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Abstract 

Background Cunninghamia lanceolata (Chinese fir), is one of the most important timber trees in China. With the 
global warming, to develop new resistant varieties to drought or heat stress has become an essential task for breeders 
of Chinese fir. However, classification and evaluation of growth status of Chinese fir under drought or heat stress are 
still labor-intensive and time-consuming.

Results In this study, we proposed a CNN-LSTM-att hybrid model for classification of growth status of Chinese fir 
seedlings under drought and heat stress, respectively. Two RGB image datasets of Chinese fir seedling under drought 
and heat stress were generated for the first time, and utilized in this study. By comparing four base CNN models with 
LSTM, the Resnet50-LSTM was identified as the best model in classification of growth status, and LSTM would dra-
matically improve the classification performance. Moreover, attention mechanism further enhanced performance of 
Resnet50-LSTM, which was verified by Grad-CAM. By applying the established Resnet50-LSTM-att model, the accuracy 
rate and recall rate of classification was up to 96.91% and 96.79% for dataset of heat stress, and 96.05% and 95.88% for 
dataset of drought, respectively. Accordingly, the  R2 value and RMSE value for evaluation on growth status under heat 
stress were 0.957 and 0.067, respectively. And, the  R2 value and RMSE value for evaluation on growth status under 
drought were 0.944 and 0.076, respectively.

Conclusion In summary, our proposed model provides an important tool for stress phenotyping in Chinese fir, which 
will be a great help for selection and breeding new resistant varieties in future.

Keywords Cunninghamia lanceolata, CNN-LSTM, Attention mechanism, Drought stress, Heat stress

Introduction
Background
 With global warming, drought and extremely high tem-
perature events have become more and more frequent 

in southern China. Higher temperatures and less rainfall 
caused by global warming will lead to extreme weather 
events (e.g., droughts and high temperatures) in the 
future [1]. Many studies have indicated that drought 
and high temperature were important environmental 
stresses affecting tree growth, development and distri-
bution, and even forest ecosystems and biogeographic 
processes [2–4]. Cunninghamia lanceolata (Chinese fir), 
an evergreen coniferous tree mainly distributed in south-
ern China [5], is one of the most important timber trees 
with great commercial value due to its fast growth rate, 
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high yield, high quality and pest resistance [6, 7]. How-
ever, frequent occurrences of extreme drought and high 
temperature events are becoming great risks for growth 
and biomass production of Chinese fir [8–10]. Therefore, 
it is an important subject to select or breed drought and 
high temperature resistant varieties for breeders of Chi-
nese fir. Although there was a long breeding history, arti-
ficial selection on stress-resistant varieties of Chinese fir 
still relies on expert visual observation and physiological 
measurements [8, 11], which are time-consuming, labor-
intensive, costly and prone to human error. To develop an 
efficient, automated and accurate method for evaluation 
and classification on growth status is of great significance 
to stress-resistant varieties selection and breeding in Chi-
nese fir.

Computer vision-based phenotyping provides a sim-
ple, rapid, and highly automated method for evaluation 
and classification on plant physiological and growth sta-
tus [12–14]. Especially the emergence of convolutional 
neural networks (CNN) makes plant phenotyping under 
different stresses more and more efficient and automated. 
CNN and CNN-based methods have been widely applied 
in related works. For instance, Lin et al. [15] proposed a 
semantic segmentation model based on CNN to detect 
the powdery mildew on cucumber leaf images at pixel 
level, achieving an average pixel accuracy of 96.08%. Sel-
vam and Kavitha classified leaf image into three catego-
ries namely healthy, disease and leaf burn in lady finger 
(Abelmoschus esculentus) with a custom CNN architec-
ture, which achieved 96% classification accuracy [16]. 
And, deep neural network was applied to detect wheat 
head in real time with average precision of 94.5% [17].

