circular fitting methods.

SDA establishes a pixel coordinate system for the 
original image, which is composed of black and white 
regions (Fig. 3a). The gray areas are the uneven lighting 
conditions, the yellow area is the spot, and the white 
areas are the backgrounds. We perform an opening 
operation on the original image. The opening opera-
tion is divided into two steps: first, erosion is used 
to eliminate small blobs. Then, the dilation is used to 
regenerate the size of the original object. The difference 
between the original image and the image after the 
opening operation is represented by the circular struc-
tural elements (CSE). The CSE include the spot and the 
disturbing factors. To remove the disturbing factors 
close to the image edge, each image is cropped to 15/16 

of the original scale, and the output is shown in Fig. 3c. 
In order to balance the enhancement of the spot with 
the suppression of disturbing factors, we only iterate on 
the above steps twice.

The spot is usually an isolated spot after morphologi-
cal processing and is closest to the center of the image 
compared to most disturbing factors. Retrieving the spot 
from the CSE is the key to SDA. The algorithm consid-
ered in most of this study is based on the argument of the 
minimum problem, as shown in Eq. 1.

where S is the centroids of CSE. When the distance 
between factor x and the image centroid is minimum, the 
minimum value can be obtained in linear space F. The 
cropping operation of the algorithm changes the posi-
tion of the spot. In order to keep the invariance of the 
image features, the variable � is introduced in the calcu-
lation process for computing the optimal solution �∗(x) , 
as shown in Eq. 2. C(x) is the centroid coordinate of the 
image.

(1)arg min
x∈S

�F(x)�,

Fig. 1  The structure of the developed device, including image sensor, laser module, development board, stepper motor, GPS receiver, touch screen, 
and acrylic sheet. The battery is embedded internally. The housing of the device is made of acrylic sheet
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The mathematical distribution of grayscale values in the 
original images was explored in order to separate spot 
and disturbing factors more precisely, as shown in Eq. 3.

where N is the number of pixels with pixel value p, µ is 
the mean, and σ is the standard deviation. Pixels of dif-
ferent nature are labled by thresholds during processing. 

(2)�∗(x) := F(x)+ �C(x).

(3)p ∼ N (µ, σ),

The pixel values p greater than the threshold are assigned 
as η . Others are set to 0 (Eq. 4).

The gray value of the spot in the image decreases in a 
gradient from the centroid to the edge [40, 41]. The SDA 
selects the pixel points in the region with large variation 

(4)p =





η, if p >

1

2
η + µ,

0, otherwise.

Table 1  Core parameters of the device components

Module Core parameters Values

Image sensor Image size 1920  × 1080 pixels

Focal length 6.00 mm

Image sensor type CMOS

Vertical field of View 60◦

Infrared filter 980 nm Narrow Band

Price $ 32.83

Laser module Wavelength 980 nm

Spot size 3.00–30.00 mm

Output power 300 mw

Angle of divergence 1.05◦

Working distance 0.05-30.00 m

Price $ 27.07

Development board CPU H2 Quad-core Cortex-A7 
H.265/HEVC 1080P

GPU Mali400MP2 GPU @600MHz

Memory(SDRAM) 512MB DDR3

Power supply 5V 3A

Price $ 22.21

Stepper motor Actual rated input voltage 3 V–5 V

Speed 15 RPM

Motor size 16.0 mm * 12.0 mm * 9.9 mm

Price $ 0.50

GPS receiver Voltage 5 V

Size 48.0 mm * 35.0 mm * 13.5 mm

Receiving mode GPS,BeiDou

Price $ 3.50

Touch screen Resolution 320*480 DOTS

Interface HDMI

Price $ 8.26

Acrylic sheet Thickness 2 mm

Width 300 mm

Length 200 mm

Price $ 0.56

Battery Capacity 3000 mA

Voltage 5 V

Price $ 9.07
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of light intensity as the composition of linear space Ŵ(y) . 
The least squares method performs circular fitting on the 
linear space Ŵ(y) of the optimal solution �∗(x) and esti-
mates the pixel size of spot diameter S′ , as shown in Eq. 5.

In Eq. 5, k is the number of vectors in linear space Ŵ(y) . 
The larger the n, the more accurately the circle is fitted. 
Therefore, we experimentally obtained the convergence 
values n to make the value of the linear space Ŵ(y) finite 
(Fig. 3d).

