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Abstract 

Computer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyp-
ing is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has 
been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an 
overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D 
phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant pheno-
typing applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in 
research settings, as opposed to large scale crop monitoring in the field.

Keywords Plant phenotyping, 3D acquisition, Computer vision, Point cloud processing, Segmentation, 
Skeletonization

Introduction
Plant phenotyping, the quantitative measurement and 
assessment of plant features, is at the forefront of plant 
research, plant breeding, and crop management. In 

recent years, the use of non-destructive, image-based 
plant phenotyping methods has emerged as an active 
area of research, driven by improvements in hardware as 
well as software. Indeed, the emergence in the consumer 
market of low-cost, powerful image acquisition devices 
have made (raw) phenotyping data readily available and 
computational breakthroughs such as deep learning [1, 
2] have in turn allowed researchers and plant breeders 
to readily obtain quantitative insights from data. Com-
bined together, these improvements in computational 
plant phenotyping have reduced the reliance on tedious, 
manual intervention in data acquisition and processing 
and have enabled the use of automation in the laboratory 
and in the field.

One noteworthy development is the adoption of 
three-dimensional (3D) plant phenotyping methods [3]. 
Advancements in 3D image acquisition and processing 
methods are increasingly being applied and explored 
in the agricultural industry: automation and robotics 
are entering agriculture. Examples are autonomous and 
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targeted harvesting, weeding, and spraying [4]. In agri-
cultural biotechnology, there is a continuing effort to 
efficiently modify or select for traits like increased yield, 
drought tolerance, pest resistance and herbicide resist-
ance, by linking the genotype with the phenotype [4, 5]. 
In precision farming, crop management is being opti-
mized and made more flexible through monitoring and 
mapping of crop health indicators and environmental 
conditions [6, 7]. All these advancements require pow-
erful vision systems, and applications in the different 
domains of phenotyping, inspection, process control, or 
robot guidance benefit from a 3D approach over 2D.

Compared to two-dimensional methods, 3D recon-
struction models are more data-intensive but give rise to 
more accurate results. They allow for the geometry of the 
plant to be reconstructed [8], and hence find important 
applications in the morphological classification of plants. 
Moreover, 3D methods are also better able to track plant 
movement, growth, and yield over time [8–10], some-
thing that is hard to do with 2D approaches alone. These 
3D reconstructed plant models could be used to, for 
example, describe leaf features, discriminate between 
weed and crop, estimate the biomass of the plant, and 
classify fruits [11]. In some cases, 3D methods that incor-
porate data from multiple viewing angles may provide 
insights that are hard or impossible to get from a 2D 
model alone, such as resolving occlusions and crossings 
of plant structures by reconstructing the plant distance, 
orientation, and illumination [2, 12–14].

These 3D reconstruction models can be classified in 
several ways. One such classification makes the distinc-
tion between rigid and non-rigid reconstruction. In rigid 
3D reconstruction, the objects in the scene are static, 
while in non-rigid 3D reconstruction, the objects are 
dynamic and the method allows for some level of move-
ment. Another possible classification, which is typical 
for agriculture (and thus also applicable in our case), will 
make the distinction between 3D reconstruction models 
for (controlled) indoor environments and outdoor envi-
ronments that make use of images from the field [15].

The set of problems that may arise during the process-
ing and analysis of 3D representations, in general, is very 
large. For the analysis of 3D representations of plants in 
particular, a diverse set of tools is required because of 
the complexity and the non-solid characteristics of plant 
architecture, and its diversity both across and within spe-
cies. It is our goal to point out typical processing and 
analysis steps, and to review methods which have been 
applied before, or could typically be used, in each of these 
steps. We will focus on applications for plant phenotyp-
ing where the ultimate goal is to measure phenotypic 
characteristics of single plants, or crop canopies on a 
small scale, as opposed to large scale yield and growth 

monitoring of crops in the field. We will not discuss the 
construction of virtual plant models where obtaining 
accurate or realistic 3D representations is a goal by itself. 
Nevertheless, many of the techniques used in that area 
can be applied for phenotyping as well. An outline of the 
topics covered in the present review is presented in Fig. 1.

3D image acquisition
An overview of the topics covered in this section is pre-
sented in Fig. 2.

3D imaging methods
3D imaging methods can be classified roughly into active 
and passive approaches [16–23]. The active group refers 
to the techniques that use a controlled source of struc-
tured energy emissions, such as a scanning laser source 
or a projected pattern of light, and a detector like a 
camera. On the other hand, the passive techniques rely 
on ambient light in order to form an image [24]. Com-
pared to 2D imaging, both passive and active 3D imag-
ing approaches can significantly improve the accuracy 
of plant growth measurements and even expand on the 
architectural traits available. However, 3D imaging tech-
niques still lack in several crucial areas such as speed, 
availability, portability, spatial resolution, and cost [3].

Typically, active 3D imaging methods require special-
ized measuring devices such as LiDAR, MRI or PET 
scanners, which are costly to acquire and maintain but 
result in highly accurate data. Passive imaging methods, 
on the other hand, tend to be more cost-effective as they 
typically use commodity or off-the-shelf hardware, but 
may result in comparatively lower-quality data that often 
require significant computational processing to be use-
ful. The specific trade-offs between active and passive 
3D imaging methods, in terms of cost and fitness for a 
specific purpose, are discussed in this section. A compar-
ison of active and passive methods, and of imaging tech-
niques covered in this paper is presented in Tables 1 and 
2, respectively. A full list of papers and plants using these 
techniques can be found in Table 3, under the header “3D 
Image Acquisition and Registration”. Four selected tech-
niques from these two categories are illustrated in Fig. 3.   

Active 3D imaging approaches
Active approaches use active sensors [25] and rely on 
radiometric interaction with the object by, e.g., using 
structured light or laser [23] to directly capture a 3D 
point cloud that represents the coordinates of each part 
of the subject in the 3D space [25]. Triangulation, Time 
of Flight (ToF, discussed below), and phase-shift are all 
examples of active measurement techniques [18]. Struc-
tured light [26] and laser scanners [10, 27, 28] are active 
technologies that are based on triangulation to determine 
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the point locations in a 3D space [17]. Because active 
3D imaging approaches rely on emitted energy, they can 
overcome several problems related to passive approaches 
such as correspondence problems (i.e., the problem of 
ascertaining which parts of one image correspond to 
which parts of another image, where differences are due 
to movement of the camera, the progress of time, and/or 
movement of objects in the photos). Furthermore, active 
3D acquisition techniques can provide higher accuracy, 
but they require specialized and often expensive equip-
ment. Because of their reliance on a radiation source, the 
environment and the illumination conditions in which 
active techniques can be used are often limited.

Other possible drawbacks are that approaches using 
structured light require very accurate correspond-
ence between images while laser scanners can be slow 
and can potentially heat or even damage plants at high 
frequencies.

Laser triangulation These techniques involve shin-
ing a laser beam to illuminate the object of interest and 
a sensor array to capture laser reflection [8]. Due to the 
low-cost setup, they are widely used in laboratory experi-
ments [29, 30]. Paulus et  al. [30] used this technique to 

produce a 3D point cloud of barley plants. Likewise, 
Virlet et al. [31] used this technique for producing point 
clouds from wheat canopies and Kjaer and Ottosen [32] 
for rapeseed.

3D laser scanner (LiDAR) A 3D laser scanner is a high-
precision point cloud acquisition instrument. However, 
the scanning process is complex and requires calibration 
objects or repeated scanning to accomplish the point 
cloud registration and stitching [33]. Chebrolu et al. [34] 
used a laser scanner to record time-series data of tomato 
and maize plants over a period of two weeks, while Pau-
lus et  al. [35] used a 3D laser scanner to create point 
clouds of grapevine and wheat.

Low-cost laser scanning devices, such as the Micro-
soft Kinect sensor and the HP 3D Scan system, are read-
ily available on the consumer market and have been 
widely used for plant characterization in agriculture [13]. 
Although these provide lower resolutions, they may still 
be sufficient for less demanding applications [36], and 
they are designed for use in a wide range of ambient light 
conditions.

Terrestrial laser scanners (TLS) allow for large volumes 
of plants to be measured with relatively high accuracy, 

Fig. 1 Schematic outline of typical processing and analysis steps for 3D plant phenotyping. Through an active (1.a) or passive (1.b) 3D acquisition 
method, either a depth map (2.a), a point cloud (2.b ) or a voxel grid (2.c) is obtained. After a number of preprocessing steps consisting of 
background subtraction, outlier removal, denoising and/or downsampling, the primary 3D representation may be transformed into a secondary 
representation, such as a polygon mesh (4.a), an octree (4.b), or an undirected graph (4.c), which facilitates further analysis. The main analysis steps, 
which may consist of skeletonization (5.a) segmentation (5.b) and/or surface fitting (5.c), precede measurements on the canopy (6.a), plant (6.b), or 
plant organ (6.c) level. 1.a [30], 1.b [169], 2.b [35], 2.c [101], 4.a [164], 4.b [104], 4.c, 6.a [108], and 6.b [85] reprinted under the terms of the Creative 
Commons Attribution 4.0 International License (http:// creat iveco mmons. org/ licen ses/ by/4.0). 2.a, reprinted from [79], ©2015, with permission from 
Elsevier. 5.a [179] reprinted with permission from the American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland (https:// 
www. asprs. org/). 5.b, ©2017 IEEE, reprinted with permission from [227]. 5.c [348] and 6.c [248] reprinted with permission from the author

http://creativecommons.org/licenses/by/4.0
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and are therefore mostly used for determining param-
eters of plant canopies and fields of plants. However, 
acquiring and processing TLS data is time consuming 
and costly due to the large data volumes involved [8, 33, 
37].

Time of flight (ToF) ToF cameras use light emitted by 
a laser or LED source and measure the roundtrip time 
between the emission of a light pulse and the reflection 
from thousands of points to build up a 3D image [8]. 
Examples of this method can be found in the works of 
Chaivivatrakul et al. [38] on maize plants, Baharav et al. 
[39] on sorghum plants, and Kazmi et al. [40] on a num-
ber of different plants including cyclamen, hydrangea, 
orchidaceae, and pelargonium.

Some ToF devices available on the consumer market, 
such as the Kinect [41] (through the KinectFusion algo-
rithm [42]), provide a convenient and cost-effective way 
to perform 3D reconstruction in real time [43].

Using Kinect for acquiring a 3D point cloud data can be 
found in several studies including Wang et al. [44] on let-
tuce, González et al. [45] on tomato seedling, Zhang et al. 
[46] on pumpkin roots, and Zhang et  al. [47] on maize 
plants.

All in all, using close range photogrammetry for a real-
time follow-up produces highly detailed models, but it 
results in a higher processing time compared to the other 
methodologies. Increasing computational power would 
allow for rapid model processing that is able to analyze 

3D image acquisition

3D imaging methods

Active 3D imaging 
approaches

Laser triangulation

3D laser scanner 
(LiDAR)

Time of flight (ToF)

Structured light

Photometric stereo

Tomographic 
methods

Passive 3D imaging 
approaches

Multi-view stereo 
techniques

Structure from 
motion (SfM)

Space carving

Light field measuring

Scene representations

Depth map

Point cloud

Voxels

Fig. 2 Overview of 3D image acquisition techniques
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growth dynamics at higher resolutions in the case of pho-
togrammetry [13].

Structured light Structured light cameras project a 
pattern, for example a grid or a specific pattern of hori-
zontal bars, to capture 2D images and convert them 
into 3D information by measuring the deformation of 
the patterns [8]. Li et al. [48] used an acquisition system 

consisting of a standard structured light scanner to 
capture the geometry of the dishlia plant by looking at 
it from different angles. To obtain this result, they used 
a turntable to rotate the plant by 30 degrees at a time. 
A complete review of using structured light methods 
for high-speed 3D shape measurement can be found in 
[49].

Fig. 3 3D imaging system setup: a Laser triangulation, b Structure from Motion (SfM), c Stereo vision, and d Time-of-Flight (ToF). Reprinted from [8] 
under the terms of the Creative Commons Attribution 4.0 International License (http:// creat iveco mmons. org/ licen ses/ by/4.0)

Table 1 A comparison of 3D imaging methods

Type Sensor Principle Advantages Disadvantages Output

Active Uses active sensors 
such as structured light 
and laser scanners

Uses radiometric interaction 
with the object to directly 
capture a 3D point cloud

(1) Overcomes 
correspondence 
problems
(2) High accu-
racy

(1) Limited to specific environments 
and illumination conditions
(2) Requires specialized, expensive 
equipment
(3) Lack of color information

(1) 3D point clouds
(2) Depth maps

Passive Uses passive sensors 
such as standard imag-
ing cameras

Analyzes multiple images 
from different perspectives to 
generate a 3D point cloud

(1) Low cost
(2) Includes color 
information

(1) Correspondence problems
(2) Low accuracy (outliers and noise)
(3) Computationally complex
(4) Relatively slow

(1) 3D point clouds
(2) Depth maps
(3) Voxels

http://creativecommons.org/licenses/by/4.0
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Table 3 Well-established methods and algorithms used for 3D plant phenotyping

Method Plant Short description

3D Image Acquisition and Registration
3D Laser Scanning (LiDAR) Aubergine [252]

Bamboo-leaf oak tree [252]
Barley [30, 156]
Benth (Nicotiana benthamiana) [183]
Birch [174]
Botanic trees [168]
Cereal plants [27]
Chickpea [328]
Elm tree [182]
Grape [329]
Grapevine [35]
Horse Chestnut [174]
Japanese cedar [252]
Japanese larch [252]
Maize (Corn) [34, 129, 160, 186, 330, 331]
Orchard tree [175]
Poplar [174]
Rapeseed (Brassica sp.) [32]
Red Oak [174]
Rosebush [264]
Sorghum [328]
Soybean [25]
Sugar beet [25, 36]
Sugar maple [182]
Sweet Chestnut [174]
Thale cress (Arabidopsis) [10, 28, 156]
Tomato [34, 160, 183]
Wheat [31, 35, 36]
Yellow birch [182]
Others [205, 332]

Measures accurately the distance between the sensor 
and a target based on the elapsed time between the 
emission and return of laser pulses (’Time-of-Flight’ (ToF) 
method) or based on trigonometry (the ’optical probe’ or 
’light section’ methods).

Electrical Resistance Tomography (ERT) Chicory [56]
Maize (Corn) [56]
Switchgrass [56]

Is a geophysical technique for imaging sub-surface struc-
tures from electrical resistivity measurements made at the 
surface, or by electrodes in one or more boreholes.

Gaussian Mixture Model (GMM) Apple tree [185]
Barley [121]
Cherry [185]
Thale cress (Arabidopsis) [185]

Represents discrete point sets by continuous density 
functions [157].

Generalized Voxel Coloring Variant of Voxel Coloring which allows the cameras to 
completely surround the scene [119].

Iterative Closest Point (ICP) Barley [156]
Maize (Corn) [34, 38, 47, 129, 227]
Pepper [155]
Rapeseed (Rape) [33, 125]
Thale cress (Arabidopsis) [156]
Tomato
[34]

Minimizes distances between two point clouds. Often 
used to obtain a full 3D reconstruction from multiple 3D 
scans which capture the object from different angles 
[112, 146–149].

Magnetic Resonance Imaging (MRI) Barley [63]
Bean plant [62]
Maize (Corn) [63]

Is a type of scan that uses strong magnetic fields and 
radio waves to produce detailed images of the inside of 
the body.