Although single CNNs have great performance in 
classification and segmentation of images, they are not 
appropriate for images from dynamic systems, such as 
time-series image datasets acquired from the whole 
growth period. For plant growth, temporal informa-
tion, such as growth patterns, is one of the key fac-
tors in understanding plant resistant capacity to stress 
and should be taken into account. This problem can be 
solved by using recurrent neural networks (RNN). In 
particular, long short-term memory (LSTM) has a very 
good performance in analyzing dynamic information 
[18–20]. Conjunction of CNN and LSTM could inte-
grate spatial and temporal information from process-
ing signals to help predict plant growth status more 
precise. CNN-LSTM predictive methods have been 
widely applied in the field of botany research and agri-
culture. Namin et  al. [21] combined CNN and LSTM 
for the classification of various Arabidopsis genotype, 
Abdalla et  al. [22] applied Inceptionv3-LSTM frame-
work to diagnose the nutritional status of oilseeds in 
the field. Turkoglu et  al. [23] proposed Multi-model 

LSTM-based Pre-trained Convolutional Neural Net-
works (MLP-CNNs) as an ensemble majority voting 
classifier for the detection of plant diseases and pests. 
Chang et  al. [24] successfully constructed and trained 
deep-learning models based on the deep convolution 
neural network (DCNN) and LSTM for the nitrogen 
nutrition diagnosis of muskmelon.

On the other hand, traditional deep neural networks 
often failed to accurately locate and extract the dis-
criminative regions of interest when processing images, 
especially for the plant images, which greatly affects the 
classification and detection accuracy of images [25] [26]. 
The attention mechanism (AM) in deep learning, which 
is similar to visual attention of human, could selectively 
focus on the target area of interest and ignoring the irrel-
evant regions of the image [26–28], and then invests 
more attention resources in the target area to improve 
the accuracy image processing. Thus, the attention mech-
anism has been used to improve and optimize the deep 
neural network architecture. Zhang et  al. [29] used the 
attention mechanism in natural language processing, 
which greatly improved the translation accuracy. Zhang 
et al. [26] successfully classified flower images by embed-
ding spatial attention module and channel attention 
model in Xception structure. Zeng et al. [30] proposed a 
Self-Attention Convolutional Neural Network (SACNN), 
which effectively extracts features of disease spots to rec-
ognize crop diseases.

Many deep neural models have been proposed to clas-
sify and evaluate the growth status of diverse broad-
leaved plants [31–33]. As a conifer tree, Chinese fir has 
thin, needle-like and waxy leaves, which are completely 
different from broad leaves. The phenotypic changes 
of Chinese fir plants under stresses, such as changes in 
needle color and degrees of leaf wilting, are distinctly 
different to those broad-leaved plants. Those deep neu-
ral models fitting for broad-leaved plants are not suitable 
for needle-leaved tree, such as Chinese fir. It is still a big 
challenge to classify and evaluate the growth status of 
Chinese fir under different stresses through deep neural 
networks. In addition, the model should overcome the 
interference caused by the appearance similarity of differ-
ent status. Considering the great importance of Chinese 
fir in timber industry of China, and the potential negative 
impact of climate change and global warming on produc-
tion of Chinese fir, it is urgent and meaningful to develop 
image-based methods for classification of growth status 
under drought and heat stress to facilitate breeding pro-
grams. To address the above issues, a hybrid deep learn-
ing network CNN-LSTM-att was designed to classify and 
evaluate the growth status of Chinese fir seedlings under 
drought and heat stress. The detailed contributions are 
stated as follows:
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A) Since there was no publicly available image data-
set of Chinese fir seedlings under drought stress or 
heat stress, we created two image datasets based on 
drought and heat treatment of Chinese fir seedlings, 
respectively. And, the growth status of Chinese fir 
seedling in each image was also manual scored with a 
value between 0 and 1.0.

B) We combined CNN and LSTM to learn and clas-
sify the temporal and spatial information of growth 
and damage degree of Chinese fir seedlings under 
drought and heat stress, respectively. Compared with 
base CNN network, the classification accuracy has 
been greatly improved.

C) We embedded the attention mechanism into the 
backbone network of the CNN-LSTM to enhance 
the feature extraction ability of the network.

D) We proposed a CNN-LSTM-att model to classify 
and evaluate the growth status of seedlings under 
drought and heat stress, which provides a useful tool 
for stress phenotyping on a large number of germ-
plasms in Chinese fir.

