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Abstract 

Background A well-known method for evaluating plant resistance to insects is by measuring insect reproduction 
or oviposition. Whiteflies are vectors of economically important viral diseases and are, therefore, widely studied. In 
a common experiment, whiteflies are placed on plants using clip-on-cages, where they can lay hundreds of eggs 
on susceptible plants in a few days. When quantifying whitefly eggs, most researchers perform manual eye meas-
urements using a stereomicroscope. Compared to other insect eggs, whitefly eggs are many and very tiny, usually 
0.2 mm in length and 0.08 mm in width; therefore, this process takes a lot of time and effort with and without prior 
expert knowledge. Plant insect resistance experiments require multiple replicates from different plant accessions; 
therefore, an automated and rapid method for quantifying insect eggs can save time and human resources.

Results In this work, a novel automated tool for fast quantification of whitefly eggs is presented to accelerate the 
determination of plant insect resistance and susceptibility. Leaf images with whitefly eggs were collected from a com-
mercial microscope and a custom-built imaging system. A deep learning-based object detection model was trained 
using the collected images. The model was incorporated into an automated whitefly egg quantification algorithm, 
deployed in a web-based application called Eggsplorer. Upon evaluation on a testing dataset, the algorithm was able 
to achieve a counting accuracy as high as 0.94, r2 of 0.99, and a counting error of ± 3 eggs relative to the actual num-
ber of eggs counted by eye. The automatically collected counting results were used to determine the resistance and 
susceptibility of several plant accessions and were found to yield significantly comparable results as when using the 
manually collected counts for analysis.

Conclusion This is the first work that presents a comprehensive step-by-step method for fast determination of plant 
insect resistance and susceptibility with the assistance of an automated quantification tool.

Keywords Insect egg quantification, Rapid phenotyping, Whitefly, Deep learning, Plant insect resistance, Bioassay

Background
Whiteflies are insects classified in the Aleyrodidae family 
and consist of more than 1500 species [21]. Their pres-
ence is sufficient to cause serious crop yield loss, e.g., 
damage by Bemisia tabaci (Gennadius, 1889), a very 
invasive whitefly species. It takes approximately 20 days 
during warm weather conditions for a whitefly to develop 
from an egg to a crawler, through to pupae, and finally 
an adult. Female whiteflies originate from fertilized eggs, 

*Correspondence:
Micha Gracianna Devi
micha.devi@wur.nl
1 Plant Breeding, Wageningen University & Research, Po Box 384, 6700 
AJ Wageningen, The Netherlands
2 Greenhouse Horticulture and Flower Bulbs, Wageningen Plant 
Research, Wageningen University & Research, 6708 PB Wageningen, The 
Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-023-01027-9&domain=pdf


Page 2 of 14Devi et al. Plant Methods           (2023) 19:49 

while males originate from unfertilized eggs; the typi-
cal sex ratio is 2:1, females to males [33]. Whiteflies are 
phloem feeders, which means they use their four inter-
locked stylets to enclose food and a salivary canal allow-
ing independent movements between plant mesophyll 
cells [27]. While feeding, they secrete saliva as a lubri-
cant during the penetration of the stylets, which contain 
enzymes and metabolites, thereby providing protection 
against plant wound response [13]. Furthermore, white-
flies indirectly cause damage to plants by acting as a vec-
tor of viruses, including more than 100 plant viruses, 
such as those in the Begomovirus genus, which causes 
tomato yellow leaf curl virus, and viruses in the Crini-
virus genus, which causes tomato chlorosis virus [17]. 
Whiteflies are predominantly polyphagous, e.g., B. tabaci 
has a wide host range such as tomato, cucumber, cotton, 
and sweet potato [30]. The two most dominant B. tabaci 
biotypes are Middle East-Minor Asia 1 (MEAM1 or bio-
type B) and Mediterranean (MED or biotype Q) genetic 
groups. These two biotypes have caused serious yield 
losses in more than 60 countries [23] with annual losses 
of more than one billion dollars [15].

