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Abstract 

Climate change due to different human activities is causing adverse environmental conditions and uncontrolled 
extreme weather events. These harsh conditions are directly affecting the crop areas, and consequently, their yield 
(both in quantity and quality) is often impaired. It is essential to seek new advanced technologies to allow plants to 
tolerate environmental stresses and maintain their normal growth and development. Treatments performed with 
exogenous phytohormones stand out because they mitigate the negative effects of stress and promote the growth 
rate of plants. However, the technical limitations in field application, the putative side effects, and the difficulty 
in determining the correct dose, limit their widespread use. Nanoencapsulated systems have attracted attention 
because they allow a controlled delivery of active compounds and for their protection with eco-friendly shell 
biomaterials. Encapsulation is in continuous evolution due to the development and improvement of new techniques 
economically affordable and environmentally friendly, as well as new biomaterials with high affinity to carry and coat 
bioactive compounds. Despite their potential as an efficient alternative to phytohormone treatments, encapsulation 
systems remain relatively unexplored to date. This review aims to emphasize the potential of phytohormone 
treatments as a means of enhancing plant stress tolerance, with a specific focus on the benefits that can be gained 
through the improved exogenous application of these treatments using encapsulation techniques. Moreover, the 
main encapsulation techniques, shell materials and recent work on plants treated with encapsulated phytohormones 
have been compiled.
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Introduction
Climate change is defined as long-term variations 
in global climate patterns. The increase in human 
activities such as deforestation, industrialisation, 
rapid urbanisation and the unconscious use of non-
biodegradable products, produce serious contamination 
in the environment, which in turn has a significant 
impact on the climate. The extreme weather, 
desertification, flooded soils and the decrease in water 
resources cause soil instability, altered vegetation, 
flowering defects, pathogen defense vulnerability, and 
decreased agricultural productivity, leading to problems 
in maintaining quality crops [1]. Therefore, the negative 
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effect of these changes decreases the capacity to meet the 
high food demand of the world population [2, 3].

Biotic and abiotic stresses caused by climate change 
increase pressure for plants [4]. Plants respond to stresses 
in different ways: change in gene expression, variation 
of growth rates, alteration in cellular metabolism, 
production of molecular chaperones and reactive species 
scavengers, etc. [5]. Among these responses, increased 
biosynthesis of secondary metabolites with a protective 
function has an important role [6]. These compounds 
help the plant to tolerate the adverse condition as an 
adaptive defense but, if the magnitude of the stress is 
too high or it appears too fast, they may not be enough 
to protect the plant completely. These metabolites are 
produced by plants as a defense mechanism; however, 
they can also be chemically synthesized or obtained from 
microbial sources [7, 8], and their exogenous application 
(via foliar or soil) can become a tool for mitigating the 
adverse effects of environmental stresses on plants [9]. 
These compounds include different acids, flavonoids and 
carotenoids and unsaturated fatty acids, among others 
(Additional file 1: Fig. S1).

It is important to highlight the role of phytohormones 
(PHs) as regulators of plant development and plastic 
growth [10]. PHs also modulate several physiological 
processes in plants subjected to stress conditions, and 
their interactions allow reconfiguring plant architecture, 
enhancing its capacity to adapt to negative scenarios 
[11]. This review emphasizes the importance of PHs 
in environmental stress tolerance and the benefits of 
exogenous hormonal treatments on plants, especially 
when PHs are encapsulated.

Phytohormone modulate plant tolerance to several 
stresses
PHs are signalling molecules with a controlled homeo-
stasis that mediate plant responses to internal and exter-
nal stimuli [12]. They can act at their synthesis site or be 
transported to different parts of the plant. PHs regulate 
cell division, root and shoot elongation and differen-
tiation, seed germination, dormancy, sex determination, 
and flowering and fruiting differentiation. Actually, the 
existence of different hormonal groups has been widely 
reported, including salicylic acid (SA), jasmonic acid (JA), 
abscisic acid (ABA), indole-3-acetic acid (IAA), ethylene 
(ET), gibberellins (GAs), cytokinins (CKs), brassinoster-
oids (BRs), strigolactones (SL), etc. [13, 14]. Undoubtedly, 
SA, JA, ABA, IAA, GA and CKs have a key role in the 
modulation of physiological and molecular responses to 
environmental stresses. The effects of phytohormones 
on plant development and growth, as well as their inter-
actions under various stress conditions, are briefly dis-
cussed below and illustrated in Fig. 1:(i) SA is a phenolic 

