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Abstract 

Background Environmental stress due to climate or pathogens is a major threat to modern agriculture. Plant genetic 
resistance to these stresses is one way to develop more resilient crops, but accurately quantifying plant phenotypic 
responses can be challenging. Here we develop and test a set of metrics to quantify plant wilting, which can occur 
in response to abiotic stress such as heat or drought, or in response to biotic stress caused by pathogenic microbes. 
These metrics can be useful in genomic studies to identify genes and genomic regions underlying plant resistance to 
a given stress.

Results We use two datasets: one of tomatoes inoculated with Ralstonia solanacearum, a soilborne pathogen that 
causes bacterial wilt disease, and another of soybeans exposed to water stress. For both tomato and soybean, the 
metrics predict the visual wilting score provided by human experts. Specific to the tomato dataset, we demonstrate 
that our metrics can capture the genetic difference of bacterium wilt resistance among resistant and susceptible 
tomato genotypes. In soybean, we show that our metrics can capture the effect of water stress.

Conclusion Our proposed RGB image‑based wilting metrics can be useful for identifying plant wilting caused by 
diverse stresses in different plant species.

Keywords Machine learning, Image processing, Wilt estimation

Introduction
Plants are continually exposed to abiotic or biotic stress. 
Phenotypic changes induced by these stresses are indica-
tors of plant health and are informative for plant stress 
resilience. Accurately quantifying these phenotypic 
responses to stress enables the identification of genomic 
regions and genes that function in responding to the 
stress. However, many plant responses to stress can be 
challenging to consistently assess with the human eye. 
One example is plant wilting, which occurs when plants 

droop in response to heat, loss of water, or disease. Here 
we develop image-based metrics to quantify plant wilt-
ing over time in response to biotic or abiotic stress. We 
test our metrics in tomato and soybean and show their 
effectiveness in response to a soilborne bacterial patho-
gen and water stress.

Ralstonia solanacearum (Rs) [1] is a soil-borne bacte-
rium that first infects plant roots. Bacteria multiply in the 
root vasculature and secrete an exopolysaccharide (EPS). 
EPS acts like a plug in the xylem, preventing water move-
ment from the root to the shoot. In susceptible plants, 
this leads to aboveground wilting and eventual death. 
Resistant plants are colonized by bacteria but at lower 
levels compared to susceptible plants, and are able to 
continue growth and development. Bacterial wilt caused 
by Rs [1] is a major threat to crop production worldwide, 
particularly Solanaceous species such as tomato [2–4]. 
One of the best methods for controlling bacterial wilt is 
genetically resistant plants; however, there are few known 
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resistance genes that function against Rs [5]. To identify 
resistance genes, metrics to quantify Rs-induced plant 
wilt are desirable.

Water Stress(WS) has always been a major threat to 
agriculture, and the problem becomes more challeng-
ing with increasing population and climate change [6]. 
For example, wheat is reported to suffer up to 21 to 40% 
yield reductions globally from year 1980 to 2015 [7]. WS 
affects plant growth, photosynthesis, nutrient and water 
relations, and often ultimately causes a significant reduc-
tion in crop yields [7]. Similar to the studies of identifying 
Response to Rs, metrics to quantify plant wilt can also be 
useful for studying the effect of WS.

Plant wilting is often visually assessed using a numeri-
cal scale (0.0–1.0 for example), where lower numbers 
indicate fewer percentage of wilted leaves and the highest 
number indicates total plant wilting. While these scales 
are useful, it can be challenging to consistently score wilt-
ing across populations and among different individuals 
doing the phenotyping.

In this paper, we propose a set of computational wilt-
ing metrics using RGB images of the plant. We tested 
our metrics on wilt-resistant and wilt-susceptible tomato 
varieties as well as on soybean plants subjected to water 
stress. We use machine learning-based methods to show 
that expert-labeled wilting scores can be predicted using 
our metrics and that we can predict WS-induced wilt-
ing in soybean. Thus, our computer vision-based metrics 
function across species and against multiple stresses that 
cause wilting.