Research works on finding whitefly resistance, espe-
cially involving wild Solanaceae accessions, have yielded 
Quantitative Trait Loci (QTL) for adult survival and 
oviposition [2, 10, 20, 29, 34, 36]. The most common 
methods employed to test whitefly host compatibility 
in greenhouse and laboratory settings are choice and 
no-choice assays [35]. Choice assays allow whiteflies to 
choose between several plant genotypes to assess white-
fly preference, while no-choice assays limit whiteflies 
to feed on a single plant to evaluate response. A choice 
assay can be prepared using a Y-tube olfactometer setup 
for whole plants or leaves, which evaluates relative pref-
erence based on volatile compounds as well as other 
phenotypic characteristics such as insect mortality and 
oviposition [16]. On the other hand, a no-choice assay 
can be performed by using clip-on cages on leaves [3].

Two of the most important observation parameters 
obtained from both choice and no-choice assays are 
adult insect survival and oviposition rate. Oftentimes, 
the quantification of adult survival and oviposition are 
manually done by looking through a stereomicroscope 
[38]. Counting adult survival in a clip-cage setting is 
quick but counting the number of eggs deposited by 
the insects on each leaf is very laborious. Each whitefly 
egg is approximately 0.2 mm in length and 0.08 mm in 
width while its color ranges from translucent green to 
brown, depending on maturity. On a susceptible potato 
line, 5 female whiteflies, inside a 2  cm diameter clip-
cage, can lay more than 100 eggs in 5  days [25]. In a 
natural setting, whiteflies deposit eggs at the abaxial of 

the leaves, thereby hiding each egg from predators and 
environmental factors such as precipitation and high-
intensity ultraviolet light [26]. Moreover, some leaves 
have thick veins, trichomes, and surface unevenness 
that may conceal eggs and hinder observation. Further-
more, whitefly eggs are commonly found in leaf regions 
surrounded by whitefly honeydew, which hinders 
observation [37]. Whitefly honeydew provides optimal 
conditions for mold to grow and as protection for the 
development of whitefly eggs to instars [8]. Due to the 
aforementioned factors, researchers would benefit from 
a more reliable and systematic protocol for analyzing 
whitefly assay samples.

To assure the reliability of performed assays, micro-
scopic images are stored for further analysis. One of the 
ways to analyze microscopic images is by digital image 
processing. Digital image processing is a computer-
ized method for automatically identifying and detect-
ing characteristics of objects in an image by performing 
operations such as color conversion, edge detection, 
color segmentation, and blob analysis. Digital image 
processing has been employed in microscopic image 
analysis such as for mosquito egg counting [11, 19], 
and beetle egg counting [12]. In the works mentioned, 
it involves a user that specifies algorithm parameters to 
optimize the image analysis results; therefore, consid-
ering it as a semi-automated approach. Unlike digital 
image processing-based algorithms, a deep learning-
based algorithm is more resistant to variations in image 
appearance and requires less input from a user. Deep 
learning is a subset of artificial intelligence that aims 
to train a neural network model to learn feature hier-
archies from a given dataset. Deep learning models are 
capable of accurately detecting minute objects, such as 
insect eggs, even without manually tuning algorithm 
parameters. Deep learning has been used in micro-
scopic image analysis for counting nematodes [1, 18], 
stomata [9], and protozoan parasites [39].

This work aims to develop a novel and more efficient 
protocol for automated whitefly egg quantification to 
accelerate the determination of insect-resistant and 
susceptible plant accessions. The specific objectives 
are: (1) the development of a fast and accurate white-
fly egg quantification algorithm; (2) designing a web-
based platform to deploy the algorithm; (3) assessing 
the advantages and disadvantages of using different 
imaging setups for collecting leaf image assays; and (4) 
determining plant–insect resistance and susceptibility 
based on the automatically obtained egg counts. This 
work proves the benefits of employing novel computer 
techniques to achieve more objective research results 
in the field of plant–insect resistance.
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Materials and method
Plant materials and growth conditions
Wild (Solanum berthaultii (Hawkes, 1963)—BER481-
3) and cultivated (S. tuberosum cv. RH89-039-16) pota-
toes were obtained from the Wageningen University and 
Research (WUR) Plant Breeding collection, Wagenin-
gen, The Netherlands. For collecting leaf images, in vitro 
propagated cuttings were grown for 2  weeks in MS20 
medium, and successively transferred to the greenhouse 
in ⌀14  cm pots with potted soil for 3  weeks before the 
whitefly infection assays. Resistant wild tomato plants 
(S. habrochaites (Knapp & Spooner, 1999)—LA1777) 
and susceptible cultivated tomato plants (S. lycopersi-
cum cv. Moneymaker) were also used in this study. Seeds 
were obtained from WUR Plant Breeding Department, 
Wageningen, The Netherlands. Seeds were sown on ger-
mination media for 2  weeks before being transplanted 
into ⌀14  cm pots with potting soil for 3  weeks before 
the whitefly infestation assays were commenced. The 
plants were grown in peat soil in an insect-proof green-
house at Unifarm with a 16 h light and 8 h dark photo-
period, 21 °C/19 °C (day/night) and 70% relative humidity 
from September–October 2022 in Wageningen, The 
Netherlands.