compound that is principally synthesized by the pheny-
lalanine pathway and secondarily by the isochorismate 
route [15]. SA promotes defense responses against path-
ogenic organisms and abiotic stresses such as chilling, 
drought, heat, heavy metals and salinity. SA controls sev-
eral aspects of plant development, including seed germi-
nation, root differentiation and growth, photosynthesis, 
stomatal closure, senescence, flowering, and fruit yield 
[16]. Interestingly, SA enhances plant antioxidant capac-
ity at low concentrations but causes pleiotropic effects 
and susceptibility to abiotic stresses at highest ones [17, 
18]. It plays a key role in inducing the systemic acquired 
resistance to various pathogens and, in coordination 
with ABA, regulates plant defense responses against 
pathogens and pests [19]. When defense responses are 
activated, SA levels and signaling increase, leading to 
a reduction in auxin biosynthesis and transport. This 
coordination between defense and growth trade-offs 
helps the plant to effectively manage its resources [20]. 
(ii) JA, its precursor 12-oxophytodienoic acid (OPDA), 
and the conjugated molecules methyl jasmonate (MeJA) 
and jasmonoyl-isoleucine (JA-Ile), known as jasmonates 
(JAs), are crucial for plant development and can act 
directly or indirectly in defense responses [21, 22]. High 
concentrations of JAs are found on root tips, shoot apex, 
immature fruits and young leaves [23]. JAs are involved 
in physiological and molecular responses which protect 
plants against pathogenic attack, chilling, drought and 
high salinity. Some of the responses observed include an 
activation of the antioxidant system, the accumulation of 
amino acids such as methionine, and the regulation of the 
stomatal closure [24]. The interaction between JAs and 
ABA can have both synergistic and antagonistic effects 
in inducing plant tolerance. Additionally, the interaction 
between JAs and ET is regulated through antagonism in 
response to abiotic stresses [22]. (iii) ABA is an isopre-
noid with an essential role in plant adaptation to abiotic 
stresses; among other roles it modulates stomatal open-
ing to prevent water loss when plant suffers drought [25]. 
ABA is synthesized via the mevalonic acid-independent 
pathway and its biosynthesis starts in plastids and is car-
ried in direction to the cytosol [26]. It also plays a role 
on seed dormancy and maturation, fruit ripening, and 
root architecture organization [27]. It is well-known 
that ABA improves stress responses, activating stress-
related pathways and modifying gene expression [28, 
29]. It also regulates cell turgor and restricts cell growth 
as adaptation mechanisms [30]. In plants exposed to abi-
otic stresses, ABA interacts with auxins to control root 
meristem activity and lateral root development [31]. (iv) 
IAA is the most studied auxin and has been reported as a 
vital molecule for the proper development of plants [32]. 
It promotes cell division, differentiation and elongation, 
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after plants exposure to stress. Auxins activate numerous 
genes in response to abiotic and biotic stress responses, 
although their role as a stress response regulator is still 
under study [33]. It is known that the crosstalk between 
IAA and SA mediates plant tolerance [34]. However, 
when plants are subjected to multiple stresses simultane-
ously, their homeostasis is altered, leading to changes in 
genes related to auxin transport, such as PIN1. This can 
result in the inhibition of IAA transport in the plant [35]. 
Excessive IAA accumulation causes altered morphogen-
esis of principal root and avoids the formation of lateral 
roots, disrupting the nutrient uptake [36]. (v) GAs are a 
group of molecules derived from a tetracyclic diterpenoid 

carboxylic acid that has positive effects on tissue expan-
sion, trichome initiation, and the development of flow-
ers and fruits [37]. There is also evidence that GAs play 
a role in abiotic stress adaptation, where their antagonis-
tic interaction with CKs helps control the elongation of 
the plant shoot apex and root tip [38]. (vi) CKs control 
chloroplast differentiation, cell division and interaction 
with other organisms (especially pathogens) in the plant. 
Interestingly, plants alter their endogenous CK levels in 
response to abiotic stress (heat and chill) [39].

PHs have been extensively used as exogenous 
treatments for enhancing plant tolerance to both biotic 
and abiotic stresses, with numerous studies highlighting 
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Fig. 1  Phytohormone interactions play a crucial role in plant responses to biotic and abiotic stresses. Under biotic stress, the interaction between 
salicylic acid (SA) and abscisic acid (ABA) regulates stomata opening, while jasmonic acid (JA) induces ABA transport from leaves to roots. During 
abiotic stress, ABA is synthesized in roots and transported through the xylem, while SA blocks indole-3-acetic acid (IAA) to balance growth and 
defense, and ethylene (ET) inhibits JA to promote IAA synthesis and transport from roots to leaves
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their potential to improve plant growth, development, 
and stress responses, as shown in Table  1. Traditional 
methods to treat plants with PHs consist in either 
adding them to a nutrient solution for root absorption 
or spraying them to the aerial organs. Among them, the 
use of absorbent cotton to maintain the concentration 
of the phytohormone and promote a correct absorption 
by the plant is one of the most popular [110]. Plants 
absorb PHs through leaf stomata or rhizodermis, to 
later transport them to the internal structures by ion 
channels and protein transporters, through phloem 
and xylem [111]. PHs are recognized by specific 
protein receptors inside plant cells. For instance, SA 
joins to NON-EXPRESSER OF PATHOGENESIS-
RELATED GENES 1 (NPR1), JA joins to CORONATINE 
INSENSITIVE 1 (COI1), ABA joins to PYRABACTIN 
RESISTANCE1/PYR1-LIKE (PYR/PYL), IAA joins to 
TRANSPORT INHIBITOR RESPONSE 1 (TIR1), ET 
joins to ETHYLENE RECEPTOR 1 (ETR1), GAs join to 
GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), CKs 
join to CYTOKININ RESPONSE 1 (CRE1), BRs join to 
BRASSINOSTEROID INSENSITIVE 1 (BRI1) and SL 
joins to DWARF 14 (D14) [112]. However, exogenous 
applications of free PHs have several problems such as 
the difficulty to define the correct dosage. Depending on 
the application purpose and chosen technique, the plant 
might need different doses, ranging from low quantities 
(at the nanomolar level) to much higher amounts, 
which is costly and inefficient. Furthermore, externally 
applied products are expected to maintain their initial 
concentration in PHs and be stable over time but diverse 
environmental conditions and low stability of the 
molecules can affect the treatment. Even the structure 
of the molecule can be affected by light or temperature, 
modifying its behaviour and decreasing its efficiency 
[113].