Marching Cubes Transforms a voxel grid into a polygon mesh. The algo-
rithm walks through the voxel grid and chooses a certain 
surface configuration composed of triangles from a table, 
based on the values of neighboring voxels. The individual 
polygons are then fused into a surface [162].
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Table 3 (continued)

Method Plant Short description

Multi-view Stereo (MVS) Anthurium andraeanum [40]
Barley [103, 108]
Banana [90]
Basil [317]
Calathea makoyana [111]
Epipremnum aureum [111]
Grapevine [333]
Hedera nepalensis [111]
Ipoestia [317]
Ixora [317]
Litchi [88]
Maize (Corn) [107, 133, 227, 330, 334]
Monstera deliciosa [111]
Rape [89]
Soybean [77, 170, 334]
Sugar beet [108]
Tomato [2, 85, 101]
Wheat [169]

Uses two or more cameras to generate parallax from dif-
ferent perspectives, and obtaining the distance informa-
tion of the object and then reconstructs a 3D shape from 
calibrated overlapping images captured from different 
viewpoints [170]. In case of having two cameras, it is 
called stereo vision.

Patch-based Multi-View Stereo (PMVS) Artificial plant [75]
Bambara groundnut [78]
Proso millet [78]
Rice [75, 76]
Wheat [75, 76]

Reconstructs a 3D point cloud model based on multiple 
color input images. A requirement of this algorithm is 
that the intrinsic (such as focal length) and extrinsic (3D 
position and orientation) camera parameters are known.

Photometric Stereo (PS) Dock (Rumex Obtusifolius) [12]
Potato [12]
Thale cress (Arabidopsis) [17]

Estimates the surface normals of objects by observing 
the object under different lighting conditions [50].

Shape-from-silhouette (SFS)
(Shape-from-contour)

Artificial plant [209]
Barley [121]
Maize (Corn) [121, 123]
Sorghum [209]
Tomato [101]
Wheat [209]

Reconstructs the visual hull of an object, by means of 
the intersection of silhouette cones determined by the 
objects’ silhouettes captured from different angles [335].

Space Carving
(Shape-from-contour)

Aloe vera [81]
Banana [104]
Bromeliad species [81]
Chili [81]
Cordyline species. [81]
Cotton [99]
Maize (Corn) [99, 104]
Pumpkin (Cucurbita pepo) [81]
Rapeseed [81]
Sorghum [105]
Other [102]

Reconstructs the maximal shape of an object that is 
photo-consistent with the object. Photo-consistency 
includes consistency with the objects silhouettes, but 
also with its projected surface colors. The algorithm 
iteratively ’carves’ space away from an enclosing volume 
in a well-defined way, until the shape is photo-consistent 
with all the views [98].

Structured Light Anthurium [48]
Cabbage [26]
Cucumber [26]
Dishlia [48]
Tomato [26]

Extracts the 3D surface shape based on the information 
from the distortion of the projected structured-light pat-
tern without ionizing radiation [52].
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Table 3 (continued)

Method Plant Short description

Structure from Motion (SfM) Barley [18]
Basil [317]
Brussels sprout [79]
Chili plant [11]
Grapevine [221, 333]
Ipoestia [317]
Ixora [317]
Maize (Corn) [9, 13, 82, 334, 336–338]
Nephthytis [94]
Olive [223]
Physalis sp. [9]
Poinsettia [94]
Brassica sp. (Rapeseed) [9]
Savoy cabbage [79]
Schefflera [94]
Soybean [14, 83, 84, 84, 334, 339]
Sugar beet [13]
Sunflower [11, 13, 79, 83, 240]
Thale cress (Arabidopsis) [9]
Tomato [11, 85, 338]
Wheat [9]
Other [135, 340]

Reconstructs the 3D structure using a series of 2D images 
with a high degree of overlap, taken from different 
angles. It identifies matching features which are tracked 
from image to image to produce estimates of the camera 
positions and orientations, as well as the coordinates of 
the features to create a point cloud.

Time of Flight (ToF)
(Including Microsoft Kinect sensors)

Apple tree/orchard [110, 341]
Calathea makoyana [111]
Cyclamen [40]
Epipremnum aureum [111]
Hedera nepalensis [111]
Hydrangea [40]
Lettuce [44]
Maize (Corn) [13, 38, 47]
Monstera deliciosa [111]
Orchidaceae [40]
Paprika [109]
Pelargonium [40]
Pepper [155]
Pumpkin [46]
Rapeseed [33]
Rosebush [110]
Sorghum [39]
Soybean [43]
Sugar beet [13, 36]
Sunflower [13]
Tomato [45]
Wheat [36]
Yucca [110]

ToF cameras use time between emitted light and 
reflected light from thousands of points to conduct 3D 
images.

Voxel Coloring
(Shape-from-photoconsistency)

Rose [97] Reconstructs a photo-consistent 3D shape not by carving 
away voxels, but by identifying voxels that have a unique 
coloring which is constant across all possible photo-
consistent interpretations of the scene. Has the limitation 
that all cameras have to be placed on one side of the 
scene.

X-Ray (Micro) Computed Tomography (CT / µCT) Barley [64]
Bean plant [59, 62]
Cassava [59]
Chickpea [64]
Duckweed [57]
Maize (Corn) [58, 61, 337]
Sinningia [342]
Sorghum [343]
Tomato [61]
Wheat [60, 61, 64]
Other [344]

Is a non-destructive imaging tool for the production of 
high-resolution three-dimensional (3D) images com-
posed of two-dimensional (2D) trans-axial projections, or 
‘slices’, of a target specimen [345].
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Table 3 (continued)

Method Plant Short description

3D Image Processing

Bilateral smoothing techniques Maize (Corn) [15]
Tomato [346]

Is a non-linear filtering technique and a simple, non-itera-
tive scheme for edge-preserving smoothing [137, 142].

Clustering-based Segmentation Grapevine [35, 221]
Olive [223]
Wheat [35]

Uses clustering algorithms to group data points that 
are more similar to one another in order to obtain a 
segmented image.

Color-based Filter Brassica sp. [9]
Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Maize (Corn) [9]
Monstera deliciosa [111]
Physalis sp. [9]
Thale cress (Arabidopsis) [9]
Wheat [9]

Distinguishes between foreground and background 
and removes background pixels based on the RGB color 
information.

Dart Throwing Filter Sequentially add points from the original point cloud to a 
downsampled point cloud if they don’t have a neighbor 
in the output point cloud within a certain radius [136].

Density-based Spatial Clustering of Applications 
with Noise (DBSCAN)

Maize (Corn) [34, 82, 161]
Tomato [34, 161]

Removes clusters of size less than a predetermined 
threshold if they are located further away than a certain 
distance from any other point cluster. Can be used as 
noise filtering.

Mean Shift Paprika [109] Iteratively shifts each data point to the average of data 
points in its neighborhood by using kernel density 
estimation.

Moving Least Squares (MLS) Pepper [155] Iteratively projects points on weighted least squares fits 
of their neighborhoods to cause the points to lie closer to 
an underlying surface [131].

M-Estimator Sample Consensus (MSAC) Maize (Corn) [130] Is a variant of the RANSAC algorithm which adopts 
bounded loss of RANSAC by using a different loss func-
tion [347]

Radius-based Outlier Filter (RBOF) Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Monstera deliciosa [111]

Modifies the elemental criterion of a specific element 
based on a weighted average of the criteria in a fixed 
neighborhood.

Random Sample Consensus (RANSAC) Grape [329]
Maize (Corn) [82]
Soybean [77, 170]
Other [135, 205]

Fits geometric primitives to point clouds by choosing the 
best among fits to numerous random samplings of the 
data [128].

Spatial Region Filter Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Maize (Corn) [133]
Monstera deliciosa [111]

Removes all points outside a region defined in a 3D 
coordinate system.

Statistical Outlier Removal (SOR) Filter Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Maize (Corn) [15, 38]
Monstera deliciosa [111]
Soybean [25, 84]
Sugar beet [25]
Other [135]

Removes points if the mean distance to its neighbors 
surpasses a threshold based on the mean and standard 
deviation of all neighbor distances.

Surface Boundary Filter (SBF) Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Monstera deliciosa [111]

Identifies and removes boundary points using a threshold 
on the angle between a projected vector in the normal 
plane to the first two principal components and one of 
the principal components [111]. 
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Table 3 (continued)

Method Plant Short description

Voxel Grid Downsampling Brassica sp. [9]
Calathea makoyana [111]
Epipremnum aureum [111]
Hedera nepalensis [111]
Maize (Corn) [9, 130]
Monstera deliciosa [111]
Physalis sp. [9]
Thale cress (Arabidopsis) [9]
Wheat [9]

Divides the point cloud into a 3D voxel grid and replaces 
points within each voxel by the centroid of all the points 
within the voxel [134].

3D Image Analysis
α-shape Triangulation Thale cress (Arabidopsis) [156]

Barley [156]
Transforms a point cloud into a polygon mesh. The shape 
is determined by connecting sets of 3 points into a trian-
gle if they can be circumscribed by a sphere with radius α 
which doesn’t contain any other points [163].

Breath-first flood-fill algorithm Tomato [101] Determines the area connected to a given node in a 
multi-dimensional array.

Constrained Region-growing Cotton [164] Segments a surface mesh segmentation by growing 
regions from seed points to adjacent mesh faces, con-
strained by changes in curvature, which correspond to 
sharp edges [207, 208].

Delaunay Triangulation
(Advancing Front)

Aloe vera [81]
Brassica sp. [81]
Bromeliad sp. [81]
Chili [81]
Cordyline sp. [81]
Maize (Corn) [15, 229]
Pumpkin (Cucurbita pepo) [81]
Rape [81]
Rice [229]

Creates a triangulation (in 2D) or covering by tetrahedra 
(in 3D) of a point cloud, such that no point lies in the 
circumcircle of any triangle or tetrahedron. Delaunay 
triangulations tend to maximize the minimum interior 
angle of each triangle or tetrahedron, and hence avoid 
sharp angles (“sliver triangles”). Used in the context of 
this paper to grow a surface from a set of seed triangles. 
[233–235].

Dense Conditional Random Field (CRF) Maize (Corn) [227] Acquires an accurate and spatially consistent labeling 
of pixels after the application of a unary classifier which 
doesn’t take the spatial context of pixel labels into 
account. The model establishes pairwise potentials on all 
pairs of pixels in the image. An energy function consisting 
of both unary and pairwise components is minimized 
[228].

Dijkstra’s algorithm Berryless grape [247]
Maize (Corn) [130]
Pine tree [180]

Finds the shortest path between vertices in a graph [171].

(Fast) Point Feature Histogram (FPFH / PFH) Barley [226]
Benth (Nicotiana benthamiana) [183]
Grapevine [226]
Maize (Corn) [34, 161, 227]
Rapeseed (Rape) [125]
Tomato [34, 161, 183]
Wheat [226]
Other [224, 225, 340]

Describes the local geometry around a point in point 
clouds using features based on the angular relation-
ships between pairs of points and their normals, within a 
certain radius around each query point. The features are 
counts within histogram bins of these values. FPFH is a 
more efficient version of PFH which reduces the number 
of pairs for which angles have to be calculated while 
retaining most of the discriminative power of PFH.

Locally Estimated Scatterplot Smoothing (LOESS) Maize (Corn) [229]
Rice [229]

Reconstructs a continuous surface even with the pres-
ence of the discontinuity of surface points.

Minimum Oriented Bounding Box (MOBB) Rapeseed (Rape) [125] Determines the smallest bounding box for a point set (i.e., 
smallest area, volume or hyper-volume in higher dimen-
sions) within which all points lie.

Minimum Spanning Tree Finds a subset of edges in a graph which connects all the 
vertices, and which has a minimum total length [172].

Non-Uniform Rational B-splines (NURBS) Mint [238]
Maize (Corn) [38]
Sunflower [239]
Other [237]

Defines smooth curves and surfaces by a list of 3D coor-
dinates of surface control points and associated weights .

Randomly Intercepted Nodes (RAIN) Maize (Corn) [82] Simulates the behavior of randomly placed rain drops to 
find the routes of these drops while moving from point 
to point. Performs segmentation based on the points 
considered as potential path candidates.
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Table 3 (continued)

Method Plant Short description

Spectral Clustering Thale cress (Arabidopsis) [9]
Birch [174]
Brassica sp. [9]
Horse Chestnut [174]
Maize (Corn) [9]
Physalis sp. [9]
Poplar [174]
Red Oak [174]
Sweet Chestnut [174]
Wheat [9]

Is a technique with roots in graph theory, where the 
approach is used to identify communities of nodes in a 
graph based on the edges connecting them.

Voxel verlapping Consistency Check Cotton [99]
Maize (Corn) [99]

Encloses the voxel grid by a bounding box. Considers the 
(area of ) constituent voxels at different cross-sections of 
this bounding box to segment between stem and leaves.

Machine Learning Techniques
Boosting Soybean [84] Seeks to improve the prediction power by training a 

sequence of weak models, each compensating the weak-
nesses of its predecessors.

Deep Learning (DL) Banana [90]
Maize (Corn) [160, 299, 310, 313]
Rice [311]
Rosebush [264]
Rosette plants [1]
Sorghum [276]
Thale cress (Arabidopsis) [17]
Tobacco [276]
Tomato [2, 160, 276, 301]

DL is a very commonly employed algorithm in the ML 
algorithms, and it is derived from the conventional neural 
network but considerably outperforms its predecessors. 
DL employs transformations and graph technologies 
simultaneously in order to build up multi-layer learn-
ing models. The most famous types of deep learning 
networks are CNNs, RNNs, and RvNNs.

Hidden Markov Models (HMMs) Maize (Corn) [34]
Tomato [34]

Are probabilistic models in which an unobservable (“hid-
den”) Markov process influences an observable process 
in a specific way. The goal is to est the hidden states from 
the observations.

K-Means Clustering Barley [226]
Grapevine [226]
Maize (Corn) [117]
Sorghum [117]
Soybean [84]
Wheat [226]

Is one of the simplest and most popular unsupervised 
machine learning algorithms and aims to partition n 
observations into k clusters in which each observation 
belongs to the cluster with the nearest mean, serving as a 
prototype of the cluster.

K-Nearest Neighbors (KNN) Aloe vera [81]
Birch [174]
Brassica sp. [81]
Bromeliad species [81]
Chili [81]
Cordyline sp. [81]
Horse Chestnut [174]
Maize (Corn) [34, 133, 161, 186]
Poplar [174]
Pumpkin [81]
Rapeseed [81]
Red Oak [174]
Sweet Chestnut [174]
Tomato [34, 161]

Is a simple, supervised machine learning algorithm that 
can be used to solve both classification and regression 
problems and clusters the point set into a series of k near-
est neighbors.

Random Forest Classifier (RFC) Rosebush [264]
Other [135, 344]

Uses a combination of tree predictors such that each 
tree depends on the values of a random vector sampled 
independently and with the same distribution for all trees 
in the forest [263].

Self-Organizing Map (SOM) Maize (Corn) [34, 161]
Tomato [34, 161]

Is an unsupervised neural network using the concept of 
competitive learning instead of back-propagation.

Support Vector Machine (SVM) Maize (Corn) [34, 161, 227]
Soybean [84]
Tomato [34, 161]

Is a popular and commonly used choice for binary 
classification problems which can perform nonlinear 
classification.