Our improved U 2‑Net
Compared to most state-of-the-art networks such as 
DPNet [42] and RCSB [43], the U 2-Net has low memory 
and computational requirements [44]. The U 2-Net is a 
two-level nested U-shaped structure that can keep the 

(5)S′ =
2

k
�Ŵ(y)−�∗(x)�2.

image features unchanged. The ReSidual U-block (RSU) 
module at the bottom level is designed to integrate recep-
tive fields at different scales to capture more contextual 
information at different scales, while the top level ensures 
depth and reduces computation [44].

The input feature map x is converted into an interme-
diate map F(x) in the weight layer. In Fig. 4a, U-block is 
a U-net-like symmetric encoder-decoder structure that 
learns to extract and encode the multiscale contextual 
information U(F(x)) from the intermediate feature map 
F(x), where U represents a U-net-like structure. The RSU 
module has a residual connection of multi-scale features 
and local feature fusion, which can be represented as 
U(F(x))+ F(x) . Due to the complex natural environment 
and high-resolution images, the larger the receptive field 
of RSU module is, the richer the local and global features 
will be. Otherwise, the computational redundancy will be 
increased. The output features of SDA provide the RSU 
module with information about the spot. Therefore, we 

Fig. 2  Workflow diagram of the device, including three sub-processes: the spot detection algorithm (SDA), our improved U 2-Net, and the analysis 
module
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add the Attach module, which extracts the local atten-
tion feature x1 of input feature map x (Fig.  4b). Our 
Attach-ReSidual U-block (A-RSU) has a novel residual 
connection which fuses local attention features and 
the multi-scale attention features by the summation: 
U(F(x1))+ F(x1).

The six stages encoder of U 2-Net consists of n RSU 
( n = 6 ), with different RSU processing feature maps 
at different spatial resolutions [44]. We extract the area 
around the spot centroid as local feature map x′ to be 
input into the different A-RSU, respectively. The rela-
tionship between the local feature map x′ and the input 

feature map x is shown in Eq.  6. Where H, W are the 
height and width of input feature x, respectively, and H ′

m , 
W ′

m are the height and width of the m-th local feature 
map x′.

The structure of the Attach module consists of four con-
volutional layers and the matrix multiplications (Fig. 4c). 
First, the local feature map x′ are linearly mapped to 
obtain three features, and the three features are reshaped. 
Then, the matrix multiplication is applied to the features 

(6)
H ′
mW

′
m

HW
=

m

n

Fig. 3  Diagram of circular structural elements in the spot detection algorithm (SDA) and their variation in the coordinate system. The gray is 
uneven light, the yellow represents the spot and the black is the disturbing factor. a The original image and its coordinate system. b The original 
image and coordinate system after opening operation. c Cropped image and coordinate system. d Spot position image and coordinate system

Fig. 4  Comparison of the ReSidual U-block (RSU) and our Attach-ReSidual U-block (A-RSU). a RSU. b A-RSU. c Attach
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output from conv1 and conv2. The features output from 
the matrix multiplication are further applied to the 1× 1 
convolution to recover the dimensionality of the features. 
Finally, the result of matrix multiplication of the output 
from conv4 and conv3 is added to the input feature map 
x, and then output x1.

We trained our improved U 2-Net on the trunk data-
set of 1600 images created by ourselves, which consisted 
of 800 panchromatic images and 800 ground truth. The 
ground truth has the same spatial resolution as the pan-
chromatic images, with either the pixel value of 0 or 255. 
The 255 indicates the foreground salient object pixels, 
while the 0 indicates the background pixels (Fig. 5). The 
Adam optimiser [45] and hyper parameters [44] are set 
to default values (initial learning rate = 1e − 3 , betas = 
(0.9, 0.999), eps = 1e − 8 , weight decay = 0). After 1000 
iterations (batch size = 64), the loss function has con-
verged. In the training process, our training loss function 
is defined as:

where lmside is the loss function of the side saliency map 
and lmfuse is the loss of the final fusion output saliency map 
of our A-RSU. ωm

side and ωm
fuse are the weights of each loss 

term. In addition, an weight φm is added in this study to 
improve the adaptability of the loss term. The smaller the 
resolution of the local feature map x′ , the higher the 
probability that the Attach module captures valid infor-
mation. The weight φm is determined based on the reso-
lution proportion of the local feature map x′ and the 
input feature map x.