Exogenous application of PHs can have negative 
biological impacts in plants. Firstly, hormonal 
imbalances may arise from excessive application, which 
can affect normal plant growth and development and 
increase plant susceptibility to pests [114]. Therefore, 
PHs can alter plant morphology by inducing the 
formation of adventitious roots or altering leaf shape; 
excessive use of GAs can lead to weakened stems and 
increased susceptibility to pests and diseases. In this 
sense, in citrus trees, over-saturation of uptake capacity 
due to GA applications can lead to the production of 
small fruits with poor flavour [115]. Secondly, long-
term PHs treatments can cause plants to become 
dependent on external PH sources, leading to a loss 
of their natural ability to generate hormones, which 
can adversely affect growth rate and health [116]. 
From an ecological point of view, the application of 

PHs can have also some negative effects. In the case 
of treatments applied to the watering solution, a large 
amount of a free PH could affect the microbiological 
communities associated with the plant, changing soil 
ecosystem characteristics and even altering nutrient 
levels [117]. Moreover, some plant hormones, such 
as synthetic auxins, can have negative impacts on 
non-target organisms like pollinators. In this way, the 
herbicide 2,4-D, which consists in a synthetic auxin, 
has been shown to harm bees and other beneficial 
insects [118]. Excessive or inappropriate use of plant 
hormones can lead to contamination of soil and water. 
In addition, the use of synthetic growth regulators like 
paclobutrazol in crop production has been shown to 
affect the health of organisms and ecological systems 
[119]. It is important to note that the ecological impacts 
of PHs applications depend on the specific hormone 
being used, the method and timing of application, and 
the surrounding ecosystem. As such, it is important 
to carefully consider the potential risks and benefits 
of any plant hormone application. Encapsulation 
can help mitigate these issues by allowing for better 
management of PHs application and dosage.

Encapsulation can improve phytohormone 
biological effects in agriculture
Encapsulation has attracted attention due to the pos-
sibility of controlled release of most biologically active 
compounds and for the eco-friendly nature of the bio-
materials used as coatings [120]. Encapsulation pro-
duces particles with high hydrophilicity and lipophilicity, 
enhancing their ability to penetrate plant tissues [121]. 
This is a process where a bioactive compound or active 
agent, defined as core material, is packaged or coated 
in a carrier (protective material) to create capsules with 
enhanced biological characteristics (Fig. 2A). The coating 
material is used to encapsulate the bioactive compounds 
forming a matrix capable to create a barrier for the core 
against important factors such as: heat, oxygen concen-
tration, light, pH and shear [122]. Capsules are able to 
inhibit volatilization and protect the core versus extreme 
environmental conditions, reducing its sensitivity to deg-
radation [123]. Encapsulation is an effective alternative 
to solve physical or chemical instability problems of PHs. 
These kind of compounds are encapsulated for increasing 
their durability and functionality, in addition to obtain a 
controlled release [124]. For a successful encapsulation, 
it is important to consider and correctly select three fac-
tors: (a) the core, target active agent to encapsulate, (b) 
the shell, coat or wall material used as coating and, (c) the 
encapsulation method, depending on the nature of the 
materials and the final application [125]. Plant treatments 
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performed with encapsulated PHs have increased in 
recent years due to their ability to promote plant growth 
and control the pathogen effects [126].