Page 14 of 46Harandi et al. Plant Methods           (2023) 19:60 

Photometric stereo (PS) Pioneered by Woodham [50], 
PS is a low-cost active imaging technique that can achieve 
high-resolution images and fast capture speeds. PS esti-
mates local surface orientation by using a sequence of 
images of the same surface from the same viewpoint but 
under illumination from different directions. This tech-
nique uses data from several images and is therefore able 
to circumvent some of the problems that plague Shape-
from-shading [51] approaches (not applied in plant phe-
notyping as far as we know) [52–55]. Bernotas et al. [17] 
used this technique for tracking the growth for the thale 
cress plant.

Tomographic methods These methods create a series 
of 2D slices to generate a 3D volume and provide non-
destructive, high-resolution data of external and inter-
nal structures or even the movement of small molecules 
through a root system in the case of plants. X-ray com-
puted tomography (CT), magnetic resonance imaging 
(MRI), and positron emission tomography fall into this 
category [56].

MRI and CT, which are usually applied in the medi-
cal imaging domain, can also be used to visualize plant 
root systems within their natural soil environment [56–
65]. Applications of CT during the last 30 years show 
considerable effectiveness for the visualization of root 
structures. Fine root structures can be visualized using 
micro-computed tomography ( µCT ) devices, which offer 
high resolving powers, down to 50 µ m [66].

These methods produce voxels which contain inten-
sity information, either representing the capacity of the 
material to absorb and emit radio frequency energy in the 
presence of a magnetic field in case of MRI, or the capac-
ity of the material to absorb the X-ray beam in case of CT.

Neutron tomography (NT) complements other tech-
niques like CT or nuclear MRI, due to the specific attenu-
ation characteristics of thermal or cold neutrons [67, 
68]. As neutrons are attenuated by the presence of water, 
while passing through volumes of silicon-based material 
in a relatively unimpeded way, NT presents an attractive 
method for the phenotyping of plant roots embedded 
in soil, modeling the rhizosphere, and quantifying the 

spatial distribution of water in the soil-plant system with 
high precision and good spatial resolution.

For example, Krzyzaniak et al. [66] used NT to provide 
a 3D reconstruction of grapevine roots and sand in an 
aluminum sample holder, while Moradi et  al. [69] used 
NT to study root developments in soil of different texture 
and showed that sandy soil was the best to obtain a good 
contrast of the root visualization. Compared to X-ray 
imaging, NT has advantages and disadvantages. Due to 
its ability to penetrate bulk volumes of soil and rubble, 
NT is able to visualize water dynamics [69–74]. However, 
NT is a more labor-intensive process that requires highly 
specialized equipment, and produces images of compara-
tively lower resolution.

Passive 3D imaging approaches
Passive methods use passive sensors such as cameras and 
rely on analyzing multiple images from different perspec-
tives to generate a 3D point cloud [21, 22, 25]. They cap-
ture plant architectures without introducing new energy 
(e.g., light) into the environment. Multi-view stereo 
(MVS) [75, 76], of which the most common application 
is binocular stereo [77, 78], Structure from Motion (SfM) 
[79], light-field (plenoptic) cameras [80], and space carv-
ing [81] approaches are examples of methods and tech-
nologies using this approach [17]. Of these, SfM is widely 
in use, especially in the 3D reconstruction of plants [11, 
13, 14, 18, 79, 82–85]. In this approach, multiple pho-
tographs are taken from different unknown angles after 
which the camera position and depth information are 
estimated simultaneously based on matched features in 
the images.

Compared to active techniques, these methods are 
cheaper and can be applied using standard imaging hard-
ware, but they are prone to producing outliers and noise 
[86]. Another disadvantage is that they are computation-
ally complex, and thus relatively slow. Because passive 
methods make use of ambient light reflections, they do 
gain color information in addition to 3D shape informa-
tion, which is not readily available from active techniques 
unless when combined with another imaging system.

Table 3 (continued)

Method Plant Short description

Miscellaneous Techniques
Maize (Corn) [95]
Mango [122]
Olive [122]
Peach [122]
Pine tree [180]
Tomato [242]
Walnut [122]

Methods developed for specific plant applications.
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Multi-view stereo techniques These methods use two 
or more cameras to generate parallax from different per-
spectives and obtain distance information of the object 
through comparing these perspectives [87]. Although the 
structure of the binocular camera is simple, and the cal-
culation speed is fast, the results are greatly affected by 
the environment and in particular the method struggles 
with scenes lacking texture information [88]. Xiong et al. 
[89] used binocular stereo cameras and a semi-automatic 
image analysis system to quantify the 3D structure of 
rape plants. Chen et  al. [90] assembled two binocu-
lar vision systems into a four-camera vision system to 
construct a multi-view stereo system to perform multi-
view 3D perception of banana central stocks in complex 
orchard environments. Rose et  al. [85] utilized a multi-
view stereo method to reconstruct tomato plants.

Structure from motion (SfM) This technique can esti-
mate 3D models from sequences of overlapping 2D 
images and can automatically recover the camera param-
eters like focal length, distortion, position and orienta-
tion [91–94]. It has low-cost, high point cloud accuracy, 
and high color reproduction. However, it is cumbersome 
and time-consuming to shoot sequence images [33]. 
Using equipment available in most biology labs, such as 
cameras and turntables, Lou et  al. [9] built an accurate 
multi-view image-based 3D reconstruction system that 
yields promising results on plants of different forms and 
sizes and applied it to different plants, including thale 
cress, Brassica sp., maize, Physalis sp., and wheat.

SfM is not limited to analyzing the plant stem and 
leaves. Liu et  al. [95] developed an automatic 3D root 
phenotyping system consisting of a 3D root scanner 
and root analysis software for excavated root crowns of 
maize. Their system generates a model of the root sys-
tem from a 3D point cloud and calculates 18 root-specific 
phenotypical traits from this model.

Space carving There exist different shape estimation 
methods [96], including voxel coloring [97] and space 
carving [98, 99]. Unfortunately, voxel coloring is guaran-
teed to work only if all of the cameras lie on the same side 
of the viewing plane, which precludes the use of more 
general configurations of cameras. To remedy this, Kutu-
lakos and Seitz [98] generalized voxel coloring to space 
carving, an approach whereby a 3D scene is iteratively 
reconstructed by selecting subsets of photographs taken 
from the same side and removing voxels that are not con-
sistent with the selected photographs [100]. The process 
ends when there are no more voxels to remove.

Some recent contributions focus on the phenotyping 
of seedlings [101–103] as they are easier to reconstruct, 
while others focus on accelerating voxel carving through 
the use of octrees [104]. Scharr et  al. [104] then apply 
this accelerated method to maize and banana seedlings. 

Gaillard et  al. [105] developed a high throughput voxel 
carving strategy to reconstruct 3D representations of sor-
ghum from a small number of images.

In comparison to SfM, space carving requires fewer 
images and lower processing time. However, this method 
needs an exact calibration and segmentation of the object 
to reconstruct, whereas SfM can estimate calibration 
automatically. This method is therefore appropriate in a 
controlled environment, where an accurate calibration is 
attainable [105].

Light field measuring Compared to a standard camera, 
consisting of a main lens that focuses a scene directly 
onto an image plane, a lightfield camera generates an 
intermediate image which is focused on the image plane 
by a micro lens array. Light field cameras allow for images 
to be modified after recording, and therefore offer more 
flexibility in how an image is perceived. Polder et  al. 
[106] used a lightfield camera to capture the depth map 
of tomato plants in a greenhouse. Apelt and Kragler [80] 
used a light field camera which provides two high-resolu-
tion grey-scale images (a focus image and a depth image 
containing metric distance information) to build a sys-
tem in order to monitor spatio-temporal plant growth for 
thale cress.

Scene representations
By choice, or depending on the acquisition method, 3D 
scenes and objects can be represented as a depth map, as 
a point cloud, or as a voxel grid.

Depth map
A depth map is a 2D image where the value of each pixel 
represents the distance from the camera or scanner 
(sometimes referred to as “2.5D”). In such representa-
tions, objects occluded by the projected surface are not 
measured. 3D image acquisition methods which may out-
put depth maps are mostly active techniques, as well as 
stereo vision which measures depth from a single view-
ing position by comparing two images taken from slightly 
displaced positions.

Depth maps have been applied on canopies, where 
inferring a complete or detailed 3D structure is not 
necessary, such as employed by Ivanov et  al. [107] and 
Müller-Linow et  al. [108] who estimated the structural 
parameters of canopies based on top-view stereo imag-
ing set-ups in maize and sugar beet, respectively, and as 
utilized by Baharav et  al. [39] who measured the plant 
heights and stem widths in a sorghum canopy based on 
side-view depth maps.

Depth maps have also been applied on individual plants 
of which the leaves are planar and have an orientation 
more or less perpendicular to the viewing direction. Xia 
et  al. [109] introduced the use of depth maps merely to 
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provide a more robust segmentation of individual leaves 
of bell pepper plants where 2D RGB imaging would have 
had difficulty separating overlapping leaves. Chéné et al. 
[110] explored the use of depth imaging systems for leaf 
segmentation, as well as for the estimation of some 3D 
traits, such as leaf curvatures and leaf angles. Dornbusch 
et  al. [10] used depth maps to monitor and analyze the 
diurnal patterns of leaf hyponasty, the upward movement 
of leaves in response to environmental changes, in thale 
cress. Depth map techniques can also be combined with 
other techniques: Li et  al. [111] combined depth image 
data with 3D point cloud information to carry out in situ 
leaf segmentation for different kinds of plant species such 
as Hedera nepalensis, Epipremnum aureum, Monstera 
deliciosa and Calathea makoyana.

Depth maps are particularly suitable for segmentation 
as illustrated in Fig. 4, but note that the segmentation and 
subsequent analysis of the segmented images will often 
suffer from occlusions, lacking the advantages of full 3D 
imaging. By covering the 3D scene from multiple angles 
and with overlapping images, 2.5D can be augmented 
to a real 3D point cloud with xyz-coordinates. Here, the 
Iterative Closest Point (ICP) algorithm [112] and variants 
thereof allow to match point clouds sampled from the 
overlapping depth maps.

Point cloud
A 3D point cloud is a set of points representing an object 
or surface. One of the advantages of the point cloud rep-
resentation is that it includes depth information, thus 
working around the issue of occlusion among plant 
leaves [111]. Point clouds can be obtained in two ways: 
from active 3D image acquisition techniques, like image-
derived methods, LiDAR, RGB-D cameras or synthetic 

aperture radar systems, or through (passive) 3D recon-
struction from a set of different views from the scene 
[86, 113, 114]. Among the active methods, LiDAR point 
clouds are commonly used for point cloud segmentation 
applications and for trees (forests) [115].

Active image acquisition methods typically give rise 
to point clouds of relatively uniformly sampled points 
on the surface of the represented objects. The density of 
point clouds acquired through passive photogrammetric 
techniques, however, will often depend on the presence 
of detectable features on the surface of objects, because 
such techniques usually rely on finding corresponding 
sets of said points on multiple overlapping 2D images. 
This can result in point clouds where featureless parts of 
objects are less well represented, or in false points due to 
mismatches between features, especially when the scene 
contains repeated structures.

Point clouds do not directly provide information about 
the surface topology [20, 116], implying that it will be 
more challenging to accurately estimate an underlying 
surface or curve representation and to estimate traits 
related to the surface area, especially in the presence of 
noise, outliers or other imperfections. This will be even 
more difficult when dealing with the complex architec-
ture of plants. Thus, the quality of the point cloud in con-
junction with the nature of the plant architecture, will 
largely determine the available processing and analysis 
techniques.

Almost all of the techniques (both active and passive) 
result in a point cloud [18]. Cao et al. [14] generated a 3D 
point cloud by developing a low-cost 3D imaging system 
to quantify the variation in the growth and biomass of 
soybean due to flood at its early growth stages. Martinez 
et al. [13] created two dense point clouds using a low-cost 

Fig. 4 Top view RGB image of a rosebush (A), and depth map of the same rosebush scaled in mm with ground as reference, obtained by a 
Microsoft Kinect depth sensor (B), by [110]. The depth map allows to differentiate the different composite leaves, which would be much harder 
without depth information. Reprinted from [110], ©2015, with permission from Elsevier
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SfM and an acquisition and reconstruction using an 
RGB-Depth Kinect sensor to examine the suitability of 
two low-cost systems for plant reconstruction, which was 
later used for the solid model creation. The model using 
SfM showed better results for the reconstruction of end-
details and accuracy of the height estimation. However, 
use of RGB-D information was faster during the creation 
of the 3D models.

Ma et al. [43] produced a 3D point cloud by developing 
a 3D imaging approach to quantitatively analyze soybean 
canopy under natural light conditions. Most current sys-
tems provide information on the whole-plant level and 
there are only a few cases where information on the level 
of specific plant parts, such as leaves, nodes and stems, is 
given [2]. One such example can be found in Thapa et al. 
[117], who generated a 3D point cloud acquired with a 
LiDAR scanner to measure plant morphological traits, 
including the individual and total leaf area, the leaf incli-
nation angle, and the leaf regular distribution of maize 
and sorghum.

Voxels
A 3D object may also be represented by a 3D array of 
cells, in which each cell (voxel) contains two possible val-
ues, indicating whether a voxel is occupied by the object 
or not. The most commonly used methods which result 
in such a representation are shape estimation methods 
[96] like Shape-from-silhouette (SFS) [118], space carv-
ing [98, 99], voxel coloring [97], and generalised voxel 
coloring [119, 120]. These passive methods rely on deter-
mining the visual hull, which is the largest possible shape 
that is consistent with the intersection of 2D silhouettes 
of an object projected into a 3D space.

If the plant structure is relatively simple, then these 
standard volumetric methods are relatively easy to imple-
ment, are fast, and produce good approximations. For 
example, Golbach et  al. [101] used SFS to reconstruct 
tomato seedlings, and Kumar et al. [121] did the same for 
young maize and barley plants. Phattaralerphong et  al. 
[122] also applied SFS to obtain voxel representations 
of tree canopies. Their goal was to measure traits such 
as tree height, tree crown diameter and canopy volume 
which don’t require very accurate 3D representations. 
Likewise, Kumar et al. [123] estimated maize root volume 
based on a voxel representation obtained by SFS.

However, if the scene is relatively complex, such as 
when multiple plant parts are overlapping, or the plant 
parts are very intricate, one may have to rely on less 
standard volumetric methods. For example, Klodt et  al. 
[103] developed an optimization method which finds a 
segmentation of the volume enclosed by the visual hull 
by minimizing the surface area of the object subject to 
the constraint that the volume of the segmented object 

should be at least 90% of the volume enclosed by the vis-
ual hull. They applied their method for the volumetric 3D 
reconstruction of barley plants, and achieved an accurate 
3D reconstruction of fine-scaled structures of the plant.

3D image processing
This section describes common techniques for the visual-
ization, processing, and analysis of phenotyping data (in 
3D point set form, as a 3D image, or in any other form), 
through transformations, filtering, image segmentation, 
and morphological operations. A full list of papers and 
plants using these techniques can be found in Table  3, 
under the header “3D Image Processing”. Moreover, an 
overview of the topics covered in this section is presented 
in Fig. 5.

3D point set filtering
Point sets contain noise stemming from different sources 
regardless of whether the point cloud was generated 
actively or passively (but passively generated point clouds 
are typically more noisy [86, 124]). Removing noise is an 
essential first step in the processing pipeline.

