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Abstract 

Background  RGB photographs are a powerful tool for dynamically estimating crop growth. Leaves are related to 
crop photosynthesis, transpiration, and nutrient uptake. Traditional blade parameter measurements were labor-inten-
sive and time-consuming. Therefore, based on the phenotypic features extracted from RGB images, it is essential to 
choose the best model for soybean leaf parameter estimation. This research was carried out to speed up the breeding 
procedure and provide a novel technique for precisely estimating soybean leaf parameters.

Results  The findings demonstrate that using an Unet neural network, the IOU, PA, and Recall values for soybean 
image segmentation can achieve 0.98, 0.99, and 0.98, respectively. Overall, the average testing prediction accuracy 
(ATPA) of the three regression models is Random forest > Cat Boost > Simple nonlinear regression. The Random forest 
ATPAs for leaf number (LN), leaf fresh weight (LFW), and leaf area index (LAI) reached 73.45%, 74.96%, and 85.09%, 
respectively, which were 6.93%, 3.98%, and 8.01%, respectively, higher than those of the optimal Cat Boost model and 
18.78%, 19.08%, and 10.88%, respectively, higher than those of the optimal SNR model.

Conclusion  The results show that the Unet neural network can separate soybeans accurately from an RGB image. 
The Random forest model has a strong ability for generalization and high accuracy for the estimation of leaf param-
eters. Combining cutting-edge machine learning methods with digital images improves the estimation of soybean 
leaf characteristics.
Keywords  Soybean, Leaf parameters, Estimation, RGB, Machine learning

Background
Today, soybeans are an important crop for grain, oil, 
and feed. The soybean planting area is second only to 
cash food crops such as wheat, rice, and maize, while 
the trade volume ranks first among various agricultural 
products [1]. It is especially crucial to develop high-yield 

soybean varieties because, according to statistics from 
the US Department of Agriculture, China imports up 
to 85% of its soybeans each year, and its average yield is 
only 132.4 kg/mu, much lower than the global average of 
188.7 kg/mu. To assess vegetation growth dynamics and 
crop productivity, leaves have been widely investigated 
for many years. They have a direct impact on sunlight 
penetration, light absorption, CO2 fixation, and photo-
synthetic efficiency [2].

In recent years, phenotypic research has primarily 
focused on leaf number as a key phenotypic attribute, 
which is a vital morphological metric used to assess crop 
development and canopy structure [3]. For example, 
in maize, the number of leaves is correlated with plant 
height, flowering time, and moisture at harvest [4]. A 
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greater number of leaves in switchgrass, indicative of a 
longer duration of vegetative growth prior to reproduc-
tive transition, is highly correlated to biomass yield [5]. 
In tobacco, the number of leaves closely relates to the 
quality of the tobacco leaves, and a reasonable number of 
leaves ensures high-quality tobacco leaves [6]. In potato, 
the number of green leaves has been used as an indicator 
to determine drought-resistant and susceptible varieties 
[7]. The number of leaves in perennial ryegrass is used as 
a criterion for determining defoliation time [8]. The num-
ber of leaves on soybean plants is a crucial indicator for 
determining the vegetative growth stage’s growth period, 
which can be used to adjust the sowing date, choose the 
peak control period, and determine when to apply her-
bicides. Therefore, plant biologists, plant breeders, and 
agronomists often count the number of leaves on a par-
ticular plant.

Leaf fresh weight (LFW) is a critical indicator for 
assessing crop growth since it is directly related to bio-
mass and dry matter buildup. One of the key markers for 
assessing the drought and cold tolerance of maize is its 
LFW [9, 10]. In tobacco, when approaching maturity, the 
LFW should be strictly controlled to prevent the tobacco 
leaves from turning green. In wheat, cotton, soybean and 
other crops, the fresh weight of leaves should be con-
trolled in time after entering the reproductive growth 
stage to prevent excessive leaf growth and nutrient waste.

The leaf area index (LAI), defined as the photosyn-
thetically active area per unit horizontal surface area, is 
related to crop development, water use, nutrient uptake, 
and yield [11–13] and used to monitor changes in canopy 
structure and assess environmental adaptability [14, 15]. 
The LAI is also used in crop breeding and production to 
monitor crop growth and estimate yield [16]. As a result, 
leaf characteristics are crucial indicators in soybean 
breeding. According to a literature review, there are two 
frequently used approaches (direct and indirect) for mon-
itoring soybean leaves. In soybean breeding, leaf charac-
teristics are typically disregarded since direct methods 
are more accurate than indirect methods, but they also 
take longer and are frequently destructive. Thus, how can 
soybean leaves be monitored accurately and efficiently to 
support effective soybean breeding?