Principal encapsulation techniques used in agriculture
The selected encapsulation methodology depends on 
the core and shell characteristics, and their chemical 
and physical properties. The chosen technique has the 
challenge to achieve a high encapsulation efficiency 
and a controlled release capacity [127]. During the 
encapsulation process, the active agent must remain 
intact, and the coating should not exhibit adherence or 
aggregation. The newly formed particles must have a 
homogeneous particle size distribution, with particles 
free of dents and/or holes [128]. Before starting the 
encapsulation process, the physical state of the core (solid 
or liquid) divides the fabrication process in either coating 
the solid particles with the shell material in a pan coater 
or fluidized bed, or forming droplets using an immiscible 
liquid or air, followed by droplet solidification [129]. The 
coat shell (in general, the capsules), can take numerous 
morphologies that could be classified based on the size 
of the encapsulation, into: nanocapsules (diameter 
< 0.2  μm), microcapsules (diameter between 0.2 and 
5000  μm), and macrocapsules (diameter > 5000  μm) 
[130, 131]. Moreover, capsules can be divided into 

microcapsules and microspheres, depending on their 
shape and construction. While microcapsules have a 
central inner core, which contains the active compound, 
in microspheres the core is heterogeneously dispersed 
in the encapsulation material. In general, encapsulation 
techniques fall into three categories: chemical, physical–
chemical and physical–mechanical approaches. 
Table  2 shows the most important techniques used to 
encapsulate phytohormones, as well as their advantages 
and disadvantages.

The principal chemical techniques are: (i) ionic gela-
tion, which synthesizes particles from electrostatic inter-
actions of ions with opposite charges. This technique 
requires a polymer (as chitosan or alginate), a crosslinker, 
generally sodium triphosphate (TPP), and constant con-
ditions of mechanical stirring [133]; (ii) in-situ polym-
erization consists in adding a biomolecule (core) to a 
polymer solution (shell material) and dispersed it until a 
certain size is obtained. Polymerization is performed in 
the continuous phase with no reactants added to the core 
material [134] and (iii) liposome entrapment, in which a 
lipid-based encapsulation system is used as a carrier for 
active compounds such as antioxidants, hormones, pep-
tides, etc. This system is widely used due to its lipophilic/
hydrophilic and compartmentalization properties [135]. 
In the case of physical–chemical techniques, there are 

Salicylic acid (   )

Chitosan (         ) 

Capsule swelling 

Capsule erosion

Diffusion 
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A

B

Fig. 2  General processes of encapsulation and release of the active ingredient. Graph A represents SA encapsulation using chitosan as shelling 
material and tripolyphosphate (TPP) as bridge to form the nanocapsule. Graph B represents different mechanisms of PHs released from shell
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Table 2  Different encapsulation techniques used in agriculture to form capsule-core samples

* Shell life: large (30–60 weeks), medium (10–30 weeks) and Short (< 10 weeks)
** Reliability refers to degradation of encapsulated at temperature gradient (Thermogravimetric analysis): poor (> 50% of mass lost) and good (< 50% of mass lost)

Encapsulation techniques

Process Chemical Physico-Chemical

Ionic gelation In-situ 
polymerization

Liposome 
entrapment

Coacervation Sol–gel 
encapsulation

Solvent evaporation

Diagram

Polymer A
+ 

Core 

Polymer B

Counter ion 
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Core 
material
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•High encapsulation 
efficiency

• Inexpensive 
materials
• Simple 
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• Stable • Versatile operation
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encapsulation 
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• Good thermal 
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• Good 
encapsulation 
efficiency

• Simple procedure
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Disadvantages • Limited polymers
• Produced always in 
aqueous dispersion

• Complex 
procedure
• Use a toxic 
precursor

• Difficult to scale • Expensive process
• Agglomeration
• Difficult to scale 
up

• Long process time
• Use of toxic 
organic solutions

• Low efficiency 
encapsulation
• Restricted process

PHs encapsulated SA, IAA, GAs SA, ABA, GAs SA, CKs JAs ABA JAs

Particle size range 0.5–1000 μm 0.05–1100 μm 2–1200 nm 2–1200 μm 0.2–20 μm 0.5–1000 μm

Shelf life Short Short Short Short Medium Poor

Reliability Poor Poor Poor Poor Good Poor

References [129, 132, 133] [129, 132, 134] [129, 132, 135] [129, 132, 136] [129, 132, 137] [129, 132, 138]

Process Physical–Mechanical
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Par�cle 
collec�on

Par�cle 
forma�on

 

Capsule 
material Core

inlet

Coating 
membrane

Counter 
rotating disc

 

 

Controled 
par�cle 

flow

Coa�ng 
spray

Coa�ng 
par��on

 

Core
+ 

Capsule 

Nozzle

Solidifica�on 
solu�on

Droplet 
forma�on

Air

 
Gas flow 

Shell 
formula�on 

 

Suspension

Capsule 

Microcapsules

Core

Drying 
chamberHot air 

 

Advantages • Simple process
• Easy to scale up
• Adjustable cost

• Can use solid 
and liquid core 
materials

• Low cost • Stability
• High retention

• Extensive capsule 
materials

• Low cost

Disadvantages • Limited capsule 
materials
• High energy 
consumption

• High temperatures 
required

• Inconsistent 
encapsulation 
efficiency
• Difficult to control
• Time-consuming