There are many ways for plant scientists to quantify 
the effect of environmental stress [3, 8, 10, 18], but each 
method has its own shortcomings. One approach is to 
have experts visually examine the plants to determine 
wilting. For example, in [8], Engelbrecht et  almeas-
ure leaf water potential using visual assessment that is 
very subjective and difficult to reproduce. For tomato 
plants, experts rate each plant on its degree of wilting, 
taking into consideration many plant features such as 
the overall loss of plant mass and the color shift [12]. 
In most cases only trained experts can assign a proper 
visual score. Several other sensor-based wilting metrics 
in the past have also been proposed. In [14], Caplan 
et  alused manually measured leaf angles as an indica-
tor of WS stress. In [15], Bock et aldetermined disease 
severity with RGB images of individual leaves. These 
methods require imaging individual leaves so they are 
very labor intensive. Other methods such as [16, 17] 
use RGB images for estimating wilting, but they require 
special equipment such as guided rail cameras and laser 
sensors [17] or field servers [16]. Since RGB images 
are commonly used for many plant studies [13, 16, 17, 

19–21], we design our wilting metrics using several 
RGB images of the plant. Our method will not require 
any human expert input nor complicated equipment 
such as guided rail cameras or laser sensors.

Color information has often been used in wilting 
estimation. For example, in [22], Sancho et alused RGB 
image-based color information as part of the metrics 
to estimate Verticillium wilt of olive plants. Sancho 
et  alincorporated eighteen color measurements into 
their metrics, but some of the metrics require cutting 
the olive leaves. Similar to Sancho et al, the metrics we 
propose also use RGB image-based color information, 
but we reduce the number of color-based metrics from 
eighteen to one and our method does not require cut-
ting physical leaves. We also add a color correction step 
to account for the difference in imaging conditions. 
Together, our metrics allow non-destructive and objec-
tive measurements of plant wilting.

Materials and methods
Plant growth
Tomato
R. solanacearum resistant Solanum lycopersicum, 
Hawaii7996 (H7996) and Solanum pimpinellifolium, 
accession West Virginia 700 (WV700) as well as the 
recombinant inbred lines (RILs) derived from crossing 
the two species were planted in a growth chamber with 
artificial lighting. Plants were separated into an experi-
mental (Inoculated) group and a control (Mock) group. 
The experimental (Inoculated) group was inoculated 
with Rs at 108 CFU/ml by soil drenching approximately 
17 days post germination as described [23]. All plants 
were imaged on the day before inoculation, and three, 
four, five, and six days post inoculation (dpi).

For all images, we used the same camera positioned 
at the same location and under controlled lighting con-
ditions. Fiducial markers were used for color correc-
tion. Sample images can be seen in Fig. 1. Each time a 
plant was imaged, eight side-view images were acquired 
from eight angles. In summary, there were approxi-
mately 1000 plants in the inoculated group. Of the 1000 
plants, 61 were H7996 and 61 are WV700 and the rest 
were the offspring species. The mock group contained 
36 plants (18 H7996 and 18 WV700). Each image 
was 5496× 3670 pixels with a spatial resolution of 
Cpres = 0.52 mm/pixel. Plant experts visually examined 
the plants eight days after inoculation. They rated each 
plant relative to its degree of wilting using a continuous 
score between 0 and 1, where 0 was “no wilting”. The 
wilting metrics and the associated expert visual wilting 
scores were split in a 6:4 ratio for training and testing.
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Soybean
Soybean Plants (Glycine max KS 5004N) were grown in 
a growth chamber in the Ag Alumni Seed Phenotyping 
Facility (AAPF) at Purdue University. The growth cham-
ber temperature was set to 26◦C , with a relative humid-
ity of 60% , with a lighting cycle of 14 hours light per 10 
hours dark, PAR: 800 µmol m−2s−2 . Plants were planted 
in Berger BM6 All-Purpose media inoculated with Rhizo-
bium sp. and grown for 6 weeks before applying water 
stress by stopping irrigation for 7 days. Sample images 
can be seen in Fig. 1. 36 soybean plants were imaged, 18 
in the mock group and 18 exposed to water stress. The 
plants were imaged from 12 different angles 1,3, 4, 5, and 
6 days post irrigation(dpi). Each image was 2054 × 2462 
pixels with a spatial resolution of Cpres = 0.88 mm/pixel. 
We used the same methods as in tomato to extract the 
wilting metrics from the soybean plants. Due to the 
absence of the fiducial markers in the soybean dataset, 

we did not extract the color-based metrics. We used the 
average of all metrics as the final measurement. We also 
asked a plant expert to give the plant wilting scores(0, 1, 
2, 3) at the end of the experiment.

Methods overview
Bacterial or WS wilt has a significant impact on the 
color and shape of plants as seen in Fig. 1. Our primary 
approach was to estimate color and shape information 
from RGB images. For color information, we estimated 
the color distribution of the plant image pixels. For shape 
analysis, we first used conventional metrics such as width 
and height. Since the conventional metrics only captured 
information related to the outer edge of the plants, we 
developed several stem-based metrics which estimate the 
distribution of the plant materials relative to the stem.