Actively generated point clouds typically suffer from 
limited sensor accuracy and measurement error due to 
environmental issues (illumination, material references 
and imperfect optics). For point clouds that are generated 
through computational reconstruction, imprecise depth 
triangulation and inaccurate camera parameters can give 
rise to significant geometry errors which can be classified 
in two types: outlier errors or positioning errors [86, 113, 
114].

Moreover, the point cloud will often contain parts of 
the surrounding scene as well as wrongly assigned points, 
which need to be selectively removed, and “double wall” 
artefacts may result from small errors in the alignment of 
multiple scans, or from small movements during image 
acquisition. Finally, the initial size of the point cloud is 
often too large for further processing within a manage-
able time frame, requiring downsampling.

In plant phenotyping it is common to divide point set 
filtering into three different steps: background removal, 
outlier removal, and denoising [33, 125–127].

Background removal
When a point cloud is obtained through an active 3D 
acquisition method and doesn’t contain color informa-
tion, usually efforts are made to capture as little of the 
surrounding scene as possible. If the point cloud still con-
tains part of the surrounding scene, background removal 
can rely on the detection of geometric shapes such as 
planes, cylinders, or cones which may correspond to a 
surface, the main stem, or a pot, respectively. Points can 
then be discarded depending on the relative position to 
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these features. Detection of geometric shapes is often 
done using the RANSAC algorithm [128]. For example, 
Garrido et al. [129] imaged maize plants in a field using 
LiDARs mounted on an autonomous vehicle, and used 
RANSAC to segment their point clouds into ground and 
plants. Liu et  al. [130] used a variant of the RANSAC 
algorithm named MSAC to separate the soil from the 
original point cloud of maize.

When active 3D acquisition is combined with an 
RGB-camera or when a passive 3D acquisition method 
is applied, color information can be used for the 
removal of background points. The efforts employed 
in controlling lighting conditions during the 3D acqui-
sition will determine whether one can rely on simple 
color thresholding or more complex clustering or clas-
sification methods to discriminate between plant and 
background, based on color. For example, Jay et al. [79] 
used clustering based on both height above ground and 
color to discriminate between plant and background 

points in point clouds of in-field crop rows of various 
vegetable species which were obtained by SfM. Ma 
et al. [43] extracted soybean canopies from background 
objects: point clouds were rasterized to depth images, 
after which the pixels of the soybean canopies were dif-
ferentiated from those of the background by using spa-
tial information in the depth images. Although color 
information can be useful for removing background 
points, plants often present ranges of similar colors and 
shapes, making it difficult to perform segmentation. To 
remedy this, Sampio et  al. [15] developed a new tech-
nique using only (logarithmically transformed) depth 
information, and they show that accurate reconstruc-
tion results can be obtained for maize plants.

In the case of true background noise, this can be 
removed using a pass-through filter which limits the 
range of axes and removes the points outside the range. 
This approach can easily be combined with other 

3D image processing

3D point set filtering methods

Background removal

Outlier removal

Denoising (noise filtering)Downsampling

3D point cloud 
standardization

3D point set smoothing

3D point set registration

Secondary 3D object 
representation

Polygon mesh

Octree

Undirected graph

Fig. 5 Overview of 3D image processing techniques
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filtering algorithms such as the minimum oriented 
bounding box (MOBB) algorithm [125].

Outlier removal
Two methods for outlier removal are regularly applied 
on point clouds: radius and statistical outlier removal. 
The radius outlier removal method counts the number 
of neighboring points within a certain specified radius 
and removes the points for which this number is lower 
than a specified minimum number of neighbors. In sta-
tistical outlier removal (SOR) the mean distance to the k 
nearest neighbors is calculated for each point. Points are 
removed if the mean distance surpasses a certain thresh-
old which is based on the global mean distance to the k 
nearest neighbors and the standard deviation of the mean 
distances.

Li et  al. [111] developed a novel 3D joint filtering 
operator by integrating a radius-based outlier filter that 
can separate leaves by removing sparse points for dif-
ferent kinds of plant species such as Hedera nepalensis, 
Epipremnum aureum, Monstera deliciosa and Calathea 
makoyana. Liu et al. [130] applied a MATLAB function 
(pcdenoise) to remove outliers from the point cloud 
of maize which are at least 0.3 SD away from the mean 
distance and then applied another MATLAB function 
(pcsegdist) to remove the larger outliers according to 
a Euclidean distance threshold of 5  mm. Sampaio et  al. 
[15] and Chaivivatrakul et al. [38] used the same method 
to remove the outliers from the point clouds of maize 
plants.

Denoising (noise filtering)
Before applying further analysis steps it may be necessary 
to correct certain irregularities in the data, such as noise 
and “double walls” artefacts.

Moving Least Squares (MLS) This technique iteratively 
projects points on weighted least squares fits of their 
neighborhoods, thus causing the newly sampled points to 
lie closer to an underlying surface [131].

Density-based spatial clustering of applications with 
noise (DBSCAN) This algorithm was proposed by Ester 
et  al. [132] and is a density-based clustering algorithm 
designed to discover clusters of arbitrary shape. Zer-
mas et al. [82] used an algorithm based on DBSCAN to 
remove clusters that are smaller than a certain threshold 
and located further away than a fixed distance from other 
clusters, and applied this algorithm to maize plants.

Spatial Region Filter This filter works by means of 
region specifications which consists of one or more 
region expressions (geometric shapes) combined accord-
ing to the rules of Boolean algebra. It is used for plants 
such as Epipremnum aureum, Monstera deliciosa, 

Alathea makoyana, Hedera nepalensis and maize in the 
works of Wu et al. [133] and Li et al. [111].

Color filtering Lou et al. [9] used a color filter to remove 
noisy points from a 3D point cloud. They acquired 
images from the plant against a dark background, and 
found that background noisy points were mostly colored 
dark, whereas points belonging to the plant were shades 
of green.

Downsampling
Reducing the number of points needs to happen in a way 
which minimizes loss of information about surface and 
topology of the sampled object. The most regularly used 
method for point cloud downsampling is the voxel-grid 
filter. Here the point cloud is divided into a 3D voxel grid 
and points within each voxel are replaced by the centroid 
of all points within that voxel [9, 111, 130, 134, 135].

An alternative method, which makes use of random 
sampling and which is also designed to retain key struc-
tures in the point cloud, is the dart throwing filter [136], 
where points from the original point cloud are sequen-
tially added to the downsampled point cloud if they don’t 
have a neighbor in the output point cloud within a speci-
fied radius.

3D point cloud standardization
Point cloud standardization [15] refers to the process of 
adjusting the resolution of the point cloud according to 
the object in the scene, where, for example, objects with 
larger proportions can be described using a lower density 
of points while smaller objects are described using higher 
point densities. The result is a point cloud from which 
extraneous detail has been removed, resulting in a lower 
amount of data while keeping essential object features.

Sampio et  al. [15] presented a point cloud stand-
ardization procedure in which an octree data struc-
ture was used to hierarchically group cloud points into 
voxels according to a predefined resolution, with each 
voxel described by a single point in the group (e.g., the 
centroid).

3D point set smoothing
The raw imaging data acquired from optical devices such 
as laser scanners always contains noise [137], which must 
be taken into account during subsequent post-processing.

One pervasive source of error for ToF cameras is the 
so-called wiggling error [138–141], which alters the 
measured distance by shifting the distance information 
significantly towards or away from the camera depending 
on the surface’s true distance [138]. The wiggling error 
can be addressed by using bilateral smoothing, a non-lin-
ear filtering technique introduced by Tomasi and Man-
duchi [142] for edge-preserving smoothing [137].
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Sampaio et al. [15] used the bilateral smoothing tech-
nique for smoothing the cloud points of maize plants in 
two steps: smoothing normals and points reposition-
ing based on the adjusted normals, while the estimation 
of the normal vector for each point is performed using 
the Principal Component Analysis (PCA) technique. 
Ma et al. [125] used a bilateral filter to smooth the point 
cloud of rapeseed while preserving the edge features of 
the point cloud. He and Chen [141] implemented an 
error correction for ToF sensors based on a spatial error 
model and showed that this approach performs better in 
comparison to the calibration method in [143] or the dis-
tance overestimation error correction methods in [144].

3D point set registration
Many imaging methods give rise to more than one 3D 
point cloud, for instance when observing a plant from 
different viewing angles, and these point clouds need to 
be reconciled with one another into a single coordinate 
system, a process known as 3D point cloud registration 
[125, 145]. In the case of two 3D point clouds this process 
is known as pairwise registration, and is studied exten-
sively in the computer vision literature [145–149]. For 
pairwise registration, one set of points is typically kept 
fixed and denoted as the “target”, while the other is desig-
nated as the “source”. The goal is then to iteratively move 
the points of the source towards the target, while keeping 
the total amount of motion or deformation limited.

Broadly speaking, there are two categories of registra-
tion algorithms: rigid and non-rigid. Rigid point regis-
tration methods estimate a rigid body transformation 
(translation and rotation) of the source onto the target, 
and are usually easier to handle since they involve fewer 
parameters [150]. Chief among the rigid registration 
algorithms is the Iterative Closest Point (ICP) algorithm 
[112, 151], which alternates between associating nearby 
points in the source and the target, and estimating an 
optimal rigid body transform [152]. Many variants and 
improvements of the ICP algorithm exist [42, 153, 154], 
incorporating additional sources of geometric informa-
tion (e.g., depth), or optimizing for point cloud data from 
specific acquisition devices such as the Kinect. Rigid 
point registration methods have been applied extensively 
for plant phenotyping. Wang and Chen [155], for exam-
ple, developed an improved ICP algorithm that is more 
suitable for registering 3D point clouds from different 
directions using a turntable. They used a rotation matrix 
and a translation vector to process the relationship 
between adjacent point clouds and then applied the ICP 
algorithm. They applied their method on pepper plants 
and showed that the improved ICP has a better result in 
comparison to traditional ICP.

Rigid point registration algorithms perform well for 
rigid structures that are already somewhat aligned, but 
tend to yield poor results for the registration of deform-
able structures, such as non-rigid, thin plant structures 
[156]. Non-rigid registration techniques allow each point 
of the point cloud to move independently while penaliz-
ing large deformations. Moreover, the presence of noise 
and outliers may complicate the search for an optimal 
registration, rigid or otherwise. To accommodate noise, 
Jian and Vemuri [157] represent the input point sets as 
Gaussian Mixture Models (GMM) and reformulate the 
problem of image registration as one in which the dis-
tance between two GMMs is minimized, achieving good 
performance in terms of both robustness and accu-
racy [158]. It is worth noting that this approach can be 
applied to both rigid and non-rigid registration methods. 
The GMM approach is developed further in the Coher-
ent Point Drift (CPD) algorithm of Myronenko et  al. 
[159], where additionally the centroids of the Gaussians 
of one point set are constrained to approximately move 
together, so that the topological structure of the point 
cloud is preserved.

In the context of plant phenotyping, Chaudhury et al. 
[156] developed a two step method that achieved a bet-
ter fit than CPD in case of registering multiple scans. This 
method starts with aligning the scans and then registers 
a single scan to the average shape, constructed from all 
other scans, and updates the set to include the newly reg-
istered result. They applied their method on thale cress 
and barley plants. Ma et  al. [125] used the Fast Point 
Feature Histogram (FPFH), explained in the "Clustering-
based methods" section, for rough registration to regis-
ter multiple neighboring point clouds into a single point 
cloud and an ICP algorithm for fine alignment. Teng et al. 
[33] developed an improved ICP and applied it on rape-
seed plants and then compared it with classic ICP. Apart 
from being computationally more effective, the new 
method also succeeds in registering point clouds with 
large differences in angles, for which registration fails 
using the classical ICP.

Lastly, one of the most challenging tasks is registering 
3D point clouds of the plants over time and space [34]. 
Performing analysis on the time-series plant point cloud 
data, one needs to come up with techniques that asso-
ciate the point cloud data over time and register them 
against each other. The plants changing topology, as well 
as non-rigid motion in between plant scans make plant 
registration over an extended period of time very chal-
lenging [160]. Chebrolu et  al. [34] and Magistri et  al. 
[161] tackled the complexity of registering plant data over 
time by exploiting the skeleton structure (see "Skeletoni-
zation" section) of the plant to obtain correspondences 
between the same plant parts for the scans on different 
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days (Fig. 6). To aid with the development of new algo-
rithms for point cloud registration among other things, 
Schunk et al. [160] compiled Pheno4D, a large scale spa-
tio-temporal dataset of point clouds of maize and tomato 
plants.

Secondary 3D object representations
Depending on subsequent analysis methods it may be 
advantageous to convert the 3D representation into one 
of the below secondary representations.

Polygon mesh
A polygon mesh is a 3D representation composed of ver-
tices, edges and faces which define the shape of an object. 
The construction of a polygon mesh as an intermediate 
step in the analysis of a 3D representation of a plant may, 
for example, facilitate the calculation of leaf surface areas, 
or the segmentation into individual organs.

Polygon meshes are commonly constructed from voxels 
using the Marching Cubes algorithm [162], or from point 
clouds using α-shape triangulation [163]. However, mesh 
generation requires precise point clouds or voxel repre-
sentations, and the intricate and non-solid nature of the 
plant architecture makes that generating polygon meshes 
on a whole plant is often not feasible. More often, surface 
fitting is performed on individual leaves, after segmenta-
tion, or different surface fitting methods are applied to 
different plant organs.

Paproki et al. [164] constructed meshes of cotton plants 
from point clouds obtained by multi-view stereo, and 
performed their phenotypic analysis based on this repre-
sentation. They could obtain measurements of individual 
leaves and track them through time. McCormick et  al. 
[165] also based their measurements of shoot height, leaf 
widths, lengths, areas and angles in sorghum on the gen-
eration of a mesh from point clouds obtained through 
laser scanning. Chaudhury et al. [156] generated a mesh 
on complete thale cress point clouds by α-shape triangu-
lation to determine total surface area and volume.

Octree
An octree [166] is a tree-like data structure, in which a 
3D space is recursively subdivided into eight octants 
if the parent octant contains at least one point. In this 
way, increasing tree depths represent the point cloud in 
increasing resolutions. Such a representation can avoid 
memory limitations when points need to be searched 
within a large point cloud.

There are various algorithms for clustering and skel-
etonization which exploit the octree data structure, and 
which are suitable for plant phenotyping, such as CAM-
PINO [167] and SkelTre [168].

Duan et  al. [169] used octrees to divide point clouds 
of wheat seedlings into primary groups of points, after 
which these primary groups were merged manually to 
make them correspond to individual plant organs. Scharr 
et  al. [104] developed an efficient algorithm for voxel 
carving on banana seedlings and maize, which directly 
outputs an octree representation. Zhu et al. [170] used an 
adapted octree to reconstruct the surface of the 3D point 
cloud of soybean plants.

Undirected graph
An undirected graph is a structure composed of vertices 
connected by edges. Edges are assigned weights corre-
sponding to the distance between the connected points. 
Useful algorithms such as Dijkstra’s algorithm to calcu-
late shortest paths [171], Minimum Spanning Tree [172], 
and graph-based clustering methods such as spectral 
clustering [173] use undirected graphs as input.

An undirected graph can be constructed from a point 
cloud by connecting neighboring points to the query 
point. Neighbors can be selected based on a certain 
radius r around the query point, or the k closest neigh-
bors can be selected. If r or k are chosen too high, many 
redundant edges will be formed, whereas if they are too 
low, crucial ones may be missed.