(7)L =

M∑

m=1

ωm
sidel

m
sideφ

m + ωm
fusel

m
fuse

For the case when the local feature map x′ and the input 
feature map x are the same, we keep the original weights 
as shown in Eq.  8. R(x′m) is the resolution of the m-th 
local feature map and R(x) is the resolution of the input 
feature map x. Finally, the final fused features are used as 
the output of the model.

Analysis module
The analysis module of our method is shown in Fig. 6. The 
SD is calculated from the tree trunk contour information 
(object properties, pixel width) extracted by our improved 
U 2-Net and spot diameter. S is the SD and R is the spot 
diameter. S′ and R′ are the SD in pixels and spot diameter 
in pixels mapped to the image, respectively. d represents 
the distance between the device and the target tree. h is 
SD height. The α is the angle formed by the image sensor 
and the spot. The slight optical distortion caused by α (91◦ ) 
hardly affects the SD calculation.

In the photogrammetry principle and projective geom-
etry theory, the relation of S, S′ , R and R′ can be expressed 
as Eq. 9.

For the measurement of tree DBH, the height in pixels h′ 
can be calculated as in Eq. 10.

(8)φm =

{
1−

R(x′m)
R(x) , n < m,

1, n = m

(9)
S′

S
=

R′

R

(10)
h′

R′
=

h

R

Fig. 5  Training and testing of our improved U 2-Net
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Fig. 6  Diagram of the device for SD measurement. The laser module is parallel to the ground, and the image sensor is coaxial with the laser 
collimator

Fig. 7  The study area includes three regions in Beijing, China, where blue indicates the provinces. a–c are the geographical distribution in Google 
Earth imageries, and Plot 1, Plot 2, and Plot 3 are the field images respectively
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Experimental data
The experimental data were primarily obtained from 
three areas in Beijing, China, i.e., transitional wood-
land/shrub, mixed forest, and green urban area (Fig. 7). 
Transitional woodland/shrub is in Changping Dis-
trict ( 116◦27′N  , 40◦08′E ), including Styphnolobium 
japonicum, Koelreuteria paniculata, and Buxus sinica, 
dominated by saplings and shrubs, with flat ter-
rain. Mixed forest is in Chaoyang District ( 116◦22′N  , 
40◦00′E ), including Ginkgo biloba, Pinus tabuliformis, 
and Acer truncatum, with rugged terrain and difficult 
to approach in some areas. The green urban area is in 
Haidian District ( 116◦21′N  , 40◦00′E ), including Robinia 
pseudoacacia (L.) and Lonicera maackii, dominated by 

trees with shrubs, with overall flat terrain and undulat-
ing in some areas.

In the field measurements, we take tape measure data as 
reference values to evaluate the accuracy of our method. 
The distribution of measurement data is shown in Fig. 7. 
In the transition woodland/shrub, 129 trees were meas-
ured, with the largest proportion of trees with SD ranging 
from 7.50 cm to 15.50 cm. 355 trees were measured in 
the mixed forest, with a height of 1.30 m and the larg-
est proportion of trees with SD ranging from 11.50 cm 
to 61.50 cm (Fig. 8). 42 trees were measured in the green 
urban area, with different types of trees measured at dif-
ferent heights. The largest proportion of SD was between 
11.50 cm and 31.50 cm (Fig. 8). The operator keeps the 

Fig. 8  The frequency distribution of stem diameters in field measurements, where (a–c) correspond to three areas of transitional woodland/shrub, 
mixed forest, and green urban area, respectively

Fig. 9  Illustration of measurements of our method for different stem diameters, where the shade on the trunk affects the calculation results. The 
rotation of the laser module creates visible spots on different trees



Page 10 of 16Wang et al. Plant Methods           (2023) 19:68 

acrylic sheet at the bottom of the device parallel to the 
ground. The laser module and image sensor are con-
trolled by stepper motors rotating horizontally at a mod-
est speed, allowing multiple trees to be measured at one 
site (Fig. 9). In transition woodland/shrub, we mark the 
measurement locations manually on the touch screen. 
The analysis module in our method calculates the SD of 
saplings or multi-stemmed trees combining the measure-
ment locations. In mixed forest and green urban area, we 
do not need to mark measurement locations.

Evaluation metrics
In this study, the primary interest is to evaluate the per-
formance of our method in different scenarios. For this 
purpose, different experiments were designed to verify 
the effectiveness of our method process and results. We 
introduce structural measurement ( Sm ) to evaluate struc-
tural similarity [46], enhanced-alignment measurement 
( Em ) to evaluate global statistics and local pixel matching 
information [47], and F-measure ( Fm ) to evaluate image-
level accuracy. F-measure calculation is shown in Eq. 11. 
The precision P and recall R are two metrics widely used 
in computing to evaluate the quality of results. P is the 
precision of a model, while R reflects the completeness of 
a model. Fm is a weighted summation average of P and R. 
β represents parameter.