• Limited capsules 
materials

• Restricted to solid 
particle coating
• Agglomeration

• Restricted to solid 
cores
• Complex process

PHs encapsulated SA, ABA ABA SA JAs, IAA ABA SA

Particle size range 5–5000 μm 5–1500 μm 600–5000 μm 500–3000 μm 20–1500 μm 0.1–1000 μm

Shelf life* Large Medium Short Medium Medium Medium

Reliability** Good Good Poor Good Good Poor

References [129, 132, 139] [129, 132, 140] [129, 132, 141] [129, 132, 142] [129, 132, 143] [129, 132, 144]
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mainly three: (i) coacervation, a process that involves the 
electrostatic attraction between two polymers with oppo-
site charges and coacervate formation by pH changes, 
which generally consists of four steps: (a) suspension of 
the core in a liquid phase, (b) addition of the polymer 
solution around the core, (c) gelation, and (d) solidifica-
tion of the capsule wall [136]; (ii) sol–gel encapsulation, 
in which an emulsion is produced from two immiscible 
phases prepared in the presence of a surfactant agent. Sil-
ica (Si) based particles are the most widely used because 
it is possible to obtain Si particles with a specific size and 
shape by changing the pH of sol–gel materials [137] and 
(iii) solvent evaporation, where a polymer is dissolved 
in an organic solvent, and then dispersed in an aqueous 
solution (with the core material) to form an emulsion, 
using a surfactant agent. Once the emulsion is formed, 
the organic solvent must be evaporated to obtain the final 
particles [138].

Concerning physical–mechanical techniques, the 
following are highlighted: (i) spray drying, a fast and 
scalable process that allows obtaining dry powders 
from liquid suspensions [139]. Briefly, the suspension is 
sprayed through a nozzle, using a hot gas (either air or 
nitrogen), generating solid particles that move with the 
air stream and are collected by a cyclone [145]; (ii) multi-
orifice centrifugation, is a process that launches the core 
through a counter-rotating disk using centrifugal force 
[140]. The core passes through a membrane composed 
of the shell material, forming the encapsulated particles 
[146]; (iii) pan coating, is a method in which a coating 
composition is added to a moving bed of core material 
using hot air to evaporate the solvent. The core material 
rotates on a pan while the coating material is applied at 
the same time [141]; (iv) co-extrusion, consists of mixing 
the material of the core with that of the shell by means 
of a system of nozzles. The vibrations produced are 
capable of breaking the liquid phase and forming drops, 
which become capsules when falling into a solidification 
bath [142]; (v) fluidized bed, this process is performed by 
spraying a shelling solution into a fluidized bed with the 
core, requiring numerous wetting–drying cycles to form 
a continuous film [143]; and (vi) air suspension coating, 
in this technique the core is suspended in an upward 
draft and continuously coated with sprayed shell material 
[144]. The core passes through the coating-zone cyclically 
until it is encapsulated. The air stream allows in turn to 
dry the encapsulated particles [147].

Principal coating materials used in agriculture
The coating material influences the controlled release of 
bioactive molecules, also affecting their bioaccessibility. 
It is important that the shell or coating is not reactive 
or produces a non-specific conformation on its own. 

The chosen materials must provide, mainly, protective 
properties, in addition to others such as flexible structure, 
stability, strength and permeability [148]. The initial 
core/shell ratio and the amount of shell are essential 
parameters during the encapsulation process since they 
directly affect the dispersion process and determine 
the particle surface area under specific conditions 
[149]. In relation to the environment, it is required 
that the coating material be also inert (does not react 
with the active principle). Its surface must be flexible to 
encapsulate and release different compounds, but also 
strong to protect against extreme conditions and, after 
use, it must be biodegradable to minimize environmental 
impact [150]. One of the main considerations is the 
shelling material structure, since it determines the 
capsule functional properties. The ideal shell material 
should have a stable emulsifying property and an easy 
handling during the encapsulation process. Furthermore, 
it must preserve its permeability and not react with the 
core during long-term storage conditions [151]. It must 
be soluble in several solvents and, at high concentrations, 
the rheological properties under the influence of stresses 
must be stable, but with a desired flexibility that does 
not compromise its structure [152]. In some cases, to 
enhance the shell properties, the use of a combination of 
coating materials is necessary.

There are many different materials used for the 
encapsulation process, for example: polysaccharides 
from different sources (plant, marine algae and fungi), 
lipids, proteins, synthetic or inorganic, and waxes, among 
others. Recent trends in agriculture aim to use inert or 
biodegradable matrices for encapsulating plant extracts 
(flavonoids, fatty acids and main phytohormones) 
[153]. Polysaccharides are by far the most widely used 
shell material due to their structure, abundance and 
biodegradability [154]. Alginate, a natural hydrophilic 
compound isolated from algae cell wall, is widely 
used to formulate films, hydrogels, microspheres and 
microcapsules, since this material exhibits important 
shelling characteristics, such as moisture absorption, 
gelation and biocompatibility [155, 156]. Chitosan is 
undoubtedly the most popular coating material due to 
its superior characteristics, such as biocompatibility, 
biodegradability, resistance, non-toxicity and its ability 
to form films without relying on additives [157]. In 
agriculture, chitosan encapsulated molecules are used 
as an economic and ecological alternative to formulate 
biofertilizers, biopesticides, conditioners and growth 
promoters [158]. Among polysaccharides, starch has 
gained interest as a nanocarrier system, mainly due to its 
abundance, availability, biodegradability and competitive 
cost. In addition, starch can exhibit diverse molecular 