Precision agriculture has become a popular topic in 
recent years, and the development of nondestructive 
estimation technologies have provided new methods 
and means for crop growth estimation, presenting good 
application prospects. Previous studies have shown that 
images collected by sensors such as an RGB camera [17], 
a thermal infrared camera [18], a hyperspectral camera 
[19], and a CT scanner [20] can extract multiple image 
traits, and based on these image traits, prediction models 
of the leaf area index [21], leaf iron deficiency greening, 

and other indicators [22, 23] can be established. Among 
the above-mentioned sensors, thermal infrared cameras 
work in the field environment, which is greatly affected 
by the ambient temperature and has an extremely low 
resolution [24]. Although hyperspectral cameras have 
many continuous bands and can acquire spectral images 
with numerous bands, image processing takes a long time 
because of the quantity of the information contained. 
CT scanners are expensive and challenging to use. The 
advantages of RGB cameras over other image acquisition 
tools include their ease of use, low cost, broad applica-
tion range, and simple operation. Therefore, in the past 
10 years, researchers have worked hard to develop RGB 
camera applications for soybean leaves.

Reports identify two widely used techniques for auto-
matically counting blades: regression counting based on 
comprehensive picture analysis and detection count-
ing. Miao C. et al. [25] show that both methods achieve 
RMSE (root mean square error) less than a single leaf 
and only slightly lower than the human-annotated RMSE 
(between 0.57 and 0.73 leaves). These methods have 
been studied for crops like maize [25], sorghum [25], 
and Arabidopsis thaliana [26]. However, the regression 
calculation approach based on convolutional neural net-
works (CNNs) underestimates the extreme leaf number 
of plants in the dataset, with low accuracy and increasing 
bias.

Scientists prefer to separate and count the leaves of 
maize, but this approach is only suitable for seedlings due 
to the seedling stage’s few leaves and the sparser spac-
ing between them. The majority of earlier research was 
conducted indoors, where the environment is steady, 
and picture acquisition and post-processing are simpler. 
There has not been any relevant information on LFW 
estimation. Numerous studies, including those on cotton 
[27, 28], rice [29], wheat [30], corn [31], and peanuts [32], 
have estimated the leaf area index. The outcomes assist 
breeders in making effective variety selections and offer 
growers precise field management options that boost 
crop yields.

In the estimation of soybean leaf parameters, A high-
resolution RGB, multispectral, and thermal imaging 
multisource data technique based on unmanned aer-
ial system (UAS) acquisition was developed by Mai-
maitijiang M. et  al. [33] to estimate the soybean LAI. 
Throughout the growing season, they gathered RGB, 
multispectral, and thermal imaging photos of crops. 
From these images, they extracted vegetation indexes 
and crop surface models (CSMs) to create vegetation 
cover extraction models. Then, image parameters and 
models were combined to predict the soybean LAI using 
the partial least squares regression (PLSR), support vec-
tor regression (SVR), and extreme learning machine for 
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regression (ELR) techniques. However, the optimal func-
tion of various crop varieties or leaf parameters varies 
from study to study, even within the same study [34–37], 
showing that simple regression models are insufficient 
for model generalizability when estimating crop leaf 
parameters. Most studies that use regression models for 
leaf parameter estimation achieve satisfactory accuracy.

With the ongoing development of sensor and image 
processing technologies, machine learning—an essential 
area of computer science—is now extensively applied in 
all facets of precision agriculture research, including leaf 
dynamic monitoring [38]. Moreover, machine learning 
methods are more precise and effective than conven-
tional linear regression models and have been frequently 
utilized to create prediction models to link image data 
and biological parameters [39]. There have been few 
soybean studies to explore the prediction effect of vari-
ous machine learning models on the leaf parameters of 
a single plant throughout its entire growth period. This 
is because the model prediction effect varies for different 
crops and environmental parameters.

Simple nonlinear regression (SNR) is a nonlinear 
regression function that has unknown regression coef-
ficients as input. Generally, nonlinear regression occurs 
when the regression law is graphically represented as 
various curves with different shapes, and the dependent 
variable of the regression model is a function of the inde-
pendent variable more than once. Common nonlinear 
regressions include hyperbola models, quadric models, 
logarithmic models, trigonometric models, exponential 
models, power function models, reduced order gener-
alized integrator (ROGI) curves, modified exponential 
growth curves, etc. In many practical problems, regres-
sion functions tend to be complex nonlinear functions, so 
they are widely used.