In addition, Eq. 12 is introduced to improve the adequacy 
of evaluation measures for trunk contour images [48], 
where ω is the weight.

To compare the differences between reference and meas-
ured values, relative error (RE), root mean square error 
(RMSE), mean squared error (MSE), mean absolute error 
(MAE), and the coefficient of determination ( R2 ) are cal-
culated by the Eq. 13. The RE is the ratio of the absolute 
error of the measurement to the actual SD Si multiplied 
by 100%. The number of samples is num. Si denotes the 
i-th calculated SD. Ŝ denotes reference values.

(11)Fm = (1+ β2)×
P × R

β2 × P + R

(12)Fω
m = (1+ β2)×

Pω × Rω

(β2 × Pω)+ Rω

(13)






RE =
|Si−�S|
Si

× 100

MSE = 1
num

�num
i=1 (Si −

�S)2

RMSE =

��num
i=1 (Si−�S)2

n

MAE = 1
num

�num
i=1 | (Si − �S) |

R2 = 1−
�

i(
�S−Si)

2

�
i(S̄−Si)2

Results
Trunk identification evaluation
In the accuracy evaluation results of model, U 2-Net 
results in MAE is 0.99× 10−2 , Sm is 0.96, Fω

m is 0.96, 
and mean Em is 0.97. Our improved model has MAE of 
0.76× 10−2 , Sm of 0.98, Fω

m of 0.99, and mean Em of 0.99 
(Fig.  10). Among the 526 samples obtained in the field 
measurements, only four samples in which occlusion 
affected the accuracy of trunk contour identification, fur-
ther affecting the results of SD measurements (Fig.  10). 
Overall, most of the samples can be accurately identi-
fied, with only four images producing significant devia-
tions of +23 pixels, -25 pixels, +27 pixels, and +24 pixels, 
respectively.

Field measurements
We compared the measurement deviations in differ-
ent plots (Fig. 11, Table 2). The SD in the transition for-
est area/shrub ranged from 2.00 cm to 24.00 cm, with a 
MAE of 0.32 cm. Eight trees out of 129 had an absolute 
deviation greater than 0.80 cm and the minimum devia-
tion was 0.11 cm. The SD in the mixed forest ranged from 
10.00 cm to 82.00 cm, with MAE of 0.38 cm. The maxi-
mum absolute deviation was 1.34 cm out of 355 trees, 
with the minimum absolute deviation being 0.10 cm. The 
SD of one tree in the green urban area was 89.00 cm. The 
other trees ranged from 8.00 cm to 48.00 cm, with a MAE 
of 0.39 cm, with no significant difference.

To evaluate the correlation between the measured 
and reference values, linear regression and correla-
tion analyses were done in different plots (Fig.  12). The 
results showed that the measured and reference values 
were significantly correlated. The MAE, MSE, RMSE and 

Fig. 10  Comparison of the relative error of U 2-Net and our improved 
U 2-Net
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R2 indicated that the measured values were close to the 
reference values (Table  2). We also excluded the four 
samples with significant differences and performed inde-
pendent sample t-test on the overall sample. p was less 
than 0.01 at significance level equal to 0.05. There was no 
significant difference between the measured and refer-
ence values.

Optimal spot size
To verify the effect of spot size on measurement accuracy, 
a standard cylinder of 12  cm diameter was tested using 
different spot sizes. We found that spot sizes of 3 mm and 
30 mm resulted in the lowest relative error (Fig. 13). With 
this in mind, we use a 3  mm spot size laser module in 
transitional woodland/shrub. For mixed forest and green 
urban area, we use laser modules with the 30  mm spot 
size, as most trees are larger than 10 cm.

Discussion
Characteristics of the device
We developed a device based on image sensor and laser 
module to estimate SD of individual tree and evaluate 
the accuracy of measurements by comparing their corre-
sponding field measurements. Different from the work of 
Fan et al. [49] and Song et al. [37], the collimated beam 

emitted by the laser module keeps the spot shape con-
stant in natural scenes and can be used as a reference and 
anchor point. Image sensor can retain texture and shape 
features in images. This study evaluated the accuracy of 
the measurement method in different natural scenarios. 
The results show that our device can automatically locate 
the measurement position and measure SD with high 
accuracy.