Whitefly assay
Whitefly assays were conducted on 5-week-old plants; 
3 plants per genotype. Non-viruliferous whiteflies (B. 
tabaci group Mediterranean-Middle East-Asia Minor 
I), reared on S. lycopersicum cv. Forticia from the WUR 
Plant Breeding Department were used for screening. 

No-choice assays were carried out in an insect green-
house of WUR. The assay was done by attaching two clip-
on-cages ⌀2  cm containing five synchronized 1-day-old 
female B. tabaci whiteflies on the abaxial side of the sec-
ond and third fully expanded leaf of each plant. Five days 
later, the leaves attached with clip-cages were harvested 
for image acquisition, egg quantification (OR) and adult 
survival (AS) on the same day. Leaves can optionally be 
stored on wet filter paper and in 4 °C to maintain cell tur-
gidity and prevent dehydration. AS and OR for tomato 
plants [20] were calculated according to the following 
equations, respectively:

Arcsine transformation was used to normalize AS, 
whereas square root transformation was used for ovipo-
sition rate. Statistical analyses via t-tests were performed 
using Python 3.8.13, with the support of SciPy scientific 
computing library v1.9.3.

Leaf image acquisition
The leaf image samples used in the whitefly assay were 
acquired using two different imaging setups: (1) using a 
commercial microscope (VHX-7000) (Keyence, Japan), 
and 2) using AutoEnto device, as shown in Fig.  1. The 
VHX-7000 is a 4K digital microscope designed for surface 

(1)AS =

(

alive whiteflies

total whiteflies

)

survival for 5 days,

(2)

OR =
2× number of eggs

alive whiteflies + total whiteflies
eggs female−1 for 5 days.

Fig. 1 Workflow for rapid determination of plant resistance based on insect oviposition
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Fig. 2 Automated egg quantification algorithm
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microscopy. It acquires high resolution leaf images by 
acquiring tiled images based on box vertices that were 
manually selected using its accompanying controller. 
The tiled images were automatically stitched together by 
its software. The VHX-7000 was electronically adjusted 
to set a 45–50 mm distance from the lens to the camera 
while the magnification was set to 30×. The automatic 
white balance and brightness were manually adjusted and 
kept uniform throughout the trials.

Meanwhile, the AutoEnto device is an imaging system 
developed by the Greenhouse Horticulture & Flower 
bulbs Business Unit of Wageningen Plant Research in 
Bleiswijk, The Netherlands. It is designed to rapidly 
acquire images of tiny biological samples such as insects, 
insect eggs, nematodes, and alike. It is equipped with an 
industrial CMOS color camera (IDS Imaging Develop-
ment Systems GmbH, Germany), replaceable C-mount 
lenses, and a custom x–y table that can hold up to 9 
dishes, for automated image acquisition and analysis. 
In this work, it was configured with a 30× magnifica-
tion C-mount lens (Kowa Company, Japan), acquiring 
4912 × 3684 pixels per image with a spatial resolution of 
350 pixel/mm. In this research, it was configured to take 
35 images with 4912 × 3684 pixels over a 5 × 7 grid that 
were stitched together into a single image. The AutoEnto 
device was only used for image acquisition but not for 
image analysis.