Hétroy-Wheeler et  al. [174] converted the point 
clouds of various tree seedlings, obtained through laser 

Fig. 6 Time series of a tomato plant scanned in various days together with the extracted skeleton. Reprinted from [160] under the terms of the 
Creative Commons Attribution 4.0 International License (http:// creat iveco mmons. org/ licen ses/ by/4.0)

http://creativecommons.org/licenses/by/4.0
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scanning, into an undirected graph and used this as the 
basis for spectral clustering into plant organs. To avoid 
redundant edges and thus speed up the computation 
of subsequent steps, while at the same time not miss 
any relevant edges, they pruned the edges which have 
neighbors within a certain radius r, based on the angles 
between edges.

3D image analysis
The above processing steps are merely a transforma-
tion of the original 3D representation as preparation for 
subsequent analysis steps. During these analysis steps, 
specific additional information is extracted from the 3D 
representation. A full list of papers and plants using these 
techniques can be found in Table 3, under the header “3D 
Image Analysis”. An overview of the topics covered in this 
section is presented in Fig. 7.

Skeletonization
Skeletonization is the process of calculating a thin ver-
sion of a shape to simplify and emphasize the geometri-
cal and topological properties of that shape, such as 
length, direction or branching, which are useful for the 
estimation of phenotypic traits. A plethora of algorithms 
has been developed to generate curve skeletons. These 

techniques make use of different theoretical frameworks 
such as topological thinning or medial axes. For a review 
of methods in the context of plant images, see Bucksch 
and Alexander [175], and for a more general overview of 
methods, see Cornea et al. [176]. Skeletonization usually 
results in a set of voxels or points that in a final step are 
connected into an undirected graph, and on which subse-
quent analyzes can be performed.

A number of studies have proposed algorithms to 
model the 3D structure of trees by skeletonization, either 
for the purpose of phenotyping or for computer graphics. 
In Livny et al. [177] and Mei et al. [178] skeletonization 
of point clouds of trees obtained by terrestrial LiDAR 
scanning was performed, not to build an accurate 3D 
representation of the trees for phenotyping, but to gen-
erate models of trees with a credible visual appearance 
for computer graphics. Despite this different perspective, 
both provide skeletonization methods which should also 
be suitable for plant phenotyping, when excluding the 
processing steps which only serve to enhance the visual 
appearance of the 3D models.

Bucksch et  al. [168] developed a fast skeletonization 
algorithm, and obtained good results comparing the dis-
tributions of skeleton branch lengths with and manually 
measured branch lengths [179]. While the method is fast, 
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Fig. 7 Overview of 3D image analysis techniques
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it performs less well for point clouds with varying point 
densities, and is likely to face difficulties with plants other 
than the leafless trees which they studied.

Coté et  al. [180] constructed 3D models of pine trees 
by skeletonization to obtain realistic models in order 
to study reflected and transmitted light signatures of 
trees, by ingestion into a 3D radiative transfer model. 
Here again the goal was not to obtain direct phenotypic 
measurements of individual trees, but to study indirect 
radiative properties which depend on the tree canopy 
structure. To this end, they generated plausible tree can-
opy structures from a skeleton structural frame defining 
the trunk and first-order branches only. The skeletoni-
zation method employed to create this structural frame 
uses a method proposed by Verroust and Lazarus [181] 
based on the use of Dijkstra’s algorithm applied on an 
undirected graph.

The aforementioned method assumed that cloud points 
are sampled uniformly or nearly uniformly. To handle 
point clouds with inconsistent density and outliers, Dela-
grange et  al. [182] developed PypeTree, a software tool 
for the extraction of skeletons of trees that allows the 
user to manually adjust a reconstructed plant skeleton.

Ziamtsov and Navlakha [183] improved upon PypeTree 
[182] and the methods of Verroust and Lazarus [181] and 
Bucksch and Alexander [175] by using information about 
the curvature of the plant skeleton. They did so by adding 
two new features to detect plant tips more accurately and 
independently of connected components or level size, 
and to enhance root selection. They apply their method 
to extract a skeleton graph of tomato and benth plants.

Lou et al. [9] adopted a method developed by Cao et al. 
[184] based on Laplacian contraction and applied this 
method on thale cress (rosette and in flowering stage), 
Physalis sp., maize, Brassica sp., and wheat. They first 
segmented the leaves and after removing them from the 
point cloud, they applied their method to the modified 
version of the point cloud. This method proved to be 
robust to noise and produced a well connected skeleton.

The extracted 3D reconstructions usually contain in 
the order of millions of points which imposes signifi-
cant computational demands on subsequent processing 
steps. Therefore, another application for skeletonization 
is to provide a more parsimonious representation of a 
plant structure so that further processing can be done 
more efficiently. For example, Zermas et  al. [82] devel-
oped a skeletonization algorithm starting from 3D point 
cloud data, which is split into thin slices of equal height. 
A per-slice clustering is then performed to find cluster 
centroids that best represent the neigboring points, and 
these cluster centroids are retained in the thinned-out 
skeleton. They applied this method on maize plants.

Chaudhury and Godin [185] proposed an algorithm 
based on stochastic optimization to improve coarse ini-
tial skeletons that were obtained with different skeletoni-
zation algorithms. They applied the proposed algorithm 
on real world and synthetic datasets contains differ-
ent varieties of plants including cherry, apple tree, and 
thale cress plants. In contrast to other techniques, their 
method is more faithful to the biological origin of the 
original point cloud data.

Wu et al. [133, 186], on the other hand, used an itera-
tive shrinkage process to contract the point cloud of 
a maize plant by using the classical restricted Laplace 
operator.

The 3D analysis of the branching structure of root sys-
tems is another application which has been approached 
by skeletonization. For example, Clark et al. [187] present 
a software tool for the 3D imaging and analysis of roots. 
Here, a thinning algorithm is applied on voxel represen-
tation obtained by SFS.

Despite its usefulness for the estimation of certain 
traits, skeletonization has rarely been applied to the 
phenotyping of herbaceous plant shoots. This may be 
because of difficulties when applying skeletonization on 
objects with more diverse topographies, such as in the 
presence of broad leaves, and when there are more occlu-
sions. Chaivivatrakul et al. [38] performed a medial axis-
based skeletonization of the relatively simple structure of 
young maize plants to obtain leaf angles, but they found 
that that particular skeletonization method didn’t per-
form well compared to plane fitting through leaves.

Segmentation
Image segmentation is the process of dividing an image 
into parts based on the problem needs [16]. In plant 
phenotyping, segmentation of the 3D representation 
into individual plant organs is a difficult and critical 
step in the process of obtaining plant organ measure-
ments. There is no standard approach that will work in 
the majority of situations. The application of any one 
approach will largely depend on the plant morphology, as 
well as the quality of the 3D representations.

There are several existing techniques which are used 
for image segmentation and all these techniques can be 
approached from two basic approaches of segmentation: 
region-based and edge-based approaches [188, 189]. The 
most popular techniques and their application in plant 
phenotyping are listed below [16, 188, 190]. A compari-
son of the different segmentation techniques is presented 
in Table 4.

Color‑index based methods
A common method for segmenting the plant from the 
background is color index-based segmentation [8]. In 
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this approach, a 3D color value is converted into a scalar 
(grayscale) value, so that there is a pronounced distinc-
tion between foreground and background values.

Ge et  al. [191] used color index-based segmentation 
on maize plants in which the image was transformed to 
a single color-band image using a nonlinear transforma-
tion emphasizing the green channel and suppressing the 
effects of different illuminations. Choudhury et al. [192] 
used color-based segmentation in hue, saturation, and 
value (HSV) color space for a holistic and components-
based phenotyping of maize plants.

Thresholding methods
Assuming strict conditions as to the composition of the 
scene, the majority of algorithms in plant phenotyping 
usually employ thresholding-based approaches in one or 
multiple channels [193–195]. Gray-level thresholding is 
the simplest segmentation process and using a threshold 
can segment objects and background [16].

Minervini et  al. [196] used a binary segmentation of 
thale cress and tobacco plants as the first step. Xia et al. 
[109] applied an RGB thresholding method to field 
images of paprika plants to eliminate the background.

Edge‑based methods
A large group of methods performs segmentation based 
on the information about edges in the image. Edge detec-
tion algorithms usually work in two steps: first, points 
belonging to an edge are detected based on quick changes 
of the intensity around the point. Then, edge segments 
are generated by grouping points inside the bounda-
ries extracted by edge detection [16, 188, 197, 198]. 
This method is simple and fast, but is more suitable for 

2D images rather than 3D point clouds and often deliv-
ers disconnected edges which cannot be used to identify 
closed segments [115, 189, 198].

Lomte and Janwale [199] provided a brief review on 
plant leaves segmentation techniques including edge-
based techniques on 2D images. Some works on edge-
based segmentation on 2D images can be found in [200] 
on thale cress, and [201] on orange fruits, [202] on pig-
weed, purslane, soybean, and stinkweed.

Region‑based methods
Segmentation results from edge-based methods and 
region-growing methods are not usually the same. How-
ever, region-growing techniques are generally better 
in noisy images, where it is difficult to detect borders 
between regions of the image with similar characteristics, 
such as intensity or color [16].

Liu et al. [130] developed a three-phase segmentation 
procedure to segment maize plant organs based on a 
skeleton and a region-growing algorithm. First, they pro-
cessed the denoised point clouds of each plant using a 
Laplacian-based method [184] and generated plant skele-
ton points. They then applied a region-growing algorithm 
proposed by Rabbani et  al. [197] to classify point cloud 
clusters.

Miao et al. [203] applied a median-based region-grow-
ing algorithm [204] to segment the stem points of the 
maize plant. Their algorithm is a region-growth method 
tailored specifically to maize and is able to segment stem 
and leaf instances in sequence, working upwards from 
the bottom of the plant.

Region-growing algorithms divide the point cloud 
into different clusters based on local smoothness and 

Table 4 A comparison of segmentation techniques

Segmentation method Principle Advantages Disadvantages

Clustering-based Segments the image into clusters 
consisting of pixels with similar char-
acteristics

(1) Elimination of noisy spots
(2) Typically obtains homogeneous 
regions

(1) Sensitive to noise
(2) Hard to find initial parameters

Color-index-based Makes a distinction between fore-
ground and background values based 
on a scalar value (e.g., green channel)

(1) Simple to implement
(2) Low computational cost
(3) High efficiency

(1) Omitting spatial information by only 
considering pixel intensities
(2) Sensitive to noise

Edge-based Detects edge points based on sudden 
changes in intensity and generates 
edge segments by grouping edge 
points together

(1) High accuracy in edge positioning
(2) High speed

(1) No guarantees about continuity and 
closure of edges
(2) Less suitable for images with many 
edges

Region-based Divides the point cloud into different 
clusters based on local smoothness and 
curvature characteristics or on the pres-
ence of features at a certain scale

(1) Effective for complex images
(2) High accuracy in images with high 
contrast between regions
(3) Generally good performance in 
noisy images

(1) Complicated algorithm
(2) Computationally intensive

Threshold-based Divides pixels into groups based on 
their intensity relative to a given value 
or threshold

(1) Simple to implement
(2) Low computational cost
(3) High efficiency

(1) Depending only on the pixel gray 
value without considering spatial details
(2) Sensitive to noise
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curvature characteristics or on the presence of features 
at a certain scale. Typically, these characteristics vary 
across a wide range of values for plant point clouds, and 
a threshold that works for one plant type or organ may 
not be appropriate for another. To address this, Huang 
et  al. [205] developed a multi-level region-growing 
segmentation to find a suitable adaptive segmentation 
scale for different input data. They applied the pro-
posed method to perform individual leaf segmentation 
of two leaf shape models with different levels of occlu-
sion. They compared their proposed method with two 
widely used segmentation methods (Euclidean cluster-
ing and facet region-growing methods) and showed 
that the proposed method has the highest measure-
ment accuracy.

Golbach et  al. [101] performed a segmentation of 
stem and leaves on a voxel representation of tomato 
seedlings. They used a breadth-first flood-fill like algo-
rithm whereby the structure is iteratively traversed 
along neighboring voxels starting from the lowest point 
in the voxel representation. As the algorithm traverses 
the main stem all added points are located closely 
together, but at the point of the first side branches 
newly added voxels are located further apart. If this dis-
tance exceeds a certain threshold, the iteration can be 
treated as the end of the stem. Leaf tips were detected 
as the last voxel additions after the flood-fill algorithm 
progressed past the end-point of the main stem. This 
approach is illustrated in Fig. 8.

Klodt and Cremers [103] segmented their volumet-
ric 3D models of barley into two regions based on the 
eigenvalues of the second moment tensors of the sur-
face. These provide information on the gradient direc-
tions of the shape, and allow to discriminate between 
long, flat, or structures with no dominant direction. 
This approach resulted in a discrimination between 

the distal parts of leaves and the rest of the plant. The 
obtained segmentation then allowed for automated leaf 
quantification, by counting the number of connected 
components corresponding to the distal parts of the 
leaves.

The last two examples of segmentation algorithms 
[101, 103] are highly customized towards particular 
plant morphologies. The former makes use of the oppo-
site position of the cotyledons of young dicot seedlings, 
while the latter depends on plants with a rosette-like 
arrangement of narrow leaves. The advantage of such 
highly customized algorithms is that they can be better 
tailored towards efficiency for use in high-throughput 
applications.

Choudhury et  al. [99] used a technique called voxel 
overlapping consistency check with point cloud cluster-
ing techniques to divide the 3D plant voxel-grid of maize 
and cotton plants into three components based on the 
structure of the plants: stem, leaves and top leaf cluster to 
compute component phenotypes.

On polygon meshes, there are two common approaches 
for segmentation: the fitting of shape primitives such as 
planes, spheres and cylinders [206]; and region-growing 
from seed points on the mesh surface, constrained by 
changes in curvature which correspond to sharp edges 
[207, 208].

Paproki et  al. [164] applied a hybrid segmentation 
pipeline based on both approaches. First they obtained 
a coarse segmentation of meshes of cotton plants into 
different leaves and the main stem using constrained 
region-growing. After that, more refined segmentation 
of the main stem region into internodes, and petioles 
branching off from the main stem, was performed using 
cylinder fitting.

Nguyen et al. [209] were mainly interested in segmen-
tation into individual leaves and the stem, and applied 
region-growing constrained by curvature from seed 
points which were determined to belong to large flat 
regions based on pre-computed curvature values. They 
did this on a plastic model of a dicotyl plant, and their 
method allowed them to measure length, width, perim-
eter, and surface area of all the leaves.

Clustering‑based methods
Clustering-based techniques segment the image into 
clusters consisting of pixels with similar characteristics 
[210, 211]. The most used techniques in this category in 
the plant phenotyping domain are discussed below.

Topological and morphological feature-based: Miao 
et  al. [212] presented an automatic stem-leaf segmenta-
tion method for maize plants, which was able to extract 
the skeleton of a point cloud directly, and uses topologi-
cal and morphological features to identify the number 

Fig. 8 Segmentation of a voxel grid representation of a tomato 
seedling in stem (green) and individual leaves (colored) (left), and 
schematic illustration of the stem-leaf segmentation algorithm (right), 
as used by [101]. The structure is filled from the bottom (red point). 
As long as neighboring points are close together in space, they are 
treated as stem. Once they spread out, the end of the stem (yellow 
points) is marked. The last point additions correspond to leaftips 
(green and blue points). Reprinted under the terms of the Creative 
Commons Attribution 4.0 International License (http:// creat iveco 
mmons. org/ licen ses/ by/4.0)

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
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and category of organs. They generated a coarse seg-
mentation based on the plant skeleton and used this 
result to classify the points into stem-leaf clusters. They 
showed that their method achieved a high segmentation 
accuracy.