Materials and methods
Plant materials and stress treatment
To create the image datasets of Chinese fir under drought 
and heat stress, the seedlings were treated by artificial 
drought and heat stress, and images were then taken at 
different time point. The seeds of Chinese fir, obtained 
from an orchard in Kaihua forest farm of Zhejiang Prov-
ince, China, were used to cultivate the seedlings in a 
green house. The seedlings with about 20  cm in plant 
height were subjected to heat and drought stress, respec-
tively. For the heat stress, 55 seedlings were selected and 
placed in a growth chamber, and the environment was 
set as follows: temperature 43 ℃, relative humidity 80% 
and Photosynthetic Photon Flux Density (PPFD) 200 
µmol.  m− 2.  s− 1. And, the treatment was performed in 
the growth chamber for 30 h. For the drought treatment, 
45 seedlings were used, and the drought condition was 
simulated by irrigation with 20% PEG6000. 30 ml of 20% 
PEG6000 solution was irrigated to each seedling every 7 
days, and the treatment was performed in a greenhouse 
for 35 days.

Image acquisition and annotation
The images were captured by Canon camera (PowerShot 
SX720 HS, Canon Inc., Tokyo, Japan) in a small photo 
studio. Images of seedlings under heat stress were pho-
tographed at regular intervals of 6 hours, and images of 
seedlings under drought stress were taken every seven 
days. For each seedling, images were taken from eight 
angles at every  45◦. In order to ensure the robustness 
of the classification, we take pictures at a fixed position, 
so that all images of a dataset were taken from the same 
angle. The parameters for taking photographs including 
lighting condition, the camera distance, image size in pix-
els, and other information were listed in Table 1. Finally, 
2424 images (404 images of each session) were captured 
for the seedlings under drought stress, and 1776 images 
(296 images of each session) were captured for the seed-
lings under heat stress. Based on the growth status of 
seedlings, each image was manually scored with a value 
from 0 to 1.0 as a label, which was used in loss function. 
Accordingly, the growth status of seedlings from drought 
and heat stress was classified into 6 sessions, respectively 
(Fig. 1). A stratified 5-fold cross-validation approach was 
utilized to evaluate models. For that, 80% of images were 
prepared for training, and 20% were taken for the testing. 
And, 20% of training data was used as a validation set to 
prevent overfitting problems.

Deep learning‑based feature extraction
Although several pre-trained CNN architectures have 
been proposed for plant phenotyping [21], selecting the 
most appropriate CNN architectures for depth feature 
(DF) extraction is a challenging task. In this study, we 
used VGG16 [34], AlexNet [35], ResNet18 and ResNet50 
[36] for training. All these networks were pre-trained 
on the ImageNet public dataset to classify the images 
into 1000 classes. These networks differed in the input 
size, number of layers, and the number of the learnable 
parameters. In our study, the last layers of these networks 
were replaced by a classification layer with 6 neurons to 
classify images into six sessions. Before training, the RGB 
image size is adjusted to (448,448,3) to fit different net-
works. We used transfer learning to fine-tune pre-trained 
CNNs models on the ImageNet [37] dataset, and then 
used these models to classify Chinese fir seedlings under 
heat stress and drought stress, and subsequently used 

Table 1 Parameters used for image acquisition

Treatment Image size in pixels Image Type Total Images Light used Distance 
of 
camera

Heat 3072 × 3072 RGB(JPEG) 2424 Fluorescent tubes 0.2 m

Drought 3072 × 3072 RGB(JPEG) 1776 Fluorescent tubes 0.2 m
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these models as feature extractors for the CNN-LSTM 
model. Stochastic gradient descent algorithm was applied 
to optimize the model performance.

CNN‑LSTM architecture
The growth and development of plants are a dynamic 
process not only related to spatial, but also associated 
with temporal information, which are not considered 
in conventional CNN model. As a specialized form of 
Recurrent Neural Network (RNN) architecture, the 
LSTM network can learn long-term dependencies and 
preserve useful temporal information for an extended 
period [38]. Compared with simple RNN, the LSTM is 

more suitable for sequential data such as time-series. To 
date, the LSTM has been widely used in jump shot per-
formance in youth basketball, language modeling, speech 
recognition and stock price prediction [39–42]. Also, 
the LSTM was exhibited excellent capabilities in plant 
growth and development prediction, prediction of dis-
eased rice plant and nutrient status diagnosis of infield 
oilseed rape [22, 43, 44]. In our study, as presented in 
Fig.  2, the LSTM was mainly composed of forget gate, 
input gate, output gate which were used to control the 
cell state. All these gates connect the input of the cur-
rent time step(xt) to the hidden state of the previous time 
step(ht − 1). The forget gate is responsible for deciding 

Fig. 1 Representative images of the two datasets. a Drought stress b heat stress

Fig. 2 The main components of the LSTM unit
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which cell states from the previous time step should be 
preserved. The input gate controls how much of the new 
input data should be recorded into the cell state. The out-
put gate completes the selective memory, update of the 
information and outputs the piece of the information 
using the sigmoid and the tanh.