Automatic egg quantification algorithm
The acquired leaf images were analyzed using an auto-
matic egg quantification algorithm, as illustrated in 
Fig.  2. The egg quantification algorithm was developed 
using Python 3.8.3 programming language, with the sup-
port of OpenCV image processing library [5], PyTorch 
deep learning library [24] and MLFlow machine learning 
tracking library [6]. All computations were performed 
using a desktop computer running under Ubuntu 22.04 

operating system, with an Intel Xeon E5-1650 processor, 
NVIDIA GeForce GTX Titan X GPU, and 16 GB RAM. 
This section discusses the methods and theoretical con-
siderations in developing the algorithm.

Dataset preparation and image pre‑processing
A leaf image dataset was prepared using the image pre-
processing step of the algorithm. First, the size of the leaf 
image is reduced from L × W to L − SL × W − SW based on 
a pre-defined tiling size, where L and W are the length 
and width of the leaf image while SL and SW are the sur-
plus length pixels and surplus width pixels, respectively; 
this was done by equally removing the pixels from all 
sides of the leaf image. Removal of the surplus pixels was 
done to attain an equal tiling size. In this work, a tiling 
size of 1400 × 1400 pixels was used on images obtained 
from both setups, with a padding of 100 pixels on all 
sides of the tiled leaf image. Tiling is a technique in deep 
learning which cuts an image into several equal parts 
to achieve better object detection results [28]. On the 
other hand, the padding allows the merging of duplicate 
egg detections after obtaining the detection results from 
each tiled leaf image later. The tiling process produces 
n 1600 × 1600 tiled leaf images that are used as individ-
ual inputs to the deep learning-based object detection 
model. Every egg on each tiled leaf image was annotated 
using a rectangular box via Darwin v7 image annota-
tion platform with the assistance of experts. The statisti-
cal summary of the prepared image dataset is shown in 
Table 1.

Object detection and image stitching
The automated egg quantification algorithm uses a 
YOLOv5m (Ultralytics, Los Angeles, CA, USA) deep 
learning model for detecting the eggs from each tiled 
leaf image. YOLOv5m is an object detection model with 
three components: backbone, neck, and head. It uses 

Table 1 Image dataset statistical information

Device Dataset Size (pixels) Total Training Validation Testing

Commercial microscope 
(VHX-7000)

Complete image Min.: 5258 × 6660
Ave.: 7556 × 8188
Max.: 9287 × 10,399

144 – – 30

Tiled image 1600 × 1600 765 35% of total 15% of total –

Whitefly egg Min.: 27 × 29
Ave.: 45 × 51
Max.: 69 × 70

– – – –

AutoEnto Complete image 24,560 × 25,788 22 – – 30

Tiled image 1600 × 1600 413 35% of total 15% of total

Whitefly egg Min.: 22 × 26
Ave.: 40 × 44
Max.: 78 × 88

– – – –
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cross-stage partial networks as the backbone for feature 
extraction while the neck, made of path aggregation net-
works, combines the extracted features. The combined 
features are used as input to a YOLO layer, which acts 
as the model’s head, for obtaining bounding box pre-
dictions. In this work, the YOLOv5m was specifically 
chosen since it has a good balance of speed and perfor-
mance compared to the other YOLOv5 variants. The 
YOLOv5m model’s input was set to the default 614 × 614 
pixels, thereby resizing each 1600 × 1600 tiled image to 
614 × 614 pixels for inference. The YOLOv5m model’s 
output was defined to have a single image class, egg class. 
After detecting the eggs from each tiled leaf image, the 
leaf image was stitched back together while retranslating 
the bounding box coordinates according to the original 
leaf image size.

Detection post‑processing
Three detection post-processing methods were applied 
to reduce the algorithm errors: detection merging, object 
size filtering, and confidence thresholding. In detection 
merging, similar objects found in adjacent tiled images 
were merged using Intersection-over-Union (IoU). IoU 

is a measure of the overlap between two objects in an 
image. IoU values closer to 1 indicate higher overlap and 
0 otherwise. IoU was computed using Eq. 3:

where Bo is the bounding box coordinates of each 
detected object, with o as the object index. Bo includes 
four coordinates: x1, y1, x2, and y2, where x1 and y1 belong 
to the object’s x and y vertex box coordinates, and x2 and 
y2 belong to the vertex opposite to x1 and y1. If the IoU of 
two or more egg detection boxes is greater than 0.5, the 
boxes are merged by retaining the lowest x1 and y1 and 
highest x2 and y2 and counting the overlapping objects as 
a single object.