Breiman first presented the random forest (RF) in 
2001. Its ensemble machine learning approach is built on 
numerous categorical regression trees [40]. The funda-
mental idea of RF is to bootstrap aggregation and grow 
a decision tree in each subset of the training dataset to 
produce a homogeneous subset (number of trees: ntree). 
By averaging all decision trees, the RF’s final outcome is 
obtained [40]. Repetitive sampling-related overfitting can 
be successfully reduced via RF regression [41].

In 2017, the Russian search engine giant Yandex 
released the categorical boosting (Cat Boost) algorithm, 
a machine learning library that is a member of the boost-
ing algorithm family. Cat Boost is a novel machine learn-
ing algorithm framework based on gradient boosting 
decision trees (GBDT). In contrast to conventional neu-
ral network models, Cat Boost can adapt to training and 
high-precision diagnosis under small-scale data and does 
not need a large number of samples as a training set. Its 

benefits include overcoming gradient bias, effectively 
resolving the issue of prediction bias, increasing the algo-
rithm accuracy, enhancing the model generalizability, 
and preventing overfitting [42–44].

The development of non-destructive estimation tech-
nology has enabled efficient and accurate monitoring 
of soybean leaves, which can meet the needs of breed-
ers and is expected to be added to the routine monitor-
ing indicators of breeding to serve efficient breeding. To 
improve the efficiency of acquiring biological traits for 
soybeans and speed up the breeding process, this study 
aims to evaluate the accuracy and generalizability of 
machine learning regression models in the prediction of 
soybean leaf parameters and select the best model for the 
dynamic estimation of soybean growth using the pheno-
typic features extracted from RGB images.

Results
High correlation image parameter selection
The heatmap analysis shows the correlation of leaf 
parameters with the top (Fig. 1a) and side (Fig. 1b) image 
parameters. Red indicates a positive correlation and blue 
indicates a negative correlation. The greater the correla-
tion is, the darker the color. The correlation analysis of 
leaf parameters and 39 top image parameters showed a 
high correlation between the parameters. Among them, 
there was a positive correlation between LN, LFW, LAI, 
and 26 indexes, such as TBG and TBR (Specific defini-
tions are provided in Additional file  1 and Additional 
file  2), and a negative correlation with 13 indexes, such 
as TBM and TGM. The correlation analysis results of 
leaf parameters and 53 side image parameters showed 
that a positive correlation between LN and 36 indexes, 
such as SBM and SBG, and a negative correlation with 17 
indexes, such as SGM and SRM. Unlike that of LN, LFW 
and LAI are negatively correlated with SBM and SBR.

In addition, the correlation between the top and side 
image parameters has high similarity; for example, there 
was a high correlation between SCA1 and LN, and there 
was also a high correlation between TCA1 and LN. SPA1 
had a high correlation with LFW, and TPA1 had a high 
correlation with LFW. Therefore, it is interesting to fur-
ther explore the relationship between the side and top 
image parameters and soybean leaves.

Of the 92 image markers, SCA1, SPA1, SSC, TCA1, 
TPA1, and TSC had the strongest correlation to LN, 
LFW, and LAI. Six image parameters were involved in 
this case, three of which were side image parameters 
(SCA1, SPA1, and SSC) and three of which were top 
image parameters (TCA1, TPA1, and TSC). As in the 
previous example, the side image parameters matched 
the top image parameters one-to-one. From Table 1, it is 
clear that there is a strong correlation between the three 
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side image parameters and LN, LFW, and LAI. The cor-
relation coefficients between SCA1 and SPA1 and the 
leaf parameters, in particular, ranged from 0.872 to 0.952, 
from 0.872 to 0.951, and those between SSC and the leaf 
parameters ranged from 0.888 to 0.931.