Mean shift: Mean shift clustering was originally intro-
duced by Fukunaga and Hostetler [213] and revisited 
after 20 years by Cheng [214]. This algorithm has been 
widely applied in image segmentation and object track-
ing [215, 216] and consists of an iterative procedure that 
shifts each data point to the average of data points in its 
neighborhood by using kernel density estimation [109]. 
Xia et al. [109] applied the mean shift algorithm to seg-
ment plant leaves and background objects in a depth 
image. Since depth data represent the coordinates of 
objects in 3D space, plant leaves and background objects 
could be separated in terms of discontinuity in depth.

Spectral clustering (graph-based): Spectral clustering 
goes back to Donath and Hoffman [217] and is a set of 
clustering techniques that takes connectivity between 
points in an undirected graph into account. Its main 
advantage is that it is straightforward to implement and 
can be solved efficiently by standard linear algebra meth-
ods [218]. Points are projected into a lower-dimensional 
embedding which maintains distances between con-
nected points as much as possible. Next, a standard 
clustering technique is usually applied on this lower-
dimensional embedding. When applying the spectral 
dimension reduction on a graph of a branching structure, 
such as a plant, this same branching should be recognis-
able in the lower-dimensional embedding, while other 
morphological features will be suppressed. A exhaustive 
introduction to spectral clustering can be found in the 
tutorial of von Luxburg [218].

Hétroy-Wheeler et al. [174] and Boltcheva et al. [219] 
made use of this property to segment point clouds of 
poplar seedlings into individual leaves and their stems. 
They identified segments in the branching structure of 
the lower dimensional embedding, which correspond 
to the plant parts in the original point cloud of the tree 
seedling (Fig. 9).

Zermas et  al. [82] applied an algorithm named Ran-
domly Intercepted Nodes (RAIN) to segment the maize 
plant. Based on this algorithm, a rain drop that falls on 
any part of the plant has to glide on top of the plant’s sur-
face before it reaches the ground and can only take two 
possible routes: fall over the edge of a leaf, or follow the 
stem closely until it reaches the plant base. By simulating 
and analysing the trajectories of hundreds of randomly 
placed rain drops, they were able to perform plant seg-
mentation and extract other phenotypical characteristics. 
The selection of each next point was based on a few sim-
ple rules affected by gravity. Since most of the random 
drops encountered at a given moment an already visited 
point, at which time their route was prematurely ended, 
the number of points that were considered as potential 
path candidates was severely reduced. Like other algo-
rithms, this algorithm has limitations as well. In dense 
canopies, for example, drops that visit a tall plant over-
shadowing a smaller plant may miss the smaller plant 
partially or completely.

Lou et al. [9, 220] proposed a spectral method for 3D 
mesh segmentation of CAD models. They showed that 
their method is applicable to diverse plants with varied 
structure, size and shape, and they applied their method 
on plants including thale cress, Brassica sp., oat, maize, 
Physalis sp. and wheat. However, this method cannot 
always generate meaningful and accurate segmentation 
results for plants with curved leaves, or with tiny side-
branches at the top of the plant, or at junction points in 
the plant skeleton.

Saliency features (Surface-based clustering): The 
ordered eigenvalues resulting from eigendecomposition 
( �0 ≤ �1 ≤ �2 ) can be used directly as features for clus-
tering or classification, because the relative size of the 
eigenvalues provides information about the shape of the 
local distribution of points: if points are scattered with 
no preferred direction, �0 ≃ �1 ≃ �2 ; if points are dis-
tributed along one axis, as would be the case for stems, 
�2 ≫ �0, �1 ; and in the case of a planar surface, as for 
leaves, �1, �2 ≫ �0 . Therefore linear combinations of the 
eigenvalues, called the saliency features, could be used as 
features: scatter-ness ( �0 ), linear-ness ( �2 − �1 ), and sur-
face-ness ( �1 − �0).

These features can also be expressed as curvature 
and directionality, defined as �0/(�0 + �1 + �2) and 
�2/(�0 + �1 + �2) , respectively. Points belonging to 

Fig. 9 Illustration of the spectral clustering approach used by [174]. 
The point cloud obtained by laser scanning is converted into a graph 
representation, after which spectral embedding finds intrinsic plant 
directions, which are decomposed in the principal plant axes. These 
correspond to elementary units such as leaf blades, petioles, and 
stems. Reprinted by permission of the publisher Taylor & Francis Ltd, 
(http:// www. tandf online. com) and the authors

http://www.tandfonline.com
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flat regions such as leaves will have a low curvature in 
their neighborhood, while linear features have a high 
directionality.

Dey et al. [221] used saliency features and color to seg-
ment point clouds of grapevines obtained through SfM 
[222] into branches, leaves and fruit. They calculated sali-
ency features at 3 spatial scales and concatenated color in 
RGB to obtain a 12-dimensional feature vector for clas-
sification. Moriondo et al. [223] also used SfM to obtain 
point clouds of the canopy of young olive trees. They 
used saliency at one spatial scale and color features to 
segment the point clouds into stems and leaves using a 
Random Forest classifier. Li et al. [48] used curvature to 
discriminate between flat leaves and linear stems. They 
achieved a spatially coherent unsupervised binary classi-
fication via Markov Random Fields.

Point feature histograms: Local features such as as sur-
face normals or eigenvalues use only a few values in the 
neigborhood of a point. Point Feature Histograms (PFH) 
[224], and its more efficient variant Fast Point Feature 
Histograms (FPFH) [225], can be used for a more com-
plete description of the neighborhood of a point. They 
are based on the angular relationships between pairs of 
points and their normals, within a radius r around each 
query point. These values, usually 4 angular features, are 
then binned into a histogram, and the histogram bins can 
be used as features in a clustering or classification algo-
rithm. Figure  10 illustrates the difference in the PFHs 
between point clouds with different surface properties, 
such as of a laser scanned grapevine leaf and grapevine 
stem.

Because of their higher information richness, PFH 
depend on relatively precise and accurate representations 

of the plant organ surfaces and shapes, which usually will 
be obtained by active 3D acquisition techniques such 
as laser scanning. They have been used as features of 
high-precision point cloud representations of grapevine, 
wheat, and barley obtained by laser scanning [30, 35, 
226]. Sodhi et al. [227], however, used less precise point 
clouds of sorghum plants obtained by multi-view stereo 
imaging, and could still obtain robust segmentations of 
leaves and stems because the shapes of plant organs in 
sorghum are relatively easily differentiated.

Segmentation post‑processing
A common post-processing step to improve the spatial 
consistency of class labels is to apply a fully connected 

Fig. 10 Point Feature Histograms for the laser scanned point cloud of a grapevine leaf (a) and of a grapevine stem point cloud (b), by [35]. 
Reprinted under the terms of the Creative Commons Attribution 4.0 International License (http:// creat iveco mmons. org/ licen ses/ by/4.0)

Fig. 11 Segmentation obtained by SVM on FPFHs before a and after 
b post-processing with CRF by [227]. CRF corrects leaf false negatives 
near stem/leaf intersections, by minimizing label differences across 
neighbors with similar surface normals. ©2017 IEEE, reprinted with 
permission from the authors

http://creativecommons.org/licenses/by/4.0
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pairwise Conditional Random Field (CRF) [228], which 
takes the spatial context into account and which can 
greatly improve segmentation results.

Dey et  al. [221] and Sodhi et  al. [227] applied such 
a CRF as post-processing of segmentations based on 
saliency features and PFH for grapevine and sorghum 
plants, respectively. The effect of such post-processing 
is illustrated in Fig. 11.

Surface reconstruction
In point clouds, surface reconstruction can be an aid for 
segmentation, or can serve as a preliminary step before 
the final measurement of individual plant organs.

Once the point cloud has been segmented, reconstruc-
tion of the points on the plant organ surface and the 
edges can be tackled in different ways, via surface fitting 
and edge fitting, respectively. Surface fitting can be done 
by fitting geometric primitives such as cylinders and 
planes, or flexible surfaces such as non-uniform rational 
B-splines (NURBS). Although surface fitting can generate 
a smooth surface, it can also result in serrated lines for 
the edges. Constructing the edges needs the edge points 
to be detected and then fitted separately by using, for 
example, 3D splines, which offer a degree of smoothness. 
As surface edges are typically noisy, detecting the con-
stituent points of the edge directly can be difficult [229].

Local regression techniques
Least squares methods are a classic tool for surface fitting 
[230, 231]. However, applying least squares directly can 
generate a overly smooth surface that loses certain local 
details of the surface, like leaf structures. Hence, applying 
a method that uses local information may be more suit-
able for reconstructing the surface and capturing local 
details [229]. MLS (see also "Denoising (noise filtering)" 
section) is widely used for generating a surface for data 
points [232], and constructs and evaluates a local polyno-
mial continuously over the entire domain instead of con-
structing a global approximation. This method can thus 
be viewed as a local regression method.

Zhu et al. [229] used another local regression method 
called Locally Estimated Scatterplot Smoothing (LOESS) 
which can reconstruct a continuous surface even with the 
presence of the discontinuity of leaf points and is simi-
lar to MLS. They used this method for maize plants and 
compared it with Poisson and B-spline methods, show-
ing that this method can generate smoother leaf surfaces 
with smaller normal variances.

Triangulated mesh generation techniques
Triangulation for plant structures is challenging due to 
the presence of thin branches. Delaunay triangulation is 

typically used for modeling a surface but does not gener-
ate good results for plant structures [156].

Sampaio et  al. used the Advancing Front algorithm 
[233, 234] based on Delaunay triangulation but with 
higher performance in terms of accuracy and quality. 
They applied this algorithm in the first phase of surface 
reconstruction for maize plants. Chaudhury et  al. [156] 
used the α-shape algorithm for triangulation on barley 
and thale cress plants and showed that it worked well 
when its parameters were properly tuned. Zhu et al. [229] 
applied the Delaunay triangulation algorithm [235] after 
surface fitting on maize and rice plants to generate a tri-
angular mesh in the xy-plane and then computed the cor-
responding z values through comparison with the fitted 
surface. In this way, they were able to generate a 3D trian-
gle mesh from the fitted surface.

Non‑uniform rational B‑splines
NURBS [236] are mathematical models for generating 
and representing smooth curves and surfaces in com-
puter graphics. A NURBS surface is completely defined 
by a list of 3D coordinates of surface control points and 
associated weights. Fitting techniques of NURBS surfaces 
are described in Wang et al. [237]. NURBS surfaces can 
then be triangulated and its surface area approximated by 
summing the areas of each triangle.

NURBS have been applied for the estimation of the 
surface area of leaves in the following works: Santos et al. 
[83, 238] first segmented their 3D point clouds of soybean 
obtained by SfM using spectral clustering, and then fitted 
NURBS surfaces to the segments corresponding to leaves 
(Fig. 12); Gélard et al. [239, 240] performed NURBS fit-
ting on segmented leaves of sunflower point clouds 
obtained by SfM after the stems had been detected and 
removed using cylinder fitting; and Chaivivatrakul et al. 
[38] fitted NURBS surfaces to point sets corresponding 
to maize leaves after these had been mapped onto an 
underlying surface by MLS.

Cylinder fitting
Often stems of plants can be locally represented as a cyl-
inder. A cylinder fitting procedure for oak trees based on 
least-squares fitting is described in Pfeifer et  al. [241]. 
Paulus et al. [30] applied a similar procedure on stems in 
3D laser scanned point clouds of barley. This was done 
after the segmentation of leaves and stems using PFH. 
The fitted cylinders allowed them to accurately estimate 
stem length. Gélard et al. [240] found that cylinder fitting 
didn’t provide satisfactory results when stems are curved, 
so they developed an alternative procedure in which they 
propagated a ring with neighborhood and normal con-
straints vertically along the stem of a sunflower point 
cloud to model the stem as a curved tube.
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Trait estimation
After the challenging steps of skeletonization, segmenta-
tion and/or surface reconstruction, the measurement of 
traits on either whole plants, or individual plant organs 
is often relatively straightforward and many different 
approaches may yield sufficiently good estimates. Meas-
uring these features is important for a large number of 
tasks [242], including quantifying plant biomass and yield 
[243], understanding plant response to stressful condi-
tions [196], mapping genotypes and building predictive 
structural and functional models of plant growth [244].

Whole plant measurements
Convex hull The convex hull is defined as the shape of an 
object which is created by joining its outermost points. 
The volume of the convex hull of a whole plant can be 
an indicator for the size of a plant. In root systems, it 
may be used as an indicator of the extent of soil explora-
tion [245]. Calculating the convex hull of a point cloud 
requires minimal preprocessing, but provides only a very 
rough indicator. The convex hull of tomato plant point 
clouds has been estimated by Rose et al. [85]. The convex 
hull was estimated on root systems of two Oryza sativa 
(rice) genotypes (Azucena and IR64) by Clark et al. [187], 
of barley plants by Mairhover et al. [61], and of Rice (Bala 
× Azucena) plants by Topp et al. [245].

Height Height in point clouds can be simply defined 
as the maximal distance between points belonging to a 
plant or root system projected on the vertical axis, such 
as in Paulus et al. [36] on sugar beet taproots and Nguyen 
et  al. [26] for cabbage and cucumber seedlings. Height 
can also be easily derived from top-view depth images 
without much processing as the difference between the 
ground and the closest pixel in the image, as done by 

Chéné et  al. [110] on rosebushes and Cao et  al. [14] on 
soybean plants.

More robust measures for plant height may be calcu-
lated as, for example, by Kjaer and Ottosen [32] where 
points were arranged in percentiles in relation to their 
distance from the top-view scanner, and the average of 
the 80th–90th percentile points was treated as a more 
robust estimate of rapeseed plant height.

Area and volume In the case of point cloud representa-
tions, plant area and volume are usually estimated based 
on 3D meshes. The surface area of a mesh can easily be 
determined by adding up the area of triangular mesh 
faces determined by Heron’s formula. The volume of a 
mesh can be determined by the method described in 
[246]. Chaudhury et  al. [156] calculated total plant sur-
face and volume from an α-shape triangulated surface of 
thale cress plants in this way.

When the plant is represented as a voxel grid or octree, 
and this representation is precise enough, the volume can 
be estimated by summing the volumes of all the voxels 
covering the plant, as was done by Scharr et al. [104] on 
maize and banana seedlings. However, the authors found 
that voxel carving methods led to overestimates of vol-
umes due to missed concavities and occlusions.

The surface area of a voxel grid or octree could be esti-
mated by first deriving a meshed surface, which can be 
obtained with the Marching Cubes algorithm [162].

Number of leaves When a segmentation method was 
able to discriminate between leaves and stems in point 
clouds or voxel representations, the number of leaves can 
be derived by counting the number of connected compo-
nents, after converting the leaf points into a graph in the 
case of point clouds.

Fig. 12 Leaf segmentation and surface fitting using NURBS on a point cloud representation of soybean leaves, by [83]. Reprinted by permission 
from Springer Nature Customer Service Centre GmbH: Springer Nature, Computer Vision - ECCV 2014 Workshops by Agapito, Bronstein, and Rother, 
©2015
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In monocot crops leaves are very elongated and not 
always easily distinguishable from stems. However, an 
accurate segmentation between leaves and stems is not 
necessary when the aim is leaf counting. For example, 
Klodt and Cremers [103] discriminated between only the 
distal parts of leaves and the rest of barley plants by ana-
lyzing gradient directions of the 3D shape (Fig. 13), which 
was sufficient to count leaves. Another strategy for plants 
with elongated leaves might be to count leaf tips, which 
may be represented by the endpoints of a curve skeleton 
of the plant.