The object size filtering threshold was manually deter-
mined using the average size of each detected object based 
on Table 1. If the length or width of a detected object is less 
than 20 pixels, then the detected object was ignored. Such 
detected objects are trichomes and leaf spots that resemble 
the appearance of whitefly eggs. If the length or width of a 
detected object is more than 90 pixels, then the detected 

(3)IoU =
area(B1 ∩ B2 ∩ . . .Bo)

area(B1 ∪ B2 ∪ . . .Bo)
,

Fig. 3 Automated egg quantification algorithm confidence threshold optimization results
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object was also ignored since such objects may include 
nymphs or other unwanted objects.

Confidence thresholding utilizes the confidence score 
of each detection, which ranges from 0 to 1.0, where val-
ues closer to 1.0 indicate higher confidence. To ignore 
detected objects with low confidence scores, a pre-set 
classification confidence threshold was defined and fine-
tuned. Some of the detected objects with low confidence 
scores include trichomes and leaf spots.

Algorithm evaluation
The algorithm was evaluated using two methods: object-
level testing and image level testing, with the test data-
set defined in Table 1. In this context, object-level testing 
refers to how the model performs when tested on each 
object of all the leaf images. On the other hand, image-
level testing refers to the overall algorithm performance 
when tested on individual leaf images. In object-level 
testing, the algorithm performance was evaluated by 
automatically matching each set of ground truth box 
coordinates with each predicted box coordinates via IoU. 
If the calculated IoU between two paired coordinates was 
higher than 0.5, it was counted as a true positive (TP) 
detection. All unmatched ground truth box coordinates 
were considered as missed detections. Using the above 
definitions, the following metrics were calculated:

(4)

Precision =
TP

total number of detected egg objects
,

(5)Recall =
TP

true number of egg objects
,

F1-score is a performance metric that balances preci-
sion and recall; it ranges from 0 to 1, where values closer 
to 1 indicate better performance. Meanwhile, the miss 
rate measures how many detections were undetected by 
the algorithm; it ranges from 0 to 1, where values closer 
to 1 indicate worse performance.

In image-level testing, counting accuracy, miss rate, 
and coefficient of determination (r2) were measured. 
Counting accuracy was measured by obtaining the per-
cent difference between the true counts (TC) and the 
automatic counts (AC) per leaf image, as follows:

Meanwhile, the miss rate is the ratio of missed detec-
tions and the true number of egg objects in a leaf image, 
computed as follows:

Finally, r2 measures the performance of the model rela-
tive to the manual counts.

Results and discussion
Model training and algorithm optimization results
In order to optimize the process of training the YOLOv5 
model, hyperparameter tuning using genetic algo-
rithm was applied [14]. Hyperparameter tuning aims to 

(6)F1score = 2 ·
precision · recall

precision+ recall
.

(7)Counting accuracy =
TC − AC

TC
.

(8)

Miss rate =
missed detections in a leaf image

true number of egg objects in a leaf image
.

Fig. 4 Predicted number of whitefly eggs vs. true number of whitefly eggs r2 scatter plots obtained using different imaging setups: a Commercial 
microscope; and b AutoEnto
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Fig. 5 Sample automated egg quantification results using different imaging setups: a commercial microscope; and b AutoEnto device
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maximize model performance by finding the best train-
ing parameters such as for learning rate, momentum, box 
loss gain, and more. In so doing, the default YOLOv5m 
training hyperparameters were changed including learn-
ing rate from 0.003 to 0.01, momentum from 0.8 to 0.93, 
and box loss gain from 0.03 to 0.06. Training was done 
for 100 epochs and a batch size of 16, achieving a mean 
average precision of 0.96. Threshold optimization was 
done by fine-tuning the values of the confidence thresh-
old from 0.3 to 0.7, with increments of 0.05. The results 
of threshold optimization for the two imaging setups are 
shown in Fig. 3.