CNN-LSTM hybrid model has been successfully used 
in tasks requiring sequence learning of visual features 
[45], like video classification and activity recognition 
in videos [18, 46]. Our task was similar to activity clas-
sification in videos that predict which activity is being 
performed by analyzing visual changes over time. Thus, 
we proposed a modified CNN-LSTM model to clas-
sify growth status of Chinese fir seedlings under heat 
and drought stress. Our CNN-LSTM architecture for 
heat and drought stress is shown in Fig. 3. The workflow 
was briefly described here. At first, the time series data-
set and the manual scored value were fed into the CNN 
model for feature extraction. Then, deep features were 
extracted from the last fully-connected (FC) layers of the 
CNN models and fed to the LSTM model. The number 
of sequentially connected cells is equal to the number of 
session data used for prediction. The LSTM network out-
put is fed into a fully connected layer of size 512-D, which 
is connected to the fully connected Layer of size 6, equal 
to k heat and drought stress. The cross-entropy loss and 
L2 loss were employed as a loss function, and hyperpa-
rameters of the LSTM are presented in Table 2.

Improve CNN‑LSTM with attention mechanism
Attention‑based modules
The attention mechanism in deep learning is similar to 
visual attention of humans, which selectively focuses on 

the information that is beneficial to the final result. In our 
study, attention mechanism was introduced into CNN-
LSTM to improve the classification accuracy.

The proposed approach is illustrated in Fig.  4. Block 
1/2/3 is the local feature, which is the intermediate fea-
ture output at different scales in the ResNet50 network. 
Block4 is treated as a global feature, which has the entire 
input image as support and outputs by the network’s 
series of convolutional and nonlinear layers. Local and 
global features were fed into the attention mechanism, 
and the estimator can generate new feature maps instead 
of local features of the image. Concatenating the output 
of different local feature maps and Resnet50 last layer as 
the new output, and the final output is fed into the fully 
connected layer classifier (FC-2, 1024).

The modified backbone of network replaces the origi-
nal backbone of network and sends the output result 
of the fully connected layer into the LSTM cell. A task-
driven attention estimator was designed (Fig.  4). Take 
intermediate features and global features as input, 
the dimension local information is compressed to 1 
by a 1 × 1 convolution kernel and then normalized by 
softmax operation. The normalized features are then 

Fig. 3 The proposed CNN-LSTM framework for time-series image dataset in our study

Table 2 Description of the LSTM architecture hyperparameters

Parameters Specification

Input gate Sigmoid

Forget gate Sigmoid

Output gate Sigmoid and tanh

Hidden layer Tanh

Number of layers 1
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multiplied by the Block4, by element-wise multiplica-
tion. By defining a compatibility measure between local 
and global features, we redesign the standard architec-
ture to classify input images using a weighted combi-
nation of local and global features, so the network is 
forced to learn attention patterns relevant to solving 
the task at hand.

Loss function
he loss function denotes the differences between the 
prediction and the ground truth, which is essential for 
network training. In this study, cross-entropy loss and 
L2 loss function were used to train the network. The 
loss of the network is computed using Eqs. (1)–(3).

(1)L = Lcls + Lpro

(2)Lcls = −

n∑

i=0

cilog
(
ĉi
)

where  Lcls is the loss of classification,  Lpro is the loss 
of manual scored value regression. ci and ĉi denote the 
predicted and truth classification. yi and ŷi denote the 
predicted scores and manual scored value.