Simple nonlinear regression performance
Three characteristics, SCA1, SPA1, and SSC, were used 
as the main parameters for simple nonlinear regression 
since there is a strong association between the soybean 
leaf parameters and these characteristics. The polyno-
mial quadratic function and exponential function models 
were investigated in depth using tenfold cross-valida-
tion. The findings indicated that the polynomial quad-
ratic function model had an average R2 value between 
0.77 and 0.92 and an ATPA value between 43.21% and 
60.15%. The average R2 value in the exponential function 
model was between 0.77 and 0.91, and the ATPA value 
was between 51.34% and 73.99% (Table 2). Larger R2 and 
ATPA values were obtained for the LAI-SCA1 and LAI-
SPA1 models (referred to as y-x). When compared to 
those of the dependent variables, the LAI estimates were 
the most accurate, with mean ATPAs, LN, and LFW val-
ues of 64.88%, 50.39%, and 51.23%, respectively. The best 

prediction accuracies for LN, LFW, and LAI were 55.14%, 
55.95%, and 73.99%, respectively. The SCA1 image index 
had the highest prediction accuracy for the three leaf 
characteristics among the independent variables. The 
polynomial quadratic function and exponential func-
tion models were not significantly different in terms of 
R2. However, better ATPA values were obtained using 
the exponential function, with a distribution range of 
50.94–73.99%.

As seen in Fig.  2, compared with the results obtained 
using Model A (polynomial quadratic function), Model B 
had larger R2 and ATPA values and a lower MAE value. 
Both models had generally higher ATPAs for the esti-
mate of soybean leaf parameters SCA1 and SPA1 than for 
those of SSC.

Important parameter selection
When the four key predictors were retained, it was 
observed that the cross-validation curve demonstrated a 
reduction in error, leading to the best regression results. 
Following this, the predictors were ranked in order of 
their assigned significance value, and the top four predic-
tors were selected as the optimal input parameters for the 
random forest model (Additional file  3: Figure S3). The 
use of these four indicators as input parameters resulted 
in a well-functioning forecast, as evidenced by the results 
presented in Table 3.The results showed that in the pre-
diction of LN, the use of the first four predictors (SSC, 
SPA1, 2/5 MW(Additional file 3: Figure S4), and SCA1) 
was more effective than using all predictors. According 
to %IncMSE, the overall interpretation rate of the pre-
dictors (the 4 significant predictors) on the variance of 
the response variable LN in the model increased from 
81.16% to 85.57%. This is due to the exclusion of unim-
portant or noisy predictors. Moreover, the actual num-
ber of leaves was more in line with the expected value, 

Fig. 1  Heatmap of soybean leaf parameters correlated with image parameters

Table 1  Correlation between soybean leaf Parameters and 
image parameters (Top6)

** indicates P < 0.01

Index LN LFW LAI

SCA1 0.872** 0.939** 0.952**

SPA1 0.872** 0.939** 0.951**

SSC 0.888** 0.925** 0.931**

TCA1 0.803** 0.883** 0.894**

TPA1 0.804** 0.882** 0.893**

TSC 0.806** 0.883** 0.894**
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and the prediction performance was better. The overall 
interpretation rates of the variance associated with the 
response variables (LFW and LAI) by the predictors (the 
four major predictors) in the model reached 94.13% and 
94.35% in the predictions of LFW and LAI, respectively, 
which was not significantly different from the previous 
values of 94.97% and 94.83%, respectively.

Random forest performance
The RF model was constructed using the four most cru-
cial factors as the input variables, and tenfold cross-verifi-
cation was carried out. Figure 4 depicts the R2, MAE, and 
ATPA distributions. In general, the RF model estimated 
all soybean leaf parameters with good accuracy. The pre-
dicted value was linearly fitted with the true value, and 
all points were closely and evenly distributed near the fit-
ted line (Fig. 3a–c). The R2 values of LN, LFW, and LAI 
were 0.8557, 0.9413, and 0.9435, respectively, indicating 
that the prediction effect was good. According to the 
results of the tenfold cross-validation (Fig. 3d–f), the R2 
distribution ranges of LN, LFW, and LAI were 0.81–0.89, 
0.93–0.96, and 0.91–0.97, the MAE distribution ranges 
were 5.57–100.01, 5.06–7.40, and 1392.17–2006.45, and 
the ATPA distribution ranges were 68.14–77.97%, 72.77–
79.33%, and 78.74–89.93%, respectively. Figure  4 shows 
that there were no outliers in terms of this model’s R2, 
MAE, and ATPA predictors, demonstrating the model’s 

good generalizability. At the same time, R2 and ATPA 
were consistent. They were both the lowest in terms of 
LN and the highest in terms of LAI. From Additional 
file 3: Figure S2, it can be seen that the importance of SSC 
is higher than that of other indicators, and LFW and LAI 
have high similarity, i.e., SSC > SCA1 > SPA1 > SPA2 for 
both.