Fig. 1 Effect of wilting stress on plants(tomato images are color corrected to show changes in color): a Mock soybean plants (Glycine max KS 
5004N) b Soybean plants after stopping irrigation, dpi means days post irrigation c RS induced wilt on WV700(WV) variant tomato plants, WV700 is 
the more susceptible variant, dpi means days post inoculation d RS induced wilt on H7995(HA) variant tomato plants, H7995 is the more resistant 
variant, dpi means days post inoculation



Page 4 of 16Yang et al. Plant Methods           (2023) 19:52 

Figure  2 shows a block diagram of our proposed 
method. Initially, we used color correction, plant seg-
mentation, and stem segmentation on the original RGB 
images. Color correction was used to address the image 
color inconsistency caused by the camera settings and 
acquisition conditions (e.g., lighting). Plant and stem 
segmentation were used to capture the plant shape 
information. These three initial processing steps were 
required before estimating the wilting metrics.

All metrics could be categorized into color, shape 
(non-stem) based, and stem-based metrics. Color and 
shape (non-stem) based metrics had been widely used 
for plant phenotyping [16, 17]. Here, we describe sev-
eral additional stem-based metrics to provide more 
information about plant wilting. Color and shape-
based metrics used color-corrected images and the 
corresponding plant segmentation mask. Stem-based 
metrics require the plant mask and stem segmentation 
mask. To demonstrate the utility of our metrics, we also 
designed a random forest [24] to predict a visual wilting 
score for a plant using our metrics.

Initial processing
Color correction
To suppress the lighting condition variations, images 
were color corrected using the Fiducial Marker (FM) as a 
reference object, as seen in Fig. 3). The FM was a colored 
checkerboard that has known physical dimensions and 
known colorimetric pixel values for each color square. 
The FM was detected in the image and the average RGB 
pixel values for each color square were estimated. Each 
pixel in the image was subsequently transformed to the 
correct color using the known actual RGB values of the 
FM. Let CFM be a 10× 3 matrix which consists of the 
average R, G, and B pixel values for the 10 colors in the 
FM. We also knew the 10 colorimetric pixel values of the 
color squares in the FM, represented by the 10× 3 matrix 
Ccolorimetric . We estimated the 3× 3 color transformation 
matrix T used to correct each pixel value:

T was used to color correct the pixels of the original RGB 
image. The N × 3 matrix O consisted of the R, G, and B 
pixel values for the N pixels in the original RGB image. 
Then the N × 3 matrix Ô was the color corrected pixel 
matrix, where

An example of a color corrected image is shown in Fig. 3.

Plant segmentation
Two color channels were selected based on our experi-
ments: (1) the V channel from the HSV color space; and 
(2) the B* channel from the L*A*B* color space. Plant 

(1)Ccolorimetric = CFM × T

(2)T = (CT
FMCFM)−1CT

FM × Ccolorimetric

(3)Ô = O × T

Fig. 2 Block diagram of our method

Fig. 3 The effect of color correction a Original image b Color corrected image
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segmentation masks for these two color channels were 
obtained by empirically determining separation thresholds 
for each channel. A threshold of 140 for the V channel and 
130 for the B* channel was used, assuming the pixel values 
are distributed between 0 and 255 in each color channel. 
The binary segmentation masks were combined using the 
logical ‘OR’ function to obtain a single segmentation mask. 
To ensure any undesired objects in the mask are removed, 
the opening and closing morphological operations [25] 
with a 3× 3 matrix consisting entirely of 1s as the structur-
ing element was used to remove noise and fill holes.

Stem segmentation
A deep neural network-based solution similar to what was 
used by Yang et  al. [26] was used for stem segmentation. 
A set of segmentation stem masks were manually labeled 
and used to train the stem segmentation networks. Two 
convolutional neural networks (CNN) [27] were used for 
stem segmentation, Mask R-CNN [28] and U-Net [29]. An 
example of the results of the Mask R-CNN network, which 
was used for most of the stem segmentation, is shown in 
Fig. 4. For the plants in which Mask R-CNN fails to detect 
stems, U-Net was used to detect the stem. Mask R-CNN 
produces better quality [26] masks than U-Net but it some-
times fails to detect the stem.

Color and shape based metrics
Color
After using the plant segmentation mask to capture the 
pixels containing plant material, the distribution of pixel 
values in the A* channel of the L*A*B* color space is esti-
mated. Since wilting plants tend to change color from 
green to brown, the A* channel better captures this plant 
color variation over time. Differences in the A* pixel distri-
bution were compared over time using the Bhattacharya 
Distance (BD) [30].