Our device is designed not to preserve the color char-
acteristics and spatial relationship characteristics of the 
image. Many image-based devices measure spatial rela-
tionships among trees and tree height in addition to DBH 
[36, 50, 51]. Some studies use the color features of the 
images for tree species recognition [52, 53]. In contrast 
to these studies, our device focuses on SD measurements.

Influence of the natural scenarios on the method
The two key steps in measuring SD in the field are local-
izing and estimating the diameter. Fan et  al. [49] deter-
mined the measurement position by manually obtaining 
the base point of the target tree, while Wu et  al. [36] 
determined it by using the spatial relationship features of 
the image and the complex algorithm of coordinate sys-
tem transformation. In transitional woodland/shrub, the 
spot with 3.00 mm diameter was adopted as a reference 

Fig. 11  Deviation between the measured SD and the reference value measured by the tape measure
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to calculate the SD. The measurement position was 
determined using the significant change in trunk con-
tour width. For mixed forests and green urban areas, the 
measurement location was determined based on a lin-
ear relationship between spot diameter (30.00 mm) and 
measurement height. In addition, the spots with wave-
lengths of 680 nm and 980 nm were compared during 
the measurement. The spot with a wavelength of 980 nm 
could fit the perception of a digital camera. The spot with 
a wavelength of 680 nm was difficult to avoid the interfer-
ence of direct sunlight.

Uneven lighting conditions on trees can lead to obvi-
ous errors in tree contour extraction. Only texture and 
shape features of the image are retained in the panchro-
matic images, which can well avoid this problem. In addi-
tion, bark surface grooves, unevenness, color differences, 
and ambient lighting conditions are all factors that affect 
the ability of the algorithm to extract salient image fea-
tures. Our improved U 2-Net extracted the contour of the 
tree, the u-shaped structure could keep the output scale 
and input scale consistent. A-RSU module could over-
come the influence of similar texture on model extraction 
(Fig. 10).

The analysis of major error sources
As can be visually observed in Table 2, Figs. 11, 12, there 
is a strong relationship between the reference and meas-
ured values, where MAE is 3.60 mm and RMSE is 4.50 
mm. In many previous studies, the results of SD calcu-
lations varied widely. Bayati et  al. [54] performed 3D 
reconstruction of trees using near-earth photography 
combined with remote sensing and computer vision 
technology. The RMSE of measured DBH was 52.00 mm 
and relative bias was 0.28. Mulverhill et al. [55] obtained 
highly overlapping spherical images from different loca-
tions by two 12-megapixel cameras to generate high-
quality point clouds for each target location. The RMSE 
of measured DBH was estimated to be 48.00 mm and rel-
ative bias to be 0.20. Ucar et al. [56] estimated the DBH 
of trees based on the iPhone X (Apple Inc.) and meas-
urement app, and the average deviation is 3.60 mm at a 
distance of 1.50 m from the tree. Wu et  al. [36] photo-
graphed multiple trees with smart phones and extracted 
tree contours by visual segmentation method. The 
measured DBH produced RSME of 2.17 mm and MAE 
of 15.10 mm. Song et  al [37]. constructed an integrated 
device of digital camera and LiDAR and RMSE of meas-
ured DBH of 3.07 mm and bias of 0.06 mm. The accu-
racy of our method is consistent with most image-based 
measurement methods (Fig. 11).

The data in this study were obtained from natural 
scenarios, and 96.60% of the DBH values were between 
2.00 cm and 60.00 cm. Among them, 0.01% had a devia-
tion greater than 1.00 cm (Fig. 11). The error would not 
increase with increasing SD. The overall trend was con-
sistent with many studies [36, 37, 57]. The uncertainty of 
the measurement error comes largely from the shading 
object. In addition, the diffraction of light and the angle 
of the beam to the trunk are also factors that affect the 
accuracy of the measurement.