Page 10 of 20Sampedro‑Guerrero et al. Plant Methods           (2023) 19:47 

structures depending on its plant tissue origin, such 
as fruits, roots, seeds, and tubers. Its unique structure 
can result in a variety of shapes, sizes, and granule 
compositions [159, 160]. Gum polysaccharides (arabic, 
carrageenan, xanthan, among others) are used as coating 
materials due to their favorable characteristics, including 
excellent emulsification, high solubility, low viscosity, and 
inhibition of oxidation reactions [161].

Other interesting coating materials are amorphous 
silica, waxes and caseinates. Amorphous silica (SiO2) 
is a non-toxic material which use in the encapsulation 
process is inexpensive and its manufacture is safe and 
friendly to the environment [162]. This material is used 
to encapsulate different bioactive agents by entrapment 
in its inner pores, which allows a chemical and physical 
stabilization between the core and the shell [163]. Waxes 
become more relevant due to their favourable properties 
such as hardness, hydrophobicity, scratch resistance 
and thermal stability. In fact, it is interesting to carry 
out studies on the microstructure and properties of 
new waxes to control possible interactions with other 
components [164, 165]. Caseins are a class of milk-
derived proteins, similar to whey proteins, containing 
casein micelles and caseinates as extended forms [166]. 
Caseins have the facility to form suspensions and, during 
capsule formulation, have the capacity to emulsify and 
foam [167]. Table 3 shows the principal coating materials 
used for encapsulation, as well as their advantages and 
disadvantages. While not all of these materials have been 
utilized for PH encapsulation, they have demonstrated 
efficacy for encapsulating other molecules and 
compounds and therefore present promising options for 
future applications.

Release mechanisms of active ingredients
The release of encapsulated bioactive compounds can 
occur through controlled and uncontrolled mechanisms. 
The rapid release could be ineffective but, on the contrary, 
an extremely slow release could decrease their positive 
effects and cause problems in their entrance through the 
plant tissue surface. Controlled release requires a trigger 
stimulation to start. The deployment of this mechanism 
ensures a long-lasting action of the bioactive molecule 
with an expected concentration [200]. Furthermore, it is 
important because its manoeuvrability and predictability 
characteristics allow the estimation and study of the core 
release rate [201]. The release rate study considers several 
parameters such as starting point and duration, kinetics, 
released quantity, speed and release mechanism [202]. 
There are five mechanisms of release: (i) diffusion, which 
refers to the random movement of the core, typically 
caused by a concentration gradient. In this process, the 
release of the active agent depends on various factors, 

including the physical–chemical characteristics of both 
the core and the matrix, as well as the ratio between 
them [203]; (ii) swelling, where differences in solvent 
concentration cause the whole shell structure to swell 
with increased pore size, making it difficult to maintain 
capsule integrity and causing core molecule release [204]; 
(iii) fragmentation, occurs when the matrix is disrupted 
by physical, chemical, or biological stresses, and in this 
process, the amount of core released depends on the 
magnitude of the stress as well as the shape and size of 
the resulting capsule fragments [205]; (iv) erosion, a 
process that can be caused by various factors, including 
temperature, pH, enzymes, and mechanical stimulation. 
This process can occur in two ways: surface erosion, 
which involves degradation of the capsule surface, and 
bulk erosion, which involves degradation of the entire 
capsule [206]; and (v) dissolution, which refers to the 
release of the bioactive core into an liquid medium either 
through the dissolution of the matrix or without it. This 
process can start either on the surface of the application 
point or after it has been breached [207]. In the Fig. 2B, 
a schematic procedure of each release mechanism is 
depicted.

Encapsulated phytohormone development to enhance 
plant stress tolerance
Plants exhibit diverse responses to stress depending on 
the affected area. These responses may include changes 
in nutrient translocation, cell death at the entrance of 
the affected zone, alterations in gene regulation or cell 
wall composition, production of lipids, metabolites, 
and proteins, as well as the synthesis of antioxidant 
compounds. [208–210]. Plant response is influenced 
by its genotype and stage of development, the duration 
and intensity of the stress, the combination of different 
stresses, etc. This response, which is controlled by a com-
plex network, starts with the stress perception, trigger-
ing various molecular events that end with phenotypic, 
physiological, developmental and metabolic changes 
[211]. Despite the various response mechanisms, plants 
may still be vulnerable to stress when it is severe, causing 
both internal damage such as cell wall and DNA disrup-
tion, lipid peroxidation, protein deformation, and mito-
chondrial cleavage, as well as external damage such as 
reduced seed germination, decreased biomass, altered 
root growth, and pleiotropic effects [212]. These prob-
lems can be solved using encapsulated phytohormones 
that, through their controlled release, allow the correct 
internalization of the different molecules. Several studies 
have shown that encapsulated SA generates pathogenic 
resistance against Fusarium verticillioides and Sclero-
tium rolfsii in maize and rice, respectively [213, 214], and 
cold and salt tolerance in sunflower and grape [215, 216], 
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Table 3  Main materials used to form capsule shell