This study is multi-task learning with regression and 
classification objectives. Multi-task learning aims to 
improve learning efficiency. However, the performance 
of multi-task learning strongly depends on the relative 
weight between losses of each task. Manually adjust-
ing these weights is a difficult and expensive process 
[47]. In this study, a principled multi-task deep learn-
ing method is adopted to measure multiple loss func-
tions by considering the homoscedasticity uncertainty 
of each task [48] The homoscedasticity uncertainty is 
independent of the input and depends on the inher-
ent uncertainty of the task. By transforming the homo-
scedasticity uncertainty into the weight of the loss, 
the model can have the ability to dynamically adjust 
the loss [49]. This allows tasks to simultaneously learn 

(3)Lpro =
1

n

n∑

i=0

(yi − ŷi)
2

Fig. 4 Attention introduced at 3 distinct layers of ResNet50 and the structure of designed task-driven attention estimator
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various quantities with different units or scales in both 
classification and regression settings. Multi-task loss 
function is defined as follows:

Parameters σ 2
cla , σ

2
pro correspond to the loss and the 

data-based adaptive weights ofLcla and Lpro.

Classification and evaluation criteria
This study intends to use a confusion matrix to classify 
and evaluate the plant growth status under stresses. The 
performance of the model was evaluated at the pixel level 
and target level (plant part). In both cases, the assess-
ment is based on accuracy (Acc), precision (Pr), recall 
(Re) and F1 scores. The four parameters can be calcu-
lated by Eqs.  (5)–(8). TP, TN, FP and FN represent true 
positive, true negative, false positive and false negative 
respectively; The total number of all states is N.

The performances of regression models were assessed 
using the determination coefficient  (R2) and root 
mean square error (RMSE), which were calculated by 
Eqs. (9)–(10).

(4)

LOSS
(
W , σ 2

cla, σ
2
pro

)
=

1

2σ 2
cla

Lcla(W )+
1

2σ 2
pro

Lpro(W )

+ log
(
σ 2
cla

)
+ log

(
σ 2
pro

)

(5)Accuracy =
TP + TN

N
× 100%

(6)precision =
TP

TP + FP
× 100%

(7)recall =
TP

TP + FN
× 100%

(8)F1score = 2×
precision · recall

precision+ recall

(9)R2
= 1−

∑n
i (yi − ŷi)

2

∑n
i (yi−

−
y i)

2

where yi and ŷi are the manual scored and predicted 
values, respectively. 

−
y i is the mean of the measured val-

ues, and n is the total number of samples in the testing 
dataset.

Experimental setting
The training and testing of the model were performed 
on an Ubuntu Linux workstation equipped with one 
Intel Xeon Processor CPU (96 GB RAM) and two Nvidia 
GeForce RTX 3060Ti graphics cards for acceleration, 
each with 12 GB of video memory. The model is imple-
mented in the Pytorch 1.12.1 and CUDA 11.3 deep learn-
ing open-source framework using Python 3.7. Neural 
network weights are optimized using Adam optimizer. 
The initial learning rate, momentum factor and batch size 
were set to 0.001, 0.9 and 30, respectively, and 300 epochs 
were trained.

Results
Comparison of AlxNet, VGG16, resnet18 and resnet50
At the beginning, we trained and evaluated four CNN 
models including AlxNet, VGG16, Resnet18 and 
Resnet50, which were frequently used as feature extrac-
tors in plant phenotyping. The results showed that 
Resnet50 network had the best classification effect on 
plant images from drought and heat stress (Table  3). 
When training with Resnet50, for images from heat 
stress, the Acc, Pr, Re and F1 scores were 77.05%, 76.74%, 
76.94% and 76.84%, respectively (Table  3), while for 
images of drought stress, the Acc, Pr, Re and F1 scores 
were 75.20%, 75.33%, 75.19% and 75.26%, respectively, 
(Table  3). It indicated the outperformance of Resnet50 
in these CNN models. Resnet50 has more parameters 
than Alxnet, VGG16 and Resnet18, and the larger the 
model, the higher the fitting degree, and the better the 

(10)RMSE =

√∑n
i=1(yi − ŷi)

2

n

Table 3 Performance of the four CNN models in classification of 
Chinese fir seedlings under drought and heat stress

Stress CNN Model Acc (%) Pr (%) Re(%) F1‑score (%)

Heat Alxnet 69.94 69.80 69.90 69.84

VGG16 69.47 68.87 69.44 69.15

Resnet18 71.91 71.88 71.77 71.82

Resnet50 77.05 76.74 76.94 76.84

Drought Alxnet 70.29 70.44 70.26 70.34

VGG16 69.06 70.21 69.03 69.61

Resnet18 71.72 72.11 71.70 71.90

Resnet50 75.20 75.33 75.19 75.26
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classification performance for heat and drought stress. 
On the other hand, better performance of Resnet50 was 
shown on heat stress images than drought stress images, 
which was possibly caused by more obvious change in the 
needle color of Chinese fir seedlings after heat stress. In 
other words, visual changes brought about by heat stress 
are more pronounced than drought stress, so it is easier 
to classify Chinese fir seedlings images after heat stress.