Plant height, area, and width
Area, the width of the plant segmentation mask, and height 
were detected from the plant segmentation mask as shown 
in Fig.  4. Let pmsk(x, y) be the plant segmentation mask. 
The plant area Parea (the total area of the plant material) 
is equal to the number of pixels in pmsk(x, y) . A horizontal 
profile hhor(y) at y and a vertical profile hver(x) at x were 
defined as:

(4)hhor(y) =
∑

x

pmsk(x, y)

(5)hver(x) =
∑

y

pmsk(x, y)

The plant width Pwidth was defined as the difference 
between the leftmost pixel and rightmost pixel of the 
plant mask (indexing orientation shown Fig. 5).

For plant height Pheight , the top 5% of plant material was 
removed. The y-coordinate of the 5% plant material cutoff 
line as was labeled as YTop , where

The upper edge of the pot is defined as the bottom of the 
plant, denoting its average y-coordinate as YBot . Pheight 
was defined as the difference between the 5% plant mate-
rial line and the bottom of the plant (Fig. 5).

The top 5% of plant material was removed so a small leaf 
at the top of the plant would not affect the plant height 
metric.

Figure 5 and Fig. 6 shows an example of Pheight and Pwidth . 
Plant Height, Area, and Width are general shape metrics of 
the plant.

Stem‑based metrics
The plant segmentation mask pmsk(x, y) , and stem seg-
mentation mask pstem(x, y) were used for estimating the 
distribution. Both the plant segmentation mask and stem 
segmentation mask are binary images with size M × N  
pixels.

Center of mass
From the stem segmentation mask pstem , linear regression 
[31] was used to form the function slin(y).

The plant segmentation mask pmsk(x, y) was separated 
using slin(y) into a left plant mask pl−msk(x, y) and right 
plant mask pr−msk(x, y) (Fig. 7).

(6)

Pwidth =Pmax−r − Pmax−l;

where hver(Pmax−l) ≥ 1,

hver(Pmax−r) ≥ 1,

Pmax−l−1
∑

i=0

hver(i) = 0,

N
∑

i=Pmax−r+1

hver(i) = 0

(7)
YTop
∑

i=0

hhor(i) = Parea × 5%

(8)Pheight = YTop − YBot

(9)

slin(y) = α + β · y

α,β = arg min
α,β

∑

x̄,ȳ

(x̄ − β · ȳ− α)2

· pstem(x̄, ȳ)
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The left center of mass CMleft and right center of mass 
CMright were then estimated.

(10)pl−msk(x, y) =

{

pmsk(x, y) if x ≤ slin(y)
0 else

(11)pr−msk(x, y) =

{

pmsk(x, y) if x > slin(y)
0 else

(12)

CMleft =







�

x,y
x · pl−msk(x, y)

�

x,y
pl−msk(x, y)

,

�

x,y
y · pl−msk(x, y)

�

x,y
pl−msk(x, y)







Fig. 4 An example of a mock WV700 plant, all images are cropped: a Cropped plant image b Plant segmentation mask c Stem segmentation mask 
d Stem segmentation mask overlaid on plant image



Page 7 of 16Yang et al. Plant Methods           (2023) 19:52  

The x-coordinate difference between the left and right 
center of mass (CM) was defined as the Center of Mass 
Horizontal Distance(CM Width) CMhor−dis . The aver-
age of the difference between the CM y-coordinates 
and the bottom of the plant YBot is defined as the Center 
of Mass Height(CM Height) CMheight . Figure 8 shows a 
visualization of the metrics.

Plant mass vertical and horizontal distribution
Vertical distribution captured the plant material (Mass) 
distribution along the y-axis for each half of the plant 
mask and could be sampled at a user-defined percent-
age. Using 90% as an example, for the left plant mask, 
the horizontal profile hl−hprof (y) at y was estimated 
from.

(13)

CMright =







�

x,y
x · pr−msk(x, y)

�

x,y
pr−msk(x, y)

,

�

x,y
y · pr−msk(x, y)

�

x,y
pr−msk(x, y)







Then find the y-coordinate of the 90% plant mass line 
Yl−90v , where

The same steps were used to find Yr−90v using the right 
plant masks. The average 90% distribution V90y was 
defined as

The horizontal distribution captured the plant mass 
distribution along the x-axis for each half of the plant 
mask. Because the stem was not always vertical, it was 
challenging to find an x-coordinate for the stem. First, a 
horizontal shift to pr−msk(x, y) was performed using the 
stem separation line, resulting in a shifted Rr−msk(x, y) . 
Then pl−msk(x, y) is shifted and flipped resulting in a 
flipped and shifted Rl−msk(x, y) (Fig. 9).