Materials Advantages Disadvantages Applicable stress type References

Polysaccharides

 Alginate • Low toxicity
• Bio inert material
• Low cost encapsulation process

• Limited changes on mechanical 
properties
• Instability caused by ion-leaching

Biotic [155, 168, 169]

 Carrageenan • Not toxic
• Biocompatible
• Biodegradable

• Potential reaction with bioactive 
molecules

Abiotic / Biotic [170–172]

 Chitosan • Not toxic
• Enhanced biocompatibility
• High stability
• Expensive dosing is prevented

• Method of preparation depends on 
the PHs used

Abiotic / Biotic [157, 173, 174]

 Gum Arabic • Abundant availability
• Excellent core protection ability

• Limited availability
• High cost

Abiotic [175, 176]

 Modified starch • Fully biodegradable
• Inexpensive material
• Can be easily modified

• Loose structure due to its poor 
resistance to shearing and stirring
• Toxicity of several derivative 
products

Biotic [159, 177, 178]

 Maltodextrin • Low hygroscopicity
• Protect bioactive compounds from 
oxidation

• Poor stability
• Low retention

Biotic [179, 180]

 Pectin • Low cost encapsulation process
• Possibility to modify its structure

• High swelling degree in 
unfavourable environments

Biotic [181–183]

Inorganic

 Amorphous silica • Biocompatible
• High uptake capacity
• Controlled drug release system
• Low toxicity
• Improved loading and releasing 
properties

• Difficult to predict successful 
amount of encapsulated drug

Abiotic/Biotic [162, 184]

Synthetic and natural polymers

 Polyvinyl alcohol • Biodegradable
• Not toxic
• Biocompatible

• Low stability
• Chemical modification

Abiotic [185, 186]

 Polyacrylamide • High stability • Toxic Abiotic [187, 188]

Fats and waxes

 Hydrogenated vegetable oils • Controlled release • Multiple steps in the preparation 
process

Biotic [189, 190]

 Bees wax • Highly diverse
• Adaptable material to changes in 
different conditions
• Degradable

• Low encapsulation capacity Abiotic [191, 192]

 Paraffin wax • Structure does not change over 
time

• Not adjustable
• Not adoptable
• Toxic

Abiotic [193, 194]

Proteins

 Soft gelatine capsule (SGC) • High accuracy
• Reduces dustiness during 
manufacturing

• Expensive to produce
• Not adaptable

Biotic [195, 196]

 Hard gelatine capsule (HGC) • Rapid drug release • Problems with cross-linking
• Not suitable with hygroscopic 
compounds

Biotic [195, 197]

 Sodium caseinates • Oxidative stability
• Biocompatibility
• Increases encapsulation efficiency

• Requires a significant amount of 
bioactive compound

Abiotic [166, 198, 199]
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respectively. Treatments with encapsulated JA and ABA 
provide resistance against cold and drought stress in 
cherry tomato and Arabidopsis [217, 218], respectively, 
and treatments with encapsulated IAA and GAs enhance 
plant growth and seed germination rates in tomato and 
bean [219, 220]. Once the plant recognizes that it is under 
stress, signal transduction cascades are triggered and 
start a fluctuation between growth and stress response 
[94]. Encapsulated phytohormones offer a unique advan-
tage in that treated plants do not need to activate signal 
cascades or biosynthesis pathways. Instead, plants can 
simply take up the released and available phytohormones, 
which can induce controlled changes in plant growth and 

development. Table  4 compiles the main works where 
encapsulated PHs are used to promote stress tolerance 
and growth development.

While phytohormone-loaded nanocapsules have 
shown promise in mitigating the harmful effects of 
various types of stress, including their combination, it 
is important to test their efficacy for each specific con-
dition. Although studies examining the effects of two 
or more combined stressors have increased in recent 
years, the use of encapsulated PHs for mitigating mul-
tifactorial stresses remains poorly studied and requires 
further exploration. Given that plants in nature are 
often subjected to multiple negative conditions simul-
taneously, understanding the potential of nanocapsules 

Table 4  Encapsulated phytohormones used in treatments to improve stress resistance and tissue development in plants

Encapsulated 
phytohormone

Encapsulation method Capsule Material Plants treated Agriculture benefit References

Salicylic acid • In-situ polymerization • Alginate • Helianthus annuus L. 
(Sunflower)

• Tolerance of the tissue to 
the cold storage

[215]

• Spray drying • Amorphous silica and 
chitosan

• Arabidopsis thaliana • Reduces deleterious effect 
of SA on treated plants

[18]