Construction of CNN‑LSTM hybrid models
To take the temporal information into consideration, 
four hybrid models based on above CNN models and 
LSTM were constructed, and their performances of 

classification on growth status of Chinese fir seedlings 
under heat and drought stress were then compared, 
respectively. As a result, the performances of all four 
CNN models were improved after conjunction with 
LSTM (Table  4). Still, Resnet50-LSTM had the best 
performance. The Acc, Pr, Re and F1-score for images 
of drought stress reached up to 91.80%, 91.83%, 91.65% 
and 91.74%, respectively. And, the Acc, Pr, Re and 
F1-score for images of heat stress reached up to 92.18%, 
92.14%, 92.06% and 92.10%, respectively (Table  4). 
Meanwhile, the confusion matrices also showed that 
Resnet50-LSTM hybrid model possessed the most 
powerful ability in classification of growth status for 
seedlings under drought and heat stress (Fig. 5).

Resnet50‑LSTM versus resnet50‑LSTM‑att
To further improve the CNN-LSTM architecture, 
attention mechanism (AM) was introduced into 

Table 4 Performance of the CNN-LSTM models on classification 
of Chinese fir seedlings under drought and heat stress

Stress CNN‑LSTM Model Acc (%) Pr (%) Re (%) F1‑score (%)

Heat AlxNet-LSTM 82.72 83.33 82.61 82.95

VGG16-LSTM 83.74 84.16 83.64 83.90

Resnet18-LSTM 85.80 86.17 85.69 85.93

Resnet50-LSTM 92.18 92.14 92.06 92.10

Drought AlxNet-LSTM 81.92 82.60 81.78 82.19

VGG16-LSTM 83.61 84.31 83.47 83.89

Resnet18-LSTM 87.28 87.62 87.14 87.38

Resnet50-LSTM 91.80 91.83 91.65 91.74

Fig. 5 Confusion matrix of classification effects of the four CNN-LSTM models. Heat stress:a AlxNet-LSTM, bVGG16-LSTM, c ResNet18-LSTM and (d) 
ResNet50-LSTM. Drought stress:e AlxNet-LSTM, f VGG16-LSTM, g ResNet18-LSTM and hResNet50-LSTM.

Table 5 Performance of Resnet-LSTM model before and after 
introducing attention mechanism

Stress Model Acc (%) Pr(%) Re(%) F1‑score (%)

Heat Resnet50-LSTM 92.18 92.14 92.06 92.10

Resnet50-LSTM-att 96.91 96.81 96.79 96.80

Drought Resnet50-LSTM 91.52 91.52 91.37 91.44

Resnet50-LSTM-att 96.05 95.92 95.88 95.90
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Resnet50-LSTM. As shown in Table  5, the introduction 
of attention mechanism leads to a significant improve-
ment over Resnet50-LSTM in the classification task. 
Compared with the Resnet50-LSTM model, the per-
formance of Resnet50-LSTM-att in the classification of 
heat and drought datasets was significantly improved. 
The Acc, Pr, Re and F1-score of heat stress were 96.91%, 
96.81%, 96.79%, and 96.80%, respectively. And, the Acc, 
Pr, Re and F1-score of drought stress reached 96.05%, 
95.92%, 95.88%, and 95.90%, respectively (Table 5). And, 
the confusion matrix also showed better classification 
results by Resnet50-LSTM-att (Fig.  6). Obviously, the 
classification accuracy of the network model is signifi-
cantly improved after the fusion attention module.