Input variable selection
Based on the SNR and RF results above, SCA1, SPA1, 
and SSC are highly correlated and important param-
eters. Therefore, they were selected as input parameters 
to combine as input variables. In this study, the Cat Boost 
model was used to estimate soybean leaf parameters, and 
21 input combinations were trained and evaluated (three 
leaf parameters, LN, LFW, and LAI, as output variables, 
multiplied by seven different combinations of image 
parameters as input variables). The seven combinations 
of input variables are named M1-M7, where M1: SCA1; 
M2: SSC; M3: SPA1; M4: SCA1 + SPA1; M5: SCA1 + SSC; 
M6: SPA1 + SSC; and M7: SCA1 + SSC + SPA1.

Cat boost performance
As shown in Fig. 5, in general, the Cat Boost regression 
model achieved high accuracy in estimating the three 
soybean leaf parameters. As the number of input vari-
ables increased, the MAE decreased, while the R2 and 

Table 2  Results of simple nonlinear regression with tenfold cross-validation

RMSE, R2, and ATPA represent the average prediction accuracy; Model A and Model B represent the polynomial quadratic function (y = a + bx + cx2) and exponential 
function (y = axb), respectively

Dependent 
varfable

Independent 
variable

Model type Model paramenters MAE R2 ATPA (%)

a b c

LN SCA1 A 7.23 ± 0.38 0.10 ± 0.01 −5.05 ± 0.73 30.12 0.77 49.92

SCA1 B 0.36 ± 0.01 0.82 ± 0.21 – 30.05 0.77 55.14

SPA1 A 6.92 ± 0.39 0.09 ± 0.01 −4.95 ± 0.76 30.01 0.77 51.02

SPA1 B 0.35 ± 0.01 0.82 ± 0.12 – 30.04 0.77 55.01

SSC A −11.38 ± 0.28 4.45 ± 0.08 0.03 ± 0.01 28.63 0.79 47.46

SSC B 1.83 ± 0.12 1.29 ± 0.41 – 28.45 0.79 50.94

LFW SCA1 A −2.43 ± 0.30 0.05 ± 0.02 1.79 ± 0.31 9.17 0.88 43.21

SCA1 B 0.03 ± 0.00 1.07 ± 0.22 – 9.93 0.88 55.95

SPA1 A −2.56 ± 0.30 0.05 ± 0.01 2.27 ± 0.39 10.23 0.88 43.57

SPA1 B 0.03 ± 0.01 1.07 ± 0.03 – 9.93 0.88 55.57

SSC A −4.50 ± 0.30 1.11 ± 0.05 0.04 ± 0.01 9.38 0.89 48.99

SSC B 0.23 ± 0.04 1.67 ± 0.12 – 6.25 0.89 51.34

LAI SCA1 A −405.78 ± 1.40 10.46 ± 0.01 0.01 ± 0.00 2242.61 0.91 59.90

SCA1 B 4.57 ± 0.32 1.12 ± 0.04 – 2158.91 0.91 73.99

SPA1 A −433.34 ± 1.60 10.38 ± 0.01 0.01 ± 0.00 2257.25 0.91 60.15

SPA1 B 4.38 ± 0.26 1.12 ± 0.15 – 2161.84 0.91 73.95

SSC A −556.15 ± 17.93 184.22 ± 2.23 13.10 ± 0.01 2063.22 0.91 57.03

SSC B 43.68 ± 5.43 1.75 ± 0.13 – 2031.49 0.92 64.31
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ATPA increased. For both LN and LAI, it was shown 
that M4, M5, M6, and M7 were more accurate than 
M1, M2, and M3 as input parameters. For LFW, M5, 
M6, and M7 were used as input parameters, and they 
had higher accuracies than those of M1, M2, and M3. 
For M1-M3, M2 was used as an input parameter and 
was more accurate than that of M1 and M3. As a result, 

the model prediction accuracy will rise when SSC is 
included in the input parameters. SSC is more signifi-
cant than SPA1 and SCA1 (Additional file 3: Figure S5).

Moreover, Fig. 4 demonstrates that when M7 was uti-
lized as the input parameter, there were no outliers in 
any of the prediction groups. When M7 was used as the 
input parameter for LN estimation, the R2, MAE, and 
ATPA distribution ranges were 0.67–0.78, 23.08–32.80, 
and 66.54–68.03%, respectively. When M7 was used 
as the input parameter for LFW estimation, the R2, 
MAE, and ATPA distribution ranges were 0.83–0.88, 
7.68–13.95, and 69.94–73.81%, respectively. When M7 
was used as the input parameter for the LAI estima-
tion, the R2, MAE, and ATPA distribution ranges were 
0.88–0.94, 1529–3137, and 71.43–80.51%, respectively. 
The largest average R2 values for LN, LFW, and LAI as 
well as the highest ATPA values were 0.73, 0.86, and 
0.89, respectively, in the Cat Boost regression model 
estimate.