In object level testing, the F1-score of the model can 
reach as high as 0.935 on images obtained using the com-
mercial microscope and 0.91 on images obtained using 
the AutoEnto when using a confidence threshold of 0.6 
(Fig. 3a). A slight difference in performance was expected 
since the commercial microscope can acquire sharper 
images than the AutoEnto. Nevertheless, both results 
show that the model detected the whitefly eggs with high 
accuracy and confidence. In image level testing, it was 
found that miss rates of the algorithm were 0.06 and 0.14 
when processing the leaf images obtained by the com-
mercial microscope and the AutoEnto, respectively, with 
a confidence threshold of 0.6 (Fig. 3b). The miss rate was 
higher using the AutoEnto since there were some parts 
of the leaf images that were blurred due to curling, while 
the commercial microscope can resolve this problem 

through its depth correction feature. Finally, the count-
ing accuracies of the algorithm was about 0.94 when pro-
cessing the commercial microscope leaf images and using 
a confidence threshold of 0.6 but had a lower count-
ing accuracy of 0.88 when processing the AutoEnto leaf 
images (Fig. 3c). Based on the tuning results, an optimal 
confidence threshold of 0.6 was found and used through-
out this research. It can be concluded that the trained 
model was reliable for both imaging setups, but improve-
ments can still be made to enhance algorithm perfor-
mance on images acquired using the AutoEnto.

Algorithm testing
The true number of eggs and predicted number of eggs 
were compared as shown in Fig. 4. It can be immediately 
seen that the predicted number of eggs from the com-
mercial microscope images were remarkably close to the 
true number of eggs, with an error of ± 3 eggs relative to 
the actual number of eggs counted by eye, even for high 
number of whitefly eggs (> 200 eggs). On the other hand, 
the algorithm still performed well with minor issues 
when analyzing the AutoEnto leaf images, with an error 
of ± 10 eggs. As mentioned previously, this was mainly 
caused by blurred spots which cause missed whitefly egg 
detections. In summary, this shows that the algorithm is 
usable in both imaging setups and can accurately esti-
mate the number of whitefly eggs in each leaf.

Fig. 6 Sample errors obtained by the automated egg quantification algorithm
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The quality of detections was also visually evaluated, as 
shown in Fig. 5. It can be noticed that most whitefly eggs 
can be easily detected by the algorithm, with high con-
fidence scores of about 0.9 (Fig.  5a). The algorithm also 
performed well on the AutoEnto leaf images even though 

the lighting and white balance was slightly different from 
the settings of the commercial microscope (Fig. 5b). This 
indicates that the algorithm is very adaptive to changes in 
imaging conditions.

Fig. 7 Plant–insect resistance and susceptibility analysis: a normalized adult survival rate; b normalized oviposition rate measured using the 
processed VHX7000 images; and c normalized oviposition rate measured using the processed AutoEnto images
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Some of the errors obtained by the algorithm are shown 
in Fig. 6. As seen from the upper right of Fig. 6b, a white-
fly egg was not successfully detected since it was slightly 

covered by a strand of trichome. Meanwhile, some plant 
material was falsely detected as an egg in the middle of 
Fig. 6b, while a trichome cuticle was also falsely detected 

Table 2 Whitefly assay result for female survival and oviposition

Species Accession Clip cage 1 Clip cage 2

Alive 
whiteflies

Dead 
whiteflies

Whitefly eggs Alive 
whiteflies

Dead 
whiteflies

Whitefly eggs

VHX7000 AutoEnto VHX7000 AutoEnto

S. habrochaites LA1777 0 5 0 0 0 5 0 0

LA1777 1 4 34 37 0 5 14 0

LA1777 0 5 38 38 1 4 0 0

S. lycopersicum Moneymaker 5 0 128 171 5 0 102 77

Moneymaker 3 0 119 91 5 0 195 149

Moneymaker 4 0 220 59 5 0 220 227

S. tuberosum RH89-039-16 3 1 134 113 5 0 210 194

RH89-039-16 3 1 140 119 4 1 207 194

RH89-039-16 5 0 157 108 4 0 58 43

S. berthaultii BER481-3 0 5 52 33 0 5 0 0

BER481-3 0 5 0 0 0 5 0 0

BER481-3 0 5 0 0 2 2 0 0

Fig. 8 Sample leaf images taken from each accession: a S. lycopersicum cv. Moneymaker; b S. habrochaites LA1777; c S. tuberosum cv. RH89-039-16; 
and d S. berthaultii BER481-3, showing oviposition
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at the bottom of Fig.  6b. In the future, these errors can 
be minimized by collecting more training images, most 
especially of different egg colors and trichome densities, 
and possibly devising other post-processing strategies.