The rest of the steps were similar to the vertical dis-
tribution calculations discussed earlier. Use 90% as an 
example, for left half plant masks, the horizontal profile 
hl−vprof  was estimated. The x-coordinate of the 90% plant 
mass line Xl−90h was detected. Similar steps were used to 
find Xr−90h using the right plant masks. The horizontal 
90% distribution H90 was the sum of Xr−90h and Xl−90h . 
Figure 9 shows an example shifted mask Rl−msk(x, y) and 
Xr−90h.

The shape-based and stem-based metrics described 
above were then converted from pixel units to metric 
units using the pixel resolution Cpres (millimeters/pixel). 
Cpres was obtained using the known physical dimensions 
of the Fiducial Marker.

Results
Wilting metrics function across species and stresses
In our recent paper [23], we showed that the wilting 
metrics described above (Plant Area, Plant Height, Plant 
Width, Center of Mass Horizontal Distance(CM width), 
Center of Mass Height(CM height), Plant Mass 90% 
Horizontal Distribution(Xmass), and Plant Mass 90% 

(14)hl−hprof (y) =
∑

x

pl−msk(x, y)

(15)
Yl−90v
∑

i=0

hl−hprof (i) =
∑

x,y

pl−msk(x, y)× 10%

(16)V90y =
Yr−90v + Yl−90v

2

(17)Rr−msk(i, y) =pr−msk(slin(y)+ i, y)

(18)Rl−msk(i, y) =pl−msk(slin(y)− i, y)

(19)H90x = Xr−90h + Xl−90h

Fig. 5 Plant height and index orientation

Fig. 6 Plant width
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Fig. 7 An example of the stem center of mass generation: a Original plant b Plant segmentation mask c Left plant segmentation mask d Right 
stem segmentation mask e Left center of mass (CM) f Right center of mass (CM)
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Vertical Distribution(Ymass)) could differentiate mock 
and inoculated susceptible tomato plants undergoing 
Ralstonia-induced wilt (Figure 2 in [23]). In this paper we 
add another metric based on color, the Bhattacharya Dis-
tance (BD) and we show that our metrics function across 
species and stress.

Figure  10 shows the Bhattacharya Distance (BD) [30] 
of the pixel color distributions over time for RS-inocu-
lated H7996 and WV700 plants. The BD measures the 
difference between the pixel color distribution for each 
day post-inoculation from the pixel color distribution of 
pre-inoculation plants. The Kruskal-Wallis [32] test for 
inoculated H7996 plants has a p-value of 0.235 and for 

inoculated WV700 plants the p-value is 3.52e − 12 . Thus, 
color does not change in resistant tomato plants but does 
for susceptible plants.

As shown in Fig. 10, the distribution of the A* pixels in 
inoculated H7996 plants do not have significant changes 
in the BD but for inoculated WV700 plants the A* distri-
bution continues to deviate further from pre-inoculation. 
The results indicate BD is a good indicator of bacterial 
wilt disease in highly resistant and highly susceptible 
plants.

To demonstrate that our proposed metrics can serve as 
a general method for quantifying wilt, we experimented 
with using our metrics to quantify WS-induced wilt on 
soybean plants. As mentioned in the previous section, 
due to the absence of the fiducial markers, we did not 
include any color correction and we also did not extract 
the color-based metrics. Figure 11 shows the block dia-
gram of the soybean analysis. From visual inspection, 
the lack of color correction does not affect the quality 
of plant segmentation since all images are imaged under 
similar lighting conditions with the same camera. Also 
based on our experimental results later in this section, we 
are still able to distinguish between soybean under water 
stress and mock even without color-based metrics

We first investigated whether our metrics could detect 
WS-induced wilting (Fig.  12). We observed significant 
differences between mock plants and WS plants for 
each metric. Figure 12 shows the plots of our metrics on 
mock and WS-affected soybean plants. Table 1 shows the 

Fig. 8 Center of Mass(CM) height and width

Fig. 9 a Shifted and flipped left mask Rl−msk(x , y) b Horizontal 90% plant mass line Xl−90h
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mean of our metrics and Table 2 shows Welch’s t-test [32] 
results for soybean plants. From the metric means and 
the results of the statistical tests, we could observe the 
trend of each metric under mock and water stress.