Verification of CNN_attention feature extractor using 
Grad‑CAM
Attention mechanism gives more weight to important 
areas, and pays attention to more differentiated infor-
mation regions in images, which improves the feature 
extraction ability for images, thus improving the classi-
fication accuracy in our study. Through Grad-CAM, the 
class activation graph of network layer was visualized 
before and after attention mechanism introduced into the 
Resnet50-LSTM model. As shown in Fig.  7, compared 
with Resnet50-LSTM, Resnet50-LSTM-att network pays 
more accurate attention to the areas where seedlings 
located, which means the Resnet50-LSTM-att network 
gives more weight to the important areas and less weight 

to the unimportant areas. More specifically, before intro-
ducing of AM, the area of the Resnet50-LSTM network 
attention to in the image included both the seedling and 
some background regions, which would result in a nega-
tive impact on the final classification. After the introduc-
tion of the AM, the attention region of the network is 
more concentrated to the region of Chinese fir seedling 
inside the image. This explains why AM could improves 
the accuracy of the final classification in our study.

Evaluation of growth status by using Resnet50‑LSTM‑att 
model
Based on Resnet50-LSTM-att hybrid model, the 
growth status of seedling from image of test set was 
evaluated by giving a predict score. As shown in Fig. 8, 
the growth status of seedlings was successfully evalu-
ated with a prediction score, and classified into six 
sessions. Correlation analysis showed that the  R2 and 
RMSE were 0.957and 0.067 for the dataset of heat 
stress, respectively, and,  R2 and RMSE were 0.944and 
0.076 for the dataset of drought stress, respectively 
(Fig.  9). This means that the predicted results were 
in good agreement with the manual scoring results. 
According to the predicted score, it is easier to deter-
mine the growth status of seedlings. All these results 
indicated that Resnet50-LSTM-att was the best model 
for this study. Our framework provides a faster, more 
convenient and accurate method for classification and 
evaluation on growth status of Chinese fir seedlings 

Fig. 6 Confusion matrix of the classification effects of Resnet50-LSTM-att on image datasets of a heat stress and b drought stress
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under heat and drought stress. Due to the flexibility 
of the proposed framework, it also could be utilized in 
detection and classification of images from different 
stress conditions in needle-leaved plants.

Discussion
In past decades, the development of deep learning and 
image processing provides a great opportunity for their 
applications in plant phenotyping. Many methods based 

Fig. 7 Visualization results of class activation maps before and after adding the attention mechanism. The highlighted part of the class activation 
map represents the attention of the network on to the image, and the red intensity is proportional to the strength of the neural activation with 
respect to the predicted class. a The original image b The region of attention before adding the attention mechanism c The region of attention after 
adding the attention mechanism

Fig. 8 Prediction of the growth status of Chinese fir seedlings from test dataset. a Heat stress b drought stress
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on different deep learning models have been proposed 
and applied in yield prediction, disease detection, growth 
monitoring, nutrient status diagnosis and other tasks 
in crops and horticultural plants [50–52]. For example, 
Abdalla et al. [22] proposed an Inceptionv3-LSTM model 
for automatic nutrient status diagnosis during the whole 
life cycle of the Oilseed rape. Fan et  al. [53] proposed 
a deep learning framework for segmentation and leaf 
counting in plant, which achieved good results in Arabi-
dopsis and tobacoo plants. Besides, in order to detect and 
count rice panicle, Wang et  al. [54] built a PanicleDe-
tect model based on YOLOv5x, which was proved to be 
robust and accurate for counting panicles in field images 
of rice. Similarly, Yu et  al. [55] proposed a fast method 
for soybean disease recognition based on residual atten-
tion network (RANet) model. And, Zhou et al. [56] suc-
cessfully utilized Mask R-CNN to detect bruising on 
strawberry images captured by color cameras under 
incandescent light and ultraviolet (UV) light. These stud-
ies showed broad applications of deep learning models in 
recognition, classification and evaluation of phenotypic 
characteristics in diverse plants.