Petiole length and angle Cao et al. [14] constructed 3D 
models of soybean plants based on SfM and measured 
the petiole length as the length of the longest petiole at 
the front view and the petiole angle as the angle between 
a petiole and the stem using the CloudCompare software.

Plant organ measurements
Stem or root dimensions Stem and internode lengths can 
be based on curve skeletons or cylinder fits. Paulus et al. 
[35] derived cumulated stem height from cylinder fits on 
the stems of barley plants. Golbach et al. [101] used the 
skeleton of the voxels representing the stem of tomato 
seedlings.

Using the graph of a skeleton, the lengths of internodes 
can be estimated by measuring the geodesic distance 
between branch points using Dijkstra’s algorithm. This 
was demonstrated by Balfer et  al. [247] on a berryless 
grape cluster which was skeletonized by the method of 
Livny et al. [177].

Stem or root widths are often estimated by cylinder fit-
ting. For example, Sodhi et al. [227, 248] fitted primitive 

Fig. 13 Illustration of the leaf counting method used by [103]. A 3D surface model of barley is segmented based on the eigenvalues of 
second-moments tensors of the surface, after which connected components corresponding to the distal parts of leaves are counted, to yield the 
number of leaves of the plant. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Computer Vision 
- ECCV 2014 Workshops by Agapito, Bronstein, and Rother, ©2015

Fig. 14 Example of the 3D measurements of plant organs as used by [248]. Stem diameters were estimated by fitting cylinder shapes to stem 
point cloud segments (a), leaf widths by determining the oriented bounding box around leaf point cloud segments and measuring their shortest 
dimension (b), and leaf lengths by computing the shortest paths connecting the furthest points on the leaf surface meshes (c). Reprinted with 
permission from the author
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cylinder shapes to the segmented stem point cloud of 
maize plants to extract the stem diameter (Fig. 14).

Leaf dimensions Two of the most important architec-
tural traits are leaf angle and leaf area index that have 
influence on light interception and canopy photosynthe-
sis [130, 249, 250].

The most natural representation for the estimation of 
leaf dimensions is a mesh surface. Leaf area is then easily 
estimated as the sum of the area of triangular mesh faces 
as was done by Sodhi et al. for sorghum [227], by Gélard 
et  al. for sunflowers [239, 240] and by Chaivivatrakul 
et al. for maize [38]. Leaf base point is defined as the clos-
est point to the stem point clouds [130]. Leaf length and 
width can be calculated by determining the longest geo-
desic shortest path on the mesh expressed as a graph, by 
applying Dijkstra’s algorithm [171]. Liu et al. [130] imple-
mented a three-step procedure to find the leaf tip point 
of maize plants and then defined the leaf length as the 
distance of the shortest path between the leaf base and 
the leaf tip. Sodhi et  al. [227, 248] estimated leaf width 
of sorghum plants by determining an oriented bound-
ing box around a leaf point set, whose sides are directed 
towards the principal axes of the point set. The leaf width 
is then the second longest dimension of the bounding 
box (Fig. 14).

Golbach et al. [101] instead derived the leaf dimensions 
of tomato plant seedlings directly from a voxel represen-
tation to minimize computing time. After segmentation 
they determined leaf length as the distance between the 
two points on the surface of the leaf which are furthest 
away from each other. To correct for the curved shape 
of the leaves, they added an additional point on the leaf 
surface halfway between these points. For the leaf width, 
they searched for the maximum leaf width perpendicular 
to the three point leaf midrib which was used for the leaf 
length. For leaf area they used an approximation based on 
the number of surface voxels. The authors choose rather 
crude measurements and may have sacrificed some pre-
cision in favour of speed.

Duan et  al. [169] based their measurements of leaf 
lengths and widths of wheat seedlings on polynomial 
regression fits through segmented leaf point clouds. They 
identified leaf edges according to the 90th percentile on 
either side of the leaf midrib using quantile regression, to 
account for the presence of noise.

Ear or fruit volumes Plant yields may be approximated 
by the estimated volumes of plant ears or fruits. For 
example, after segmentation based on PFH, Paulus et al. 
[35] found that ear weight, kernel weight and number 
of kernels in wheat plants was correlated with their esti-
mates of ear volume, which they obtained by estimating 
α-shape volumes on the point sets corresponding to the 
ears.

Canopy level measurements
When 3D acquisition methods don’t provide sufficient 
detail to allow for measurement of individual plant 
organs, such as when applied on larger scales in the field, 
useful information can still be extracted on the level of 
crop or tree canopies. Examples of such traits are canopy 
surface height, vertical plant area density distribution, 
leaf area index, or leaf angle distribution.

Cao et al. [14] measured the canopy width of soybean 
plants as the maximum plant canopy width from the pro-
jection on the front view of 3D points clouds.

Canopy profiling LiDAR has a certain capacity to pen-
etrate canopies, so that in LiDAR the frequency of laser 
interception by a canopy can be used as an index of foli-
age area at each height. This canopy profiling by air-
borne LiDAR has been deployed mostly in the context of 
ecological studies on forest stands [251, 252]. However, 
Hosoi and Omasa [253] used a high-resolution portable 
scanning LiDAR together with a mirror for vertical plant 
area density profiling of a rice canopy at different growth 
stages. Their method for the estimation of leaf area den-
sity is based on a voxel model, and is described in [254]. 
The leaf area index can then be derived from the vertical 
integration of leaf area density values.

Cabrera et  al. [255] instead used 3D voxel grid repre-
sentations of individual maize plants to study light inter-
ception of maize plant communities, by creating virtual 
canopies of maize. In the virtual canopy, the cumulative 
leaf area and the average leaf angles were determined 
based on the 3D representations of individual plants. 
These measures were combined with a model of incident 
light in the greenhouse, so that the local light intercep-
tion by the canopy could be estimated.

Leaf angle distribution 3D image acquisition methods 
provide the opportunity to study temporal patterns in the 
orientation of leaves, which is a highly dynamic trait that 
changes in response to fluctuations in the environment. 
Biskup et al. [77] presented a method based on top-view 
stereo imaging. Their depth images were subjected to a 
graph-based segmentation algorithm [256] to obtain 
a rough segmentation of individual leaves of soybean 
plants, after which planes were fitted to each segment 
using RANSAC to determine leaf inclination angles. 
Müller-Linow et  al. [108] presented a software tool to 
analyze leaf angles in crop canopies based on the same 
set of methods.

Machine learning techniques for plant 
phenotyping
Machine Learning (ML) is the scientific study of algo-
rithms and statistical models used by a computer system 
to perform a specific task without explicit instructions, 
but relying only on patterns and inference. With sensors 
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and acquisition systems for plant phenotyping widely 
available and used to generate large amounts of imag-
ing data, the main challenge lies in translating the high-
dimensional raw imaging data into the quantification of 
relevant plant traits. In the past, this was done through 
manually engineered image processing methods, as 
discussed in the previous sections, but to deal with the 
difficulties of complex plants, non-controlled, or clut-
tered environments, ML is gaining in popularity. Classi-
cal approaches in computer vision consist in general of 
two major steps, feature extraction using those manu-
ally engineered image processing methods and decision 
making using ML methods, while modern Deep Learn-
ing (DL) approaches take an integrated, end-to-end 
approach, in which features are learned at the same time 
as the inference is performed. Moreover, DL models are 
often more complex than classical ML models, result-
ing in much greater discriminative and predictive power 
[257], with spectacular results in different application 
areas [258, 259].

Machine learning for plant phenotyping, and deep 
learning in particular, is an actively developing field. To 
the best of our knowledge, most of the ML methods have 

been used in plant segmentation, though ML is starting 
to find applications outside of plant segmentation as well, 
for example in denoising or registering the plant point 
cloud [34, 186]. Indeed, we believe that ML is expected to 
impact all aspects of plant phenotyping, leading to signif-
icant improvements in the current state-of-the-art in the 
coming years. For example, new DL architectures could 
be developed and adopted for 3D and multi-modal data 
processing like skeleton extraction, branch-pattern clas-
sification and plant-development understanding [260]. 
Furthermore, ML algorithms can be used to analyse the 
data from high-throughput phenotyping experiments, 
and may alleviate the problem of missing data, leading to 
the identification of new correlations and plant traits that 
were previously difficult to detect.

A full list of papers and plants using these techniques 
can be found in Table  3, under the header “Machine 
Learning Techniques”. Moreover, an overview of the top-
ics covered in this section is presented in Fig. 15.

Classical ML methods
In this section, we review some classical machine learn-
ing algorithms that are used for plant segmentation. 

Machine learning techniques for 
plant phenotyping

Classical ML methods

K-nearest neighbors

Random forest classifier

Support vector machines (SVM)

Self-organizing maps (SOM)

Hidden Markov models (HMM)

Deep learning methods

Projection-based methods

Point-based methods

Fig. 15 Overview of ML techniques for 3D plant phenotyping
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Compared to DL methods, these techniques can often 
be used efficiently on relatively small datasets, and have a 
less complex structure, but they are usually less accurate 
[261].

K‑nearest neighbors
The KNN algorithm is an ML classifier which uses the 
concept of proximity to make predictions about the 
grouping of individual data points, working off the 
assumption that similar points can be found near one 
another. The KNN algorithm can also be used for cluster-
ing, with applications for denoising and downsampling in 
plant phenotyping.

Wu et al. [186] proposed a clustering algorithm based 
on an implementation of the KNN algorithm by Connor 
and Kumar [262] to denoise point cloud data for maize 
plants. Along similar lines, Chebrolu et al. [34] and Mag-
istri et al. [161] used KNN clustering to refine the initial 
segmentation of tomato and maize plants by discarding 
small clusters and assigning each discarded point to one 
of the remaining clusters. Gibbs et al. [81] implemented 
an efficient KNN algorithm for the downsampling of 
plant shoot point clouds, and applied their method to dif-
ferent plants (bromeliad species, aloe vera, cordyline spe-
cies, Brassica sp., chili, and pumpkin).

Random forest classifier
The random forest classifier (RFC), first proposed by Bre-
iman [263], is an ensemble learning method in which a 
multitude of decision trees are constructed during train-
ing time, and predictions from the individual trees are 
pooled for inference.

Straub et  al. [135] used two applications of the RFC 
algorithm to build a tree model for meadow orchard 
trees. First, the point cloud is separated into two classes, 
“ground” and “tree”, and secondly the “tree” class is fur-
ther processed to filter out noise caused by the fine struc-
ture of the tree branches, which were photographed 
against the sky and differed strongly in their color values 
from the real branch points.

Dutagaci et al. [264] used a volumetric approach, where 
an RFC was trained on local features derived from the 
eigenvalues of the local covariance matrix (intuitively 
speaking, these local features serve to discriminate leaf 
and stem points by distinguishing flat structures from 
elongated, thin structures). They applied their method 
on rosebush plants, and showed that this voxel classifica-
tion method through local features gave the best overall 
performance for leaf and stem classification among four 
baseline methods they had defined.

Support vector machines
Support vector machines (SVMs) are a commonly used 
choice for binary classification problems and can per-
form nonlinear classification through the use of kernels.

Sodhi et  al. [227] used an SVM classifier to classify 
each point of a 3D point cloud of maize plants as either 
belonging to the stem or to a leaf. Chebrolu et al. [34] and 
Magistri et al. [161] used a standard SVM classifier with 
FPFH features to perform a segmentation step aiming 
at grouping together points belonging to the same plant 
organ, a single leaf instance, or the stem.

Zhou et  al. [84] evaluated the performance of two 
SVMs (with different polynomial kernels) and two other 
machine learning methods (boosting and k-means clus-
tering) for the segmentation of soybean plants at early 
growth stages using 3D point cloud data built from 2D 
images. They found that the SVM with a linear kernel 
(applied to histogram of oriented gradients (HOG) fea-
tures) outperformed the SVM with a 2nd-order polyno-
mial kernel in distinguishing between plant features and 
background. In case of overlapping plants separation, 
they showed that the SVM with a linear kernel had the 
smallest error rate, while for background removal and 
non-overlapping plants separation, k-means clustering 
performed best. They also showed that k-means clus-
tering outperformed two other methods (the SVM with 
linear kernel and boosting) in the aspect of processing 
efficiency and segmentation accuracy.

Self‑organizing maps
Self-organizing maps (SOMs) are unsupervised neural 
networks developed by Kohonen [265] using the concept 
of competitive learning instead of back-propagation [34]. 
SOMs map multi-dimensional data onto lower-dimen-
sional subspaces where geometric relationships between 
points indicate their similarity.

Chebrolu et  al. [34] and Magistri et  al. [161] assigned 
each point in the point cloud to a plant organ (stem or 
leaf ) and then applied SOMs to learn the nodes of the 
skeleton structure for each plant organ, after which these 
nodes were used to build the plant skeleton structure of 
maize and tomato plants.

Hidden Markov models
Hidden Markov models (HMMs) are probabilistic mod-
els in which an unobservable (“hidden”) Markov process 
influences an observable process [266]. HMMs have been 
used in plant phenotyping to determine correspondences 
between time-series data of tomato and maize plants 
by Chebrolu et  al. [34] (cf. "3D point set registration" 
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section). Because of their probabilistic nature, HMMs are 
well suited for cases where the observed measurements 
suffer from noise and other imperfections.

Deep learning methods
Image segmentation can be categorized into semantic 
segmentation and instance segmentation. The goal of 
semantic image segmentation is to label each pixel of an 
image with a corresponding class of what is being rep-
resented. Instance segmentation is considered the next 
step after semantic segmentation and its main purpose is 
to represent objects of the same class split into different 
instances.

Many DL approaches have been developed for the 
segmentation of 2D images [267–274]. However, most 
DL methods for segmentation are a priori only applica-
ble to images defined on a regular grid-like structure (so 
that, for example, convolutions can be applied for feature 
extraction [160]) and are not well-suited for unstructured 
data such as 3D point clouds or models [268, 275–277].

Moreover, the problem of performing semantic seg-
mentation directly on 3D data is challenging due to the 
limited availability of 3D datasets with segmentation 
annotations. Semantic segmentation techniques for 3D 
point clouds are further divided into two groups: pro-
jection-based methods and point-based methods [277], 
which are discussed below.

Projection‑based methods
Projection-based techniques first project the 3D point 
cloud onto an intermediary 2D representation that can 
be segmented using 2D networks, and then construct 
a segmentation for the full 3D point cloud out of these 
intermediary segmentation results. The advantage is that 
established 2D segmentation networks can be used, but 
due to the intermediate representation, some loss of spa-
tial and geometrical information is inevitable [277–280].

According to the type of intermediary representation, 
several categories of projection-based methods can be 
distinguished; in this paper we discuss the multi-view, 
volumetric, and lattice representation. Another repre-
sentation, the spherical representation (see, e.g., [281]) 
retains more geometrical and spatial information than 
for example the multi-view representation, but as it cur-
rently has no applications in plant phenotyping as far as 
we know, it is not discussed in this paper.

Multi-view representation These methods project the 
3D shape or point cloud onto multiple 2D images or 
views, and then extract feature from the 2D data by using 
existing models. Two of most popular networks in this 
category are MVCNN [282] which analyses the data from 
multiple perspectives using convolutional neural net-
works (CNN), and SnapNet [283], which uses snapshots 

of the point cloud to generate RGB and depth images to 
work around the problem of information loss.