CM Height, Plant Height, Plant Width, and Ymass 
increased over time for the mock group but decreased 
over time for WS group. CM Width and Plant Area 
increased over time for the mock group, but the metrics 
first increased and then decreased for the WS group. 
We could observe that all metrics increase over time for 
mock plants and most metrics (all but Xmass) eventually 
decrease over time for WS plants. The Xmass increased 
over time for mock, and for WS group it initially 
increased but later stopped increasing. When the plants 

were growing in mock condition, we would expect all 
metrics to increase due to the increasing size. When the 
plants were under water stress, we would expect all met-
rics to eventually decrease due to the shrinking size. The 
behavior of the metrics was consistent with our expecta-
tions, we could then conclude that our metrics could cap-
ture WS-induced wilting on soybean plants.

When inspecting the metrics more closely, for both 
tomato and soybean plants, width-dependent metrics 
such as Plant Width, CM Width, and Xmass are closely 
correlated to each other, also height dependent metrics 
such as Plant Height, CM height, and Ymass are closely 
correlated to each other. Width-dependent metrics such 
as Plant Width, CM Width, and Xmass demonstrated 
more changes once under wilting stresses for tomato 
plants(Figure  3 in [23]). But for soybean plants, height-
dependent metrics such as Plant Height, CM height, and 
Ymass demonstrated more changes once under wilting 
stresses, as shown in Fig. 12.

Random forest trained with wilting metrics can predict 
expert rating of plant stress in tomato and soybean
We investigate whether visual scores assigned by plant 
experts could be derived from our metrics. A random 
forest (RF) [24] is used to predict expert visual wilting 
scores from the wilting metrics. The wilting metrics and 
the associated expert visual wilting scores are split in a 
6:4 ratio for training and testing. Because the tomato 

Fig. 10 Bhattacharya distance for inoculated H7996 and WV700 plants

Fig. 11 Block diagram of soybean analysis



Page 11 of 16Yang et al. Plant Methods           (2023) 19:52  

expert visual score is given as a continuous value between 
0 to 1 and the soybean expert visual score is given as 0, 1, 
2, and 3, for both tomato and soybean plants, we perform 
both regression and classification using the visual score 

data. For regression, we use visual score data as ground 
truth and trained the model. For classification, we divide 
the plants into different classes based on their visual 
score.

Fig. 12 Soybean measurements results (a). Plots of each metric over time (b). Correlation of each metric
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Starting with tomato plants, we examine two scenarios 
for classification: the visual scores divided into (1) two 
classes (visual score 0− 0.5 as class I, 0.5− 1.00 class 
II); and (2) three classes (visual score 0− 0.33 class I, 
0.33− 0.66 class II, 0.66− 1.00 class III). We then train 
the network for both the two and three classes scenarios. 
The two classes scenario resulted in a more balanced data 
split while the three classes scenario avoided the problem 
of being a binary classification.

The predicted visual scores from all networks are com-
pared with the visual scores assigned by expert plant 

scientists. For the regression network, we use Mean 
Absolute Error (MAE) and Mean Squared Error (MSE) as 
measurements of performance. The accuracy of the clas-
sification networks is evaluated using F1 Score [33]:

The definition of True Positive(TP),True Negative(TN), 
False Positive(FP), False Negative(FN), MAE, and MSE 
can be found in [33]

The results of the classification are shown in Table  3. 
For the two class scenario, the random forest achieved 
the F1 score of 0.84 and for the three classes scenario the 
random forest achieved the F1 score of 0.72. The confu-
sion matrices capturing the per-class results of the ran-
dom forest models are provided in  Fig.  13. The drop 
in performance when moving from the two class to the 
three class scenario can be attributed to the class imbal-
ance present with the creation of the third class, mak-
ing it more likely for its samples to be misclassified. The 
results of the regression are shown in Table 3. The results 
show that we can capture the expert labeled visual score 
with an MAE of 0.195 and MSE of 0.071.

The visual scores determined by the random forest 
are a good predictor of the visual scores provided by the 
plant experts for every plant. Note that the plant expert 
visual scores are based on the state of the plant at eight 
days post-inoculation. Our networks are able to generate 
visual metrics from images up to six days post-inocula-
tion, meaning that the random forest is able to predict 
the state of the plant two days in advance.

For random forests, we can also find how much each 
metric contributes to the final prediction. We have 
attached the rank of the contribution of each metric in 
Table 4.

There are concerns that our stem-based metrics are 
capturing the same information as the shape-based 

(20)Precision =
TP

TP+ FP
,

(21)Recall =
TP

TP+ FN
.