Fig. 2  Prediction results of simple nonlinear regression on soybean leaf parameters. A represents the polynomial quadratic function model 
(y = a + bx + cx2), and B represents the exponential function model (y = axb)

Table 3  Important parameter filtering

Predictors Parameters 
number

Number 
of trees

Mtry MSR R2

LN 92 500 31 1659.642 0.8116

4 300 21 1255.347 0.8557

LFW 92 500 31 167.0929 0.9497

4 300 19 264.5167 0.9413

LAI 92 500 31 9250809 0.9483

4 300 14 11554815 0.9435
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Comparison of the best prediction effect for the three 
models
The three regression models were combined to determine 
which had the best predictive power for soybean leaf 
characteristics (Fig.  5). The three models achieved the 
highest tenfold cross-validation prediction accuracies for 
LAI, with scores of 74.21%, 85.09%, and 77.09%, respec-
tively, and all > 70%. The overall ATPA performance was 
RF > Cat Boost > SNR. The RF ATPAs for LN, LFW, and 
LAI reached 73.45%, 74.96%, and 85.09%, respectively, 
which were 6.93%, 3.98%, and 8.01%, respectively, higher 
than those of the optimal Cat Boost model and 18.78%, 
19.08%, and 10.88%, respectively, higher than those of the 
optimal SNR model.

Prediction effect of soybean leaf parameters under RF 
model
As shown in Table 4, based on the RF model, the soybean 
leaf parameters under net cropping and sleeve cropping 
were predicted, and in the MC model, the distribution 
range of R2 was 0.88 ~ 0.96, the distribution range of 
MAE was 5.06 ~ 1841.17, and the distribution range of 
ATPA was 73.12% ~ 83.21%. In IC mode, the distribution 
range of R2 is 0.86 ~ 0.96, the distribution range of MAE 
is 7.01 ~ 1820.51, and the distribution range of ATPA is 
70.98% ~ 84.10%. It can be seen that the RF model has 
high prediction accuracy in both planting modes.

Given that the soybean leaves showed a steady 
upward trend throughout the whole growth period, 
the logistic function model was able to forecast the 
growth dynamics of these leaves accurately. The RF 
model was used to generate LN, LFW, and LAI growth 
curves, and the results are presented in Fig. 6. The R2 
values for these curves were 0.990, 0.989, and 0.993, 
respectively, showing that the model could be used to 
accurately depict soybean growth dynamics. In gen-
eral, shading inhibited increases in LN, LFW, and LAI 
that were difficult to overcome in later growth stages, 
and there were obvious differences between the two 
treatments. The increases in LN, LFW, and LAI all 
showed a gradual increasing trend as the reproductive 
period progressed. The maize was harvested 45  days 
after soybean sowing. The soybeans return to a nor-
mal light environment, where LN was most sensitive 
and increased rapidly, and LFW and LAI showed rapid 
increasing trends 1  week after reillumination. For the 
two treatments, LN, LFW, and LAI under nesting 
reached their peaks before the net cropping, but the 
rapid growth periods of LFW and LAI under the set 
cropping were approximately 1 week later than that of 
the next net cropping. It is clear that the RF model is 
able to compare the variations in soybean growth rules 
under various treatments, which is important for real-
world applications.

Fig. 3  Soybean leaf parameter estimations based on the RF model. a–c show the fitting relationship between the predicted and true values of leaf 
parameters based on the RF model, and d–e show the R2, MAE, and ATPA values of the RF model under tenfold cross-validation
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Fig. 4  Soybean leaf parameter estimation based on the Cat Boost model. The R2, MAE, and ATPA values are the result of tenfold cross-validation. The 
x-axis labels represent different input variables for Cat Boost M1-M7. M1: SCA1; M2: SSC; M3: SPA1; M4: SCA1 + SPA1; M5: SCA1 + SSC; M6: SPA1 + SSC; 
and M7: SPA1 + SCA1 + SSC

Fig. 5  Comparison of the best prediction effect for the three models. 
The red line indicates ATPA = 70%

Table 4  Prediction effect of soybean leaf parameters in two 
planting modes under RF model

MC: soybean monoculture; IC: maize‒soybean relay strip intercropping. R2, MAE 
and ATPA are averages