Chinese fir distributed widely in southern China is one 
of the main timber trees of plantation in China. In the 
context of global warming, it has been an important task 
to select and develop new stress-resistant varieties for 
breeders of Chinese fir. The main object of this work is 
to provide a fast, automated and noninvasive method for 
classification and evaluation on growth status of Chinese 

fir seedlings under drought and heat stress, which could 
reduce labor and costs, and raise efficiency and accu-
racy of breeding works. In previous studies, a prediction 
model, which based on spatiotemporal long short-term 
memory (ST-LSTM) and memory network memory 
(MIM), was proposed to predict the image sequences 
of future growth and development in wheat [43]. Azimi 
et al. [57] proposed a deep learning pipeline for the tem-
poral analysis of stress-induced visual changes in plants 
and applied it to the identification of specific water stress 
situations in plant shoot images of chickpea. In our study, 
a hybrid Resnet-LSTM model with AM was designed 
and constructed for the stress phenotyping of Chinese fir 
seedlings. Our proposed model could classify the growth 
status of Chinese fir seedlings based on their images from 
drought and heat stress, and the model could also accu-
rately evaluate the growth status of the seedling with a 
prediction value (Fig. 9). Similarly, if sufficient data could 
be provided, we believe that the proposed model would 
be feasible for larger seedlings of Chinese fir, other coni-
fers with needle-like leaves, and those stress conditions 
that can induce similar phenotypic changes. Of course, 
more data should be collected from seedlings of differ-
ent sizes and stress conditions to verify the feasibility. In 
summary, this model would potentially become a power-
ful tool for breeders to select and develop stress resistant 
varieties. Meanwhile, by utilizing this model in future, 
irrigation management in the cultivation of Chinese fir 

Fig. 9 Correlation analysis between manual and prediction scores. a Heat stress b drought stress
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seedlings would probably be more efficient so that more 
water resources and manpower could be saved.

Advances in phenomics and genomics have brought 
unprecedented amounts of new data, which requires 
more intelligent and more efficient tools to deal with. 
As an important aspect of artificial intelligent (AI), deep 
learning has merged as a versatile tool in phenotypic 
analysis and breeding practice. However, in contrast to 
crops or several important fruit plants, much less appli-
cations of deep learning principles have been reported in 
timber trees. In this study, for the first time, we proposed 
a CNN-LSTM-att model as a tool for stress phenotyping 
of Chinese fir seedlings. To ensure the accuracy, robust-
ness and predictive power, two datasets consisting of 
2424 and 1776 images were generated to train the model. 
Interestingly, we found that a sample size of at least 1000 
images is required to effectively train the model (data not 
shown). This means that relatively large amounts of data 
are still necessary to build a useful deep learning model. 
On the other hand, it is actually difficult to characterize 
the phenotypic changes of seedlings under stress condi-
tions with only one or a few indicators. More morpho-
logical and physiological indicators should be collected to 
train such a deep learning model, so that the classification 
and evaluation by the model would have more biologi-
cal meaning. Our study is an interesting and meaningful 
attempt for application of deep learning method in stress 
phenotyping of Chinese fir. It provides a good reference 
for similar timber tree, and would help to promote their 
breeding programs.

Conclusion
In this study, a hybrid deep learning model Resnet50-
LSTM-att was proposed to classify and evaluate the 
growth status of Chinese fir seedlings under drought and 
heat stress. Our study showed the importance of intro-
ducing time series information to detect the growth sta-
tus of Chinese fir seedlings. By comparing four base CNN 
models, Rensnet50 was selected as the backbone net-
work. Conjunction of Resnet50 with LSTM dramatically 
improves classification accuracy for both image data-
sets of the Chinese fir seedlings under drought and heat 
stress. Furthermore, introduction of the attention mech-
anism, which would drive the Resnet50-LSTM model 
pay more attention to the region where seedling located 
inside the image, could greatly improve the performance 
of the model. By utilizing the Resnet50-LSTM-att model, 
the accuracy rate, precision rate, recall rate and F1-score 
of classification on the dataset of heat stress were 96.91%, 
96.81%, 96.79%, and 96.80%, respectively. And, the accu-
racy rate, precision rate, recall rate and F1-score of clas-
sification on the dataset of drought stress were 96.05%, 
95.92%, 95.88%, and 95.90%, respectively. Accordingly, 

R2 value and RSME value for evaluation on growth status 
under heat stress were 0.957 and 0.067, respectively. And, 
R2 value and RSME value for evaluation on growth status 
under drought were 0.944 and 0.076, respectively. In con-
clusion, a Resnet50-LSTM hybrid model with attention 
mechanism was designed and constructed in our study. 
This hybrid model is robust and accurate in classification 
and evaluation of growth status of Chinese fir seedlings 
under drought and heat stress.
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