• Ionic gelation • Chitosan • Zea mays (maize) • Control of Fusarium 
verticillioides diseases and 
act as biostimulant

[213]

• In-situ polymerization • Alginate • Oryza sativa (rice) • Control of Sclerotium rolfsii 
disease

[214]

• Ionic gelation • Chitosan • Vitis vinifera (grape) • Protection against salinity 
stress

[216]

Jasmonates • Solvent evaporation • Gliadin-Casein • Solanum lycopersicum var. 
cerasiforme (cherry tomato)

• Used as coating to 
enhance cold time storage

[218]

• Coacervation • Alginate and chitosan • Solanum tuberosum 
(potato)

• Tuber postharvest 
treatment for preserving

[221]

• Co-extrusion • PLGA • Vitis vinifera (grape) • Pest management [222]

Abscisic acid • Sol–Gel encapsulation • Amorphous silica • Arabidopsis thaliana • Provides resistance against 
drought stress

[217]

• In-situ polymerization • Lignin • Oryza sativa (rice) and 
Arabidopsis thaliana

• Increases drought 
resistance

[223]

Auxins • Ionic gelation • Chitosan • Solanum lycopersicum 
(tomato)

• Increase germination and 
seedling growth rate. Acts as 
biostimulant

[220]

• Co-extrusion • Alginate and chitosan • Solanum lycopersicum 
(tomato)

• Increase morphological 
characteristics

[224]

• Ionic gelation • Chitosan • Malus domestica (apple) • Promote adventitious 
rooting

[225]

Gibberellins • Ionic gelation • Chitosan • Phaseolus vulgaris (bean) • Promote germination of 
seeds and enhances plant 
fertility

[219]

• Ionic gelation • γ-PGA polymer • Phaseolus vulgaris (bean) • Increase germination 
rate, and leaf and root 
development

[226]

• Interfacial polymerization • Chitosan and alginate • Solanum lycopersicum 
(tomato)

• Promote plant 
development and enhance 
fruit productivity

[227]

Cytokinins • Liposome entrapment • Liposomes • Cocos nucifera L. var 
Makapuno (Coconut)

• Enhance bioactivity 
formation of callus in vitro

[228]
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in mitigating these complex stress scenarios could have 
significant implications for improving plant health and 
productivity [229]. Among the scarce literature in this 
issue, a recent work has explored the benefits of the 
application of benzenedicarboxylic acid impregned in 
calcium nanoparticles to mitigate the combined stress 
induced by the organic pollutant dichlorodiphenyl-
trichloroethane and cadmium in Brassica alboglabra 
plants [230]. This reveals the importance of spread-
ing the use of nanoparticles under stress combination, 
where encapsulated PHs could bring new strategies in 
this disturbing scenario.

Conclusions and future perspectives
New forward-thinking solutions to improve crop 
tolerance to extreme climatic conditions must 
be obtained. Today, the world demands bioactive 
compounds that do not affect the environment. The 
development of biomaterials based on nanotechnology 
offers new products with applications in agriculture. 
The encapsulation of PHs could be an affordable 
solution to fight against environmental stresses, 
reducing their negative effects on plant development 
and yield, without affecting other characteristics of the 
crop as its nutritional value.

Recent studies highlight the main role of PHs, such 
as SA, JA and ABA in plant responses to environmental 
stress. The exogenous application of PHs activates the 
response mechanisms that help plants to cope with 
nutrient deficiency and growth regulation under stress. 
Studies carried out in vivo and in vitro have evaluated 
the bioavailability and controlled release of different 
products, although the study of the possible interactions 
between the encapsulated compounds and the matrix 
within the formulations is still required. In addition, it 
is important to determine several properties of these 
nanocarrier systems, such as particle size, charged 
surface area, surface coating and solubility. These 
characteristics are essential because they condition 
the possible toxicological effects. Indeed, toxicology 
studies based on physical–chemical characteristics, 
experimental design synthesis and exposure time in the 
plant would allow the development of new nanocarriers 
with efficient applications, and those that are not 
hazardous for the environment and plant health.

Further studies are necessary to investigate 
the synergistic and antagonistic interactions of 
PHs within plants. This will require the use of 
different biotechnological approaches to identify 
the metabolites, signals and genes induced during 
PH treatments. Additionally, studying the interplay 
between PHs could provide new insights into their 
role in stress tolerance. Manipulating the endogenous 

levels of PHs through encapsulation and observing 
their response in different tissues/organs during 
various stresses can be an exciting tool for improving 
plant stress tolerance in modern agriculture. However, 
it is crucial to consider the interactions between the 
environment and plant species, as this information 
can be used to optimize PH behaviour, dosage, and 
treatment timing. In summary, a better understanding 
of PH interactions and their effects on plant stress 
tolerance requires multidisciplinary approaches, and 
considering the environment-plant species interactions 
can help us develop effective strategies for using PHs in 
agriculture.
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