Dependent 
varfable

Planting 
method

Independent variable

R2 MAE ATPA (%)

LN MC 0.88 54.22 73.12

IC 0.86 58.79 70.98

LFW MC 0.95 5.06 77.79

IC 0.94 7.01 75.98

LAI MC 0.96 1841.17 83.21

IC 0.96 1820.51 84.10
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Discussion
Soybean leaf parameter prediction based on RGB images
Because of their straightforward operation, portability, 
variety of applications, affordability, and wealth of image 
data, RGB cameras are frequently utilized in machine 
vision applications. The most accurate LAI forecasts 
using data fusion with RGB cameras and thermogra-
phy was obtained by Mai Maiti Jiang et  al. [45]. Based 
on RGB images captured by unmanned aerial vehicles 
(UAVs), Roth L et  al. [46] estimated soybean LAI with 
an R2 of 0.89 and an RMSE of 0.41  m2  m−2. According 
to Bai G et  al. [22], the automatic scoring of IDC was 
accomplished using RGB images gathered under field 
conditions, image processing, and machine learning 
technology. The overall classification accuracy was  > 81%. 
As a result, the spectral and structural data from RGB 
images, along with machine learning technologies, were 
used to track soybean leaf growth parameters during the 
whole growth phase.

Performance of the three models
Machine learning is a subfield of artificial intelligence 
that is extremely popular due to its superior capacity to 
combine complicated and dynamic biological knowledge 
with enormous amounts of omics data. Several predic-
tive models and decision-making algorithms can be con-
structed using machine learning approaches [47]. The 
R2, MAE, ATPA, and other metrics are used to assess a 
model’s estimated influence; in general, the higher the R2 
and ATPA values are, the smaller the MAE value, and the 
better the results. It does, however, compared to R2 and 
MAE, ATPA has a strong ability to distinguish models 
with similar performance levels [48]. The main purpose 
of this research is to compare and contrast three distinct 
regression techniques using ATPA. The RF regression 
model is the most accurate and stable of the three com-
pared models.

In previous studies, the majority of the input param-
eters are provided directly, and the source and justifi-
cation for parameter selection are not disclosed [49], 
which makes readers wonder about the precision and 
importance of the selected parameters. To provide input 
parameters with a foundation and increase reading com-
prehension and the model prediction precision, this work 
not only introduces an extraction procedure for 92 image 
parameters but also screens and combines them.

The dependent variable for the SNR model is chosen 
based on the image parameters with the highest asso-
ciation among the 92 image parameters (39 top image 
parameters and 53 side image parameters) and the soy-
bean leaf parameters (LN, LFW, and LAI). The findings 
demonstrate a high correlation between the soybean 
leaf parameters and the top and side image parameters, 
which is likely a result of the correlation between the top 
and side of the same indicator. For example, SSC reflects 
the compactness rate of soybean plants on the side, while 
TSC reflects the compactness of soybeans at the top, rep-
resenting different viewing angles. In addition, among 
the dependent variables, LAI is the most accurately esti-
mated, with a mean ATPA of 64.88%. Among the inde-
pendent variables, comparing the polynomial quadratic 
and the exponential function models, it can be seen that 
the R2 and ATPA values of Model B (exponential func-
tion) are generally higher than those of Model A (polyno-
mial quadratic function), and the MAE value is generally 
lower than that of Model A. For both models, the higher 
the correlation with soybean leaf parameters is, the 
higher the ATPA. For example, the correlation between 
SCA1, SPA1, and LAI is as high as 0.952 and 0.951, and 
the ATPA is 73.99% and 73.95% when predicted by the 
exponential function. This is probably because the com-
putational relationship between the independent factors 
and the variables in simple nonlinear regression models 
is quite straightforward and is not difficult to train.

Fig. 6  Growth dynamics of soybean leaf parameters under the RF model. Take one of the varieties, for example. MC: soybean monoculture; IC: 
maize‒soybean relay strip intercropping. The red line indicates the time of the last image collection before the maize harvest, and both R2 and MAE 
are averages
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The RF model selects input parameters based on the 
significance of each image parameter. The findings reveal 
that, with distribution ranges of 68.14–77.97%, 66.77–
79.33%, and 78.74–89.93%, respectively, better predic-
tions of LN, LFW, and LAI were made in terms of ATPA. 
These benefits of RF models are primarily attributable 
to the incorporation of multiple ML algorithms (such as 
bootstrap aggregation and random variable selection), 
which reduce overfitting and autocorrelation of the input 
variables [42] and generally have no negative impact on 
the model when more input variables are added [50]. As 
a result, the RF model has strong generalizability [48] and 
the highest prediction accuracy. Input parameter filter-
ing and model hyperparameter adjustment have greatly 
increased the prediction accuracy in this work [45] in 
comparison to that in earlier research findings. The LAI, 
which is the same as the SNR, prediction accuracy is best 
for the RF model. The RF model in Fig.  5, on the other 
hand, shows that SSC, as opposed to the SNR, is more 
significant than the other indicators.