The detection of target tree contour is also a crucial 
factor affecting the measurement accuracy. U 2-Net can 
process high resolution images with lower memory and 
computing costs to make the network deeper and provide 
excellent performance in complex environments. In our 
study, the U 2-Net can extract tree contours accurately. 
However, when it comes to processing semantic informa-
tion, U 2-Net achieves sub-optimal performance. When 
there are branches, leaves or other shielding objects on 
the target tree, U 2-Net will have obvious object detection 
errors. In order to solve this problem, we added an Attach 
module to enhance its attention mechanism through the 
spot location of SDA. In addition, the number of training 
samples is also a factor affecting significant target detec-
tion. Although 1,600 images were used for training, the 
limited number of samples limited the detection capabil-
ity of our improved U 2-Net. In the future, more data of 

Table 2  Measurement accuracy at different measurement 
locations

MAE (cm) MSE (cm) RMSE (cm) R
2

Transitional woodland/
shrub

0.32 0.16 0.40 0.9947

Mixed forest 0.38 0.21 0.46 0.9994

Green urban area 0.39 0.22 0.47 0.9993

All stems 0.36 0.20 0.45 0.9995

Fig. 13  Effect of different spot sizes on the measurement accuracy of 
a standard cylinder with a diameter of 12 cm
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different tree species should be collected and attention 
mechanism should be further developed.

Application scenarios of the device
In the field measurement, factors such as weight and eco-
nomic cost of the device are important factors in device 
selection. In this section, we compare the weight, eco-
nomic cost, integration, and measurement range of the 
method and provide some suggestions for application 
scenarios.

Weight of device. The total weight of our device is 0.28 
kg. The weight of LiDAR is between 0.20 kg and 15.00 kg. 
The weight of digital camera ranges from 0.30 kg to 0.80 
kg. In previous work, the weight of the device of Ma et al. 
[58] is about 3.00 kg. The device of Song et al. [37] is only 
about 0.60 kg. The weight of our device is minimal rela-
tive to these devices, making it easy for foresters to meas-
ure and carry.

Economic cost. The cheapest measuring device used in 
nursery survey work is a tape measure, which usually 
sells for about 5.00 dollars. The price of LiDAR tends to 
be proportional to the measurement accuracy and range, 
usually above 23,000.00 dollars. The total cost of the 
device for Song et al. [37] was about 2,000.00 dollars. The 
economic cost of passive measurement methods using 
smartphones, on the other hand, is between about 300.00 
dollars and 3,000.00 dollars [36, 58]. The hardware cost of 
our device is $104.00 and the core module is $59.00.

Device integration. The image sensor and laser module 
are both economical and integrated. The model size of U 2
-Net is 4.70 MB, the inference speed is 40 FPS, and the 
SDA is only 0.50 MB. The method meets the conditions 
and limitations of running on a development board or 
Raspberry Pi. Further weight reduction and significant 
cost reduction will be achieved in the future with the 
mass production of the equipment.

Measuring range. The device is able to work under differ-
ent lighting conditions and complex environments, and 
the working distance of 1.50 m to 10.00 m can ensure 
the accuracy of the device in measuring SD. For saplings, 
shrubs and multi-stemmed trees, close measurements 
are best. For measuring DBH of trees, measuring at a dis-
tance of 5.00 m from the target tree can ensure a balance 
of accuracy and efficiency.

Application scenarios. Our device reduces operational 
or computational errors and significantly improves 
measurement efficiency compared to conventional tape. 
Unlike LiDAR and other photogrammetric means, our 

device does not measure tree SD at the plot level. Based 
on the explicit purpose of the device development, our 
device is focused on SD measurements of trees in forests. 
It is worth mentioning that the device can be applied 
to similar forestry or agricultural scenarios, such as SD 
measurement of trees along urban roads [59].

Limitations
Our method is not adapted to large scale measurement of 
SD of trees. Moreover, the measurement of stem diame-
ter of irregular trees is a challenge, such as trees that lean 
or have roots above the ground. In addition, the effect of 
the physical properties of the laser on the measurement 
accuracy is a topic that deserves to be explored.

Conclusion
In this paper, we presented a novel device and method 
to measure SD of trees in natural scenes based on deep 
learning and a low-cost laser module. We explored the 
generality and automation of the method in depth and 
compared it with conventional methods. Our method 
requires less human intervention and can perform auto-
matic SD measurement without touching the trees. We 
proposed an algorithm for spot detection to provide ref-
erence information for SD calculations and improved 
the U 2-Net to more accurately determine the linear 
relationship between spot and trunk contour. The field 
measurement results showed that our method achieved 
acceptable accuracy with MAE, MSE, and RMSE of 0.36 
cm, 0.20 cm, and 0.45 cm, respectively. However, some 
factors such as shading still limited the measurement 
accuracy of the method. In the future, we will explore 
more rigorous image-based measurement models and 
obtain more forest structure parameters.
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