(22)F1 Score =
2× Precision× Recall

Precision+ Recall

Table 1 Soybean metric means(in pixel)

Metrics 1dpi 4dpi 6dpi

CM height mock 332 330 350

CM height WS 350 289 244

CM distance Mock 426 473 475

CM distance WS 450 512 469

Plant area Mock 3.84e5 4.36e5 4.8e5

Plant area WS 4.01e5 4.44e5 3.35e5

Plant height mock 751 752 781

Plant height WS 727 652 612

Plant width mock 599 668 731

Plant width WS 652 679 604

H90 Mock 450 494 530

H90 WS 485 522 487

V90 Mock 611 614 650

V90 WS 624 545 498

Table 2 Soybean Welch’s t‑test results

The values are bolded because the results are under 5% significance level so we 
can reject the null hypothesis

∗For Plant Area∗ , we use Rank-Sum test since the 6dpi data failed the normality 
test

Metrics 1 vs 4 dpi 1 vs 6 dpi 4 vs 6dpi

CM height mock 0.796 9.12e− 3 3.40e− 3

CM height WS 1.17e− 9 1.18e− 16 1.41e− 7

CM distance mock 1.8e− 6 4.83e− 6 0.797

CM distance WS 7.18e− 5 0.160 3.54e− 3

Plant area mock∗ 2.0e− 6
∗

2.72e− 4
∗

0.0106∗

Plant Area WS∗ 3.72e− 3
∗

4.90e− 5
∗

4.30e− 8
∗

Plant height mock 0.968 0.081 0.047

Plant height WS 2.56e− 4 8.4e− 7 0.048

Plant width mock 8.89e− 4 3.05e− 7 8.66e− 3

Plant width WS 0.190 0.024 2.29e− 3

H90 Mock 2.29e− 4 5.18e− 7 0.013

H90 WS 0.022 0.895 0.065

V90 Mock 0.867 1.94e− 3 1.52e− 3

V90 WS 7.91e− 7 4.39e− 11 6.05e− 4

Table 3 Tomato plants Random Forest(RF) classification and 
regression results

Training type F1 MAE MSE

Two classes RF 0.84 N/A N/A

Three classes RF 0.72 N/A N/A

Random forest regression N/A 0.195 0.071
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metrics thus the stem-based metrics are not needed. 
To examine this claim, we also train the classification 
network without the stem-based metrics, the perfor-
mance of which is reported in Table  5. We provide 
the confusion matrices for the random forests trained 
without the stem metrics in Fig.  13. Similarly we also 
train the regression network without the stem-based 
metrics and report the results in Table 5. These results 
show that stem-based measurements improve the 

prediction accuracy for both classification and regres-
sion networks.

In addition, we compare the performance of random 
forest networks with SVM [34] and VGG [27] networks 
in the regression scenario. We choose to use regression 
because the tomato expert visual score is given in a con-
tinuous value between 0 to 1. The input of the SVM is 
our generated wilting metrics and the input of the VGG 
is the original images. The results are shown in Table 6. 
The random forest performs the best among all three 
networks.

To test whether the random forest network was equally 
effective in soybean, we trained a random forest(RF) [24] 
to predict the expert visual wilting scores from our wilt-
ing metrics. The results are shown in Table 7. The wilting 
scores are given in 0, 1, 2, and 3 where 0 = no wilt and 
3 = max wilt. Results were classified in two ways, First, 
the wilting score 1,2,3 was combined into one wilting 

Fig. 13 Confusion matrices for tomato plants, we record the 
total number of plants that fall under each case (TP, TN, FP, FN). a 
Confusion matrix for Two‑Class Random Forest (b). Confusion matrix 
for Three‑Class Random Forest (c). Confusion matrix for Two‑Class 
Random Forest without stem metrics (d). Confusion matrix for 
Three‑Class Random Forest without stem metrics

Table 4 Tomato plants Random Forest(RF) classification metrics 
rank

Metrics Two classes RF Three dlasses RF Regression

Xmass 2 1 1

Plant width 1 2 2

CM width 3 3 3

BD 6 6 6

CM height 7 4 4

Plant areas 4 5 5

Plant height 7 7 7

Ymass 8 8 8

Table 5 Tomato plants Random Forest (RF) stem and non‑stem 
based metrics comparison results