Determining the number of projections to use, the 
viewing angle for each projection, and the way to re-pro-
ject the segmented models from 2D to 3D space, are the 
main difficulties associated with this class of techniques 
[276, 284].

Shi et al. [2] applied a multi-view approach and used a 
slightly modified version of VGG-16 [285], a fully convo-
lutional network (FCN [286]), for semantic segmentation, 
and a Mask Recurrent Convolutional Neural Network 
(R-CNN [287]) for instance segmentation on 2D images 
of tomato seedling plants and then combined the 2D seg-
mentation results in a 3D point cloud. They applied this 
segmentation method on 2D data as well and showed 
that this multi-view 3D approach outperforms the 2D 
approach both for semantic and instance segmentation.

Volumetric representation These methods transform 
the unstructured 3D point cloud into a regular spatial 
grid (voxelisation), and then train a neural network on 
this grid to perform the segmentation. Some popular 
architectures in this group, which are currently not yet 
used for plant phenotyping, are VoxNet [288], OctNet 
[289], and SEGCloud [290]. Volumetric techniques pro-
duce reasonable results on small point clouds, but are 
memory-intensive and hence may struggle on complex 
datasets.

Dutagaci et  al. [264] compared segmentation results 
for rosebush plants obtained using the 3D U-Net [291] 
architecture with three other methods for segmentation, 
namely Local Features on Volumetric Data (LFVD) and 
a supervised and unsupervised version of Local Features 
on Point Clouds (LFPC). They found that the 3D U-Net 
gave the lowest performance whereas the combination 
of the LFVD feature extraction method with an RFC 
obtained the best performance for segmentation.

Lattice representation This representation converts a 
point cloud into sparse, discrete elements (lattices). The 
sparsity of the extracted features is adjustable and these 
methods typically have lower memory and computa-
tional requirements than simple voxelisation. SPLATNet 
[292], LatticeNet [293], and MinkowskiNet [294] fall in 
this category.

Schunck et  al. [160] used three different DL architec-
tures for the semantic segmentation of the raw point 
cloud into leaf, stem and ground: PointNet, PointNet++, 
and LatticeNet [293, 295]. LatticeNet applies convolu-
tions on a permutohedral lattice while the PointNet-
based methods (See "Point-based methods" section) 
rely on pooling point features to obtain their internal 
representation. The authors trained these networks for 
tomato and maize separately, using 5 plants for train-
ing and 2 plants for testing. All three methods achieved 
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high intersection over union (IoU) in the leaf and ground 
class. The PointNet-based methods struggled with the 
stem class because it contained relatively few points 
while LatticeNet achieved good results for all classes.

Point‑based methods
Point-based methods work directly on point clouds with-
out introducing any intermediate representation. Hence, 
they are able to use the full set of raw point cloud data, 
with all of its geometrical and spatial features. These 
methods are widely used and the subject of active devel-
opment, and can be roughly divided into five categories: 
pointwise methods, convolution methods, recurrent neu-
ral network (RNN)-based methods, recursive neural net-
work (RvNN)-based methods, and graph-based methods.

Graph-based methods make use of the graph structure 
of the point cloud, often applying a DGCNN network 
[296, 297] as the underlying architecture. Since graph-
based methods have to the best of our knowledge no 
applications in plant phenotyping at the moment, they 
are not discussed in this paper.

Pointwise methods PointNet, introduced by Qi et  al. 
[298], is a pioneering effort in this regard and provides 
a unified approach to a number of 3D recognition tasks 
including object classification and segmentation. How-
ever, this method has trouble capturing local structures, 
limiting its ability to recognize fine-grained patterns and 
to generalize to complex scenes.

Li et  al. [299] built an automated organ-level point 
cloud segmentation system for maize plants, using 
Label3DMaize [203] to label data from a high-through-
put data acquisition platform for individual plants, and 
PointNet to implement stem-leaf and organ instance 
segmentation.

Later, Qi et  al. [300] introduced PointNet++ which 
is a hierarchical neural network that applies PointNet 
recursively on a nested partitioning of the input point 
set. While PointNet used a single max-pooling operation 
to aggregate the entire point set, their new architecture 
builds a hierarchical grouping of points into progressively 
larger and larger local regions along the hierarchy.

Heiwolt et  al. [301] applied the PointNet++ architec-
ture, adjusted for point-wise segmentation applications, 
on tomato plants and showed that this network was able 
to successfully predict per-point semantic annotations 
for soil, leaves, and stems directly from point cloud data.

To better incorporate local geometric structures, the 
last years have seen a number of improvements upon the 
Pointnet architecture, including PointSIFT [302], SGPN 
[303], DGCNN [296], LDGCNN [304], SRN-PointNet++ 
[305], ASIS [306], PointGCR [307], and PointNGCNN 

[308]. To the best of our knowledge, these improved 
methods have yet to be applied to plant phenotyping.

Convolution methods As point clouds consist of irregu-
larly spaced, unordered points, convolution operators 
designed for regular, grid-based data cannot be applied 
directly.

To address this issue, Li et  al. [309] introduced 
PointCNN which generalizes the design of a CNN to 
be applicable to point clouds. Ao et  al. [310] applied 
PointCNN on morphological characteristics of the maize 
plant to segment stem and leaves of the individual maize 
plants in field environments. They showed that their 
approach overcomes the major challenges in organ-level 
phenotypic trait extraction associated with the organ 
segmentation.

Wu et  al. [275] proposed PointConv, extending tra-
ditional image convolution to 3D point cloud data with 
non-uniform sampling. They found that PointConv out-
performs networks like PointNet and PointNet++ on 
several widely used datasets in terms of accuracy and 
IoU.

Gong et  al. [311] developed Panicle-3D, which has 
higher segmentation accuracy and faster network con-
vergence speed than PointConv, and applied the pro-
posed network on point clouds from rice panicles. A 
drawback of the method is that it requires large vol-
umes of labelled data to train the network.

Chen et al. [312] developed the DeeplabV3+ network 
for semantic segmentation, using the convolutional 
neural network (CNN) structure of the DeeplabV3 net-
work [272] as a starting point and adding a decoder 
module for refining the segmentation results, especially 
along object boundaries. Chen et al. [90] used this net-
work to segment banana central stocks.

As an alternative convolution method, we also men-
tion the work of Jin et al. [313], who proposed a voxel-
based CNN (VCNN) to do semantic segmentation and 
leaf instance segmentation on the collected LiDAR 
point clouds of 3000 maize plants.

Despite these ongoing efforts, three main challenges 
still exist: (a) the lack of well-labelled 3D plant data-
sets, (b) achieving highly accurate point-level organ 
semantic and instance segmentation, and (c) the gener-
alization of the proposed method to other plant species 
(since most DL approaches are currently focused on a 
single species at a time).

To address the third challenge, Li et  al. [276] pro-
posed a dual-function point cloud segmentation net-
work named PlantNet, the first architecture to be able 
to work on several plant species, and applied their 
method on tobacco, tomato, and sorghum plants. 
They also provided a well-labelled point cloud dataset 
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for plant stem-leaf semantic segmentation and leaf 
instance segmentation containing 5460 LiDAR-scanned 
crops (including 1050 labelled tobacco plants, 3120 
tomato plants, and 1290 sorghum plants).

RNN-based methods These techniques have recently 
been used for segmentation because they are able to 
capture inherent context features and enhance the con-
nection between local features of the point cloud. They 
first transform a block of points into multi-scale blocks 
or grid blocks, after which features are extracted by 
using PointNet. These features are then fed into recur-
rent consolidation units to obtain the output-level con-
text. One of the most popular networks in this category 
is 3DCNN-DQN-RNN [314].

Bernotas et al. [17] used two different neural network 
architectures, an RNN and an R-CNN. The R-CNN was 
pre-trained using transfer learning weights generated 
on the Common Objects in Context (COCO) data set 
and both networks were trained starting with random 
initial weights. Comparing both approaches on thale 
cress rosettes, the most accurate leaf segmentation 
results were achieved with models based on the R-CNN 
architecture using pre-trained weights.

RvNN-based methods These networks, developed by 
Socher et al. [315], can achieve predictions in a hierarchi-
cal structure. In this category, PartNet, presented by Yu 
et al. [316], is a DL model for top-down hierarchical, fine-
grained segmentation of 3D shapes. This network takes 
a 3D point cloud as input and then performs a top-down 
decomposition and outputs a segmented point cloud at 
the level of part instances.

Wang et al. [44] applied PartNet for instance segmen-
tation on their 3D plant dataset of lettuce consisting of 
a mixture of real and synthetic data. They showed that 
the constructed PartNet network had the potential to 
accurately segment the 3D point cloud leaf instances of 
lettuce.

Perspectives
As this paper has shown, there exists an abundance of 
automated solutions for 3D phenotyping. It remains a 
challenge, however, to find a low-cost, high-throughput 
3D reconstruction method that can handle different 
types of plants and plant traits, especially considering 
difficulties such as occlusion. All 3D measuring meth-
ods have in common that with increasing plant age, the 
complexity and thus the amount of occlusion increases. 
Even though this problem can be addressed in part by 
using more viewpoints, occlusion will always be pre-
sent, independent of the type of sensor, the number of 
viewpoints or the sensor setup, as the inner center of 
the plant will at a specific moment in time be occluded 
by the plant (leaves) itself. Although some solutions exist 

that use volumetry, such as using MRI or radar systems, a 
more complex and expensive measuring setup should be 
taken into account [18]. Furthermore, many methods and 
solutions can be applied on individual plants but not on 
dense canopies. SfM, for example, obtains good results 
for the 3D reconstruction of plants (and is additionally 
one of the most cost-effective methods), but it is not suit-
able for very dense canopies [317].

Performing a reconstruction of real scenes in 3D 
phenotyping as a function of time is a challenging but 
important task, since it will allow for dynamic traits to 
be considered, such as growth rates which could pro-
vide information about the growth behavior of plants 
throughout their different growth stages. The detection 
of such variations in growth rates might permit the iden-
tification of genes controlling plant growth patterns or 
the selection of plant genotypes with strong resistance 
for high production or harvesting strategies [43].

Registering plants over the course of time is challeng-
ing due to the anisotropic growth, changing topology, 
and non-rigid motion in between the time of measure-
ments. For the registration problem, correspondences 
between point clouds of plants, taken at different points 
in time, should be determined and then should be regis-
tered using a non-rigid registration approach. Regarding 
our previous discussion about registration (see "3D point 
set registration" section), point cloud registration for 
non-rigid plants is itself a challenging problem especially 
when some correspondences are missed and still is an 
open area of research. Focusing on detecting key corre-
spondences can be considered as a solution to overcome 
this problem.

One area in which much progress can be foreseen 
for 3D phenotyping, and especially for the task of seg-
menting 3D representations of plants, is the application 
of machine learning algorithms (see "Machine learn-
ing techniques for plant phenotyping" section). As dis-
cussed, most of the ML methods have been used in plant 
segmentation, and finding applications outside of plant 
segmentation or adapting these ML methods to cover 
different areas in the plant domain can be an area of 
research in the future, for example in denoising or regis-
tering the plant point cloud [34, 186].

Deep learning presents many opportunities for image-
based plant phenotyping, but these techniques typically 
require large and diverse amounts of ground-truthed 
training data to learn generalizable models without pro-
viding a priori an engineered algorithm for performing 
the task. In most vision-based tasks where deep learning 
shows a significant advantage over engineered methods, 
such as image segmentation, classification, and detection 
and localization of specific objects in a scene, the size of 
the dataset is typically in the order of tens of thousands 
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to tens of millions of images. This requirement is chal-
lenging, however, for applications in the plant phenotyp-
ing field, where available datasets are often small and the 
costs associated with generating new data are high [1]. 
Furthermore, the manual segmentation of plant images 
is a cumbersome, time-consuming, and error-prone 
process. To alleviate this problem, Ubbens et al. [1] pro-
posed a new method for augmenting plant phenotyping 
datasets using rendered images of synthetic plants, while 
Chaudhury et al. [318] proposed a generalized approach 
to generate annotated 3D point cloud data of a thale cress 
plant using some artificial plant models.

So far several comprehensive collections of bench-
mark datasets for plant phenotyping with annotations 
have been made publicly available: the dataset of Khanna 
et  al. [319] containing biweekly color images, infra-red 
stereo image pairs, and hyperspectral camera images 
of sugar beet plants along with applied treatment and 
weather conditions of the surroundings, collected over 
two months; the ROSE-X dataset of Dutagaci et al. [264] 
including 11 fully annotated 3D models of real rosebush 
plants obtained through X-Ray imaging; the Pheno4D 
dataset of Schunck et  al. [160] containing highly accu-
rate and registered point clouds of 7 maize and 7 tomato 
plants collected on different days (approximately 260 
million 3D points); the multi-modality dataset MSU-
PID of Cruz et al. [320] containing segmented top-view 
RGB images of growing thale cress and bean plants; the 
CVPPP leaf segmentation dataset of Minervini et  al. 
[196] containing segmented top-view images of growing 
thale cress and tobacco plants; the KOMATSUNA data-
set of Uchiyama et  al. [195] containing segmented top-
view RGB images of spinach (Komatsuna) plants; and the 
Annotated Crop Image Database of Pound et  al. [257] 
containing images and annotations of wheat spikes and 
spikelets. Among them, the three datasets of MSU-PID, 
CVPPP, and KOMATSUNA consist of raw and annotated 
2D color images of rosette plants taken from above. The 
analysis of these images involves segmenting individual 
and overlapping leaves, for which neural networks have 
had the greatest success [321–326].

As more benchmark datasets for 2D and 3D plant phe-
notyping are being made available, the application of 
neural networks is expected to achieve a similar level of 
success as in other areas.

Fully automated 3D segmentation approaches for plant 
point cloud which could cope with a wide range of differ-
ent shaped plants are a challenging problem, and also are 
a bottleneck in achieving big data processing of 3D plant 
phenotyping [299]. Recently, Wei et  al. [327] presented 
a novel point cloud segmentation network called Bush-
Net which is for the semantic segmentation of bush point 

clouds in large-scale environments. However, there is no 
application on plant cases so far.

In this regard, future research trends can focus on 
the adaptation and customization of newly developed 
ML models for applications in plant phenotyping, and 
also on generalizing capabilities of current models to be 
used on different kinds of plants. Segmentation is not 
the only part of the 3D plant phenotyping which can get 
the benefit of DL methods. However, DL is currently not 
frequently used for other phenotyping steps such as skel-
etonization and denoising. This, too, could form a fruitful 
area for future research, to assist e.g. with alleviating the 
impact of noise and missing data.

Last, we foresee that AI-assisted plant phenotyp-
ing may have the potential to optimize pest control and 
improve crop yield, through the large-scale analysis of 
plant traits and the identification of signs of biotic and 
abiotic stresses, such as pest damage, drought, and high 
temperatures. This is especially the case as ML methods 
have enabled practitioners to move beyond single-plant 
phenotyping to estimate plant traits at the canopy or field 
level, providing a more comprehensive understanding of 
how stressors impact overall crop health, thus improving 
agricultural productivity and sustainability.

Conclusion
This review provides a broad but non-exhaustive over-
view of processing and analysis methods applied or 
applicable in 3D plant phenotyping. As shown, the set 
of techniques applicable in this field is very diverse, 
which contributes to the complexity of the task of 3D 
plant phenotyping. As this is an expanding field, we 
foresee that additional methods not mentioned in this 
review will be explored in the future.
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