Determination of insect plant resistance and susceptibility
The plant–insect resistance analysis results are shown in 
Fig. 7 and Table 2, while sample leaf images of each acces-
sion are shown in Fig. 8. In this experiment, BER481-3 (S. 
berthaultii) and LA1777 (S. habrochaites) were selected 
as accessions that are highly resistant to B. tabaci and 
Trialeurodes vaporariorum [4, 22], BER481-3 is a newly 
reported S. berthaultii accession that is resistant to 
whitefly. Meanwhile, the cultivated tomato Moneymaker 
and potato RH89-039-16 accessions are known suscepti-
ble genotypes, not only for insect resistance [7, 40]. Based 
on statistical analysis, both Moneymaker (p < 0.001, n = 3) 
and RH89-039-16 (p < 0.05, n = 3) showed significantly 
higher adult survival (Fig.  7a) and oviposition (p < 0.05, 
n = 3) (Fig.  7b) compared to the resistant accessions. 
Generally, Moneymaker and RH89-039-16 had higher 
oviposition on the abaxial surface of the leaf compared 
to the wild accessions, as can be observed in Fig.  8a, c, 
respectively.

Imaging device evaluation
One of the goals of this research was to determine which 
imaging devices are suitable for quantifying whitefly eggs 
on leaf samples. The results in Fig. 7c show that, despite 
the number of false positives/negatives of eggs counted 
due to the differences in leaf surface morphology (e.g., 
color and trichome composition), the statistical conclu-
sions that can be drawn from both imaging devices were 

similar. The VHX7000 microscope is the most recent 
high-end version of electronic stereomicroscope from the 
VHX Keyence line. Up to date, researchers use this line 
of microscope to capture fast high-resolution z-stacked 
stitched images from plant cells to insects [31, 32]. In 
this research, the acquisition of each leaf sample using 
the VHX7000 takes about 2  min. On the other hand, 
AutoEnto costs approximately €5000 and it can take an 
image of a leaf sample in a dish in about 2 min, but it can 
be programmed to acquire 9 dishes at a time. Addition-
ally, the accompanying computer of the AutoEnto may be 
programmed to upload images and record whitefly egg 
counts automatically. In this research, it was found that 
image quality was a disadvantage of the AutoEnto, but it 
can be used for faster image acquisition. Nevertheless, 
AutoEnto serves as a budget-friendlier customized device 
alternative but VHX7000 can acquire sharper images.

Web application deployment
The automated egg quantification algorithm was 
deployed in a web application that we named Eggsplorer. 
Eggsplorer was written using Python, JavaScript, and 
HTML programming languages, with the support of 
Flask micro web framework. A screenshot of the web 
application is shown in Fig.  9. As shown, the user can 
drag and drop images to the web application for upload-
ing. The user can also configure the classification confi-
dence threshold if unwanted detections are to be ignored. 
Once all leaf images are uploaded, each leaf image is 
processed on the server. The detection results are shown 
in the web application. Finally, the counting results can 
be downloaded as a.xlsx file while the processed images 
can be downloaded as a.zip file. Currently, the web 

Fig. 9 Screenshot of the Eggsplorer web application
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application can only be accessed in the WUR intranet but 
may also be opened to interested researchers.

Conclusion
A novel method for determining plant–insect resistance 
and susceptibility, with the assistance of an automated 
egg quantification tool, is presented in this work. The 
results show that the automated quantification tool could 
count whitefly eggs obtained from two different imaging 
setups. Algorithm testing results showed that the quan-
tification tool can be used on images generated from 
various microscopes. Users of other microscopes can 
simply upload their own images in the web application 
and quantify the whitefly eggs found in their leaf samples. 
Alternatively, a custom-built imaging setup, such as the 
AutoEnto, can also be used for faster image acquisition 
and sampling.

The procedures presented herein can be a reference to 
other researchers for determining plant–insect resistance 
and susceptibility in a quantitative and practical man-
ner. In the future, images from other leaves may also be 
obtained to train new models and make the web-based 
application more versatile. This can be done by incorpo-
rating images of other insect eggs such as mites, thrips, 
and other harmful insect pests, to build a universal plat-
form for determining plant–insect resistance.
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