Training type F1 MAE MSE

Two classes RF 0.84 N/A N/A

Two C RF w/out stem 0.82 N/A N/A

Three classes RF 0.72 N/A N/A

Three classes RF w/out stem 0.69 N/A N/A

Random forest regression N/A 0.195 0.071

Random forest regression w/out stem N/A 0.208 0.079

Table 6 Regression results from different networks

Training type MAE MSE

Random forest(RF) 0.195 0.071

SVM 0.203 0.081

VGG 0.311 0.095
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class and plants with score of 0 were in the non-wilt class. 
This two-class classification method resulted in a more 
balanced dataset between the wilt and non-wilt classes. 
The random forest of the two-class method has a 90% 
F1 score for predicting the expert classification results. 
The second classification method used the original wilt-
ing score with four categories. This multi-class method 
resulted in an 83% F1 score. The confusion matrices cap-
turing the per-class performance of the random forests 
are provided in Fig.  14. The drop in performance upon 
moving from the two class scenario to the multi class sce-
nario can be attributed to a class imbalance, leading to 
more misclassifications for the lesser represented classes. 
For regression, we assigned a wilting value between 0 to 
1 based on the expert wilting score. The random forest 
gives an MAE [33] of 0.055 and MSE [33] of 0.0077. Thus 
we can conclude that similar to the tomato dataset, our 
metrics could predict the expert wilting score for WS-
induced wilting on the soybean plants. The rank of met-
rics contribution is attached in Table 8.

Once we inspect the random forest rank of metrics 
more closely, for tomato plants the width-based metrics 
such as plant width or CM width are ranked higher than 
height-based metrics such as plant height or CM height. 
But for soybean plants, the height-based metrics are 
ranked higher than width-based metrics. This result is 
consistent with our findings in the previous section when 
we evaluate our metrics and the statistical test results 
directly. We observed that once under wilting stresses, 
width-based metrics are affected more for tomato plants 
and height-based metrics are affected more for soybean 
plants. This could be due to the differences in shoot 
architecture between tomato and soybean.

Discussion and conclusion
Here we proposed eight image-based wilting metrics for 
estimating wilting in plants exposed to stress. The wilt-
ing metrics described here can be used to detect wilt-
ing in different species from different types of external 
stresses. They can differentiate wilted from non-wilted 
plants and thus resistant from susceptible plants. Instead 
of an arbitrary score estimated by the expert, the wilting 
metrics described here could provide direct information 
relating to the physical traits of the plant such as color, 
shape, or plant mass distribution. The additional physi-
cal information could lead to observations that otherwise 
could not be concluded from a simple expert visual score. 
For example, if the Bhattacharya Distance of a group of 
plants with a specific gene increases after inoculation, 
one could say that this gene might lead to less resistance 
to Rs induced wilting. In addition, one or more metrics 
could be used to conduct more comprehensive studies 
such as QTL analysis as in [23].

Because our pipeline requires clearly defined stems, we 
speculate that it will work better for crops with clearly 
defined rigid stems such as tomatoes. For bush-like crops 
such as blueberry, an improved stem detection method 
might be needed. Also, since our method only requires 
RGB images as input, it has the potential for field-based 
implementation using mobile devices. However, there 

Table 7 Classification and regression results for random forest(RF)

Training type F1 score MAE MSE

RF two classes 0.90 N/A N/A

RF multi classes 0.83 N/A N/A

RF regression N/A 0.055 0.008

Fig. 14 Confusion matrices for soybean plants, we record the 
total number of plants that fall under each case (TP, TN, FP, FN). a 
Confusion matrix for Two‑Class Random Forest (b). Confusion matrix 
for Multi‑Class Random Forest

Table 8 Soybean plants random forest(RF) classification metrics 
rank

Metrics Two classes RF Multi classes RF Regression

Xmass 6 6 6

Plant width 7 7 7

CM width 3 4 3

CM height 1 1 1

Plant areas 5 3 5

Plant height 4 5 4

Ymass 2 2 2
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might be some challenges. Our metrics depend on the 
segmentation of the plants, so it might not perform well 
on field crops that are planted close to each other with 
overlapping plant material. An improved plant segmen-
tation method will be needed. Our current method also 
requires plant images from multiple angles. For field 
applications, the number of images required per plant 
needs to be reduced. In addition, the imaging angle may 
vary between images, so some image rectification might 
be needed.

For future work, study could be done on the expert 
bias of our visual score. We could also evaluate whether 
our method would be able to differentiate wilting caused 
by pathogen or water stress. This could potentially be 
achieved using hyperspectral images. In addition, we 
could investigate new wilting metrics that can capture 
true 3D information and could be used for field-based 
plants. To conclude, we proved the effectiveness of our 
proposed metrics in quantifying wilt from different 
causes (bacterium or WS) and on different plant species 
(soybean and tomato). Also compared to the traditionally 
expert-labeled wilting scores, our metrics are based on 
plant physics and are less prone to subjective changes.
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