The results demonstrate that excellent accuracies in 
terms of the three soybean leaf parameters are achieved. 
The Cat Boost regression model uses the three image 
parameters with the strongest correlation and relevance 
as input parameters. The best average R2 values for LN, 
LFW, and LAI as well as the highest average ATPA val-
ues were 0.73, 0.86, and 0.89, respectively, for the Cat 
Boost regression model. As the number of input variables 
increases in each combination, R2 and ATPA increase, 
but MAE decreases. We also find that when SSC is pre-
sent in the input parameters, the prediction accuracy 
of the model increases, which means that SSC plays an 
important role in the model prediction, which is the same 
result as that found for RF. Overall, the average ATPA of 
the three regression models is RF > Cat Boost > SNR.

Does the prediction accuracy increase with the num-
ber of input parameters? No. Due to the high collinearity 
between a large number of input parameters, the R2 value 
in the RF prediction model improves or does not change 
much when the results using the 4 key parameters are 
compared to those using the 92 image indicators as input 
parameters. We need more training data and a prelimi-
nary study of the input variables to mitigate the impact of 
autocorrelation in this case [49]. With more input param-
eters, the Cat Boost model prediction accuracy increases. 
It is clear that the filtered indicators have a positive influ-
ence on the model prediction.

Future direction
The results of this study show that adding more input 
parameters does not always result in improved predic-
tions; in fact, it can occasionally decrease the predic-
tion accuracy. As a result, before making predictions, the 

input parameters must be analyzed. Improved prediction 
performance can be achieved by performing a correla-
tion analysis between the projected target qualities and 
image metrics or by choosing input metrics that are of 
high importance. Additionally, there are three catego-
ries of image parameters: morphology, color, and tex-
ture. Morphological parameters can only be extracted 
from a binary value map, whereas color parameters must 
be drawn from a finely segmented color map, and tex-
ture parameters must be drawn from a grayscale map. 
Therefore, the extraction of various kinds of parameters 
will result in a heavy workload and high hardware facil-
ity requirements. If we can determine the optimal input 
parameters for each target trait through continuous 
practical verification, we can greatly reduce the upfront 
workload and improve the work efficiency. The five input 
parameters (SCA1, SPA1, SSC, SPA2, and 2/5 MW) used 
in the three regression models in this study are morpho-
logical parameters in the image parameters. This is a very 
satisfying finding because it means that more focus can 
be placed on morphological parameters in the subse-
quent study of soybean leaf parameters, which will sig-
nificantly lessen the workload of future researchers.

This article presents 11 soybean varieties, 2 treatments, 
and 2 years of experimental data, which is not sufficient 
to support the creation of a strong model. Thus, by uti-
lizing information from additional soybean variety and 
years, the ideal model, input parameters, and model 
hyperparameters can be found for forecasting soybean 
leaf parameters.

Conclusion
The segmentation of RGB images is accurate, and the 
IOU, PA, and recall are as high as 0.98, 0.99, and 0.98, 
respectively, based on the RGB camera used in this study 
to track the soybean leaf index throughout the entire 
growth cycle.

Three regression methods (SNR, RF, and Cat Boost) 
were evaluated to estimate three soybean leaf param-
eters (LN, LFW, and LAI) in different growth environ-
ments (soybean monoculture and maize‒soybean relay 
strip intercropping). The three parameters with the high-
est correlation were used as input parameters in the SNR 
model; the four parameters with the largest importance 
were used as input parameters in the RF model; and 
the three parameters with the strongest correlation and 
importance were combined as input parameters in the 
Cat Boost model. All of these parameters are morpholog-
ical parameters. The results demonstrated that RF > Cat 
Boost > SNR in terms of ATPA for the three regression 
models. The RF ATPAs for LN, LFW, and LAI reached 
73.45%, 74.96%, and 85.09%, respectively, which were 
6.93%, 3.98%, and 8.01%, respectively, higher than those 
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of the optimal Cat Boost model and 18.78%, 19.08%, and 
10.88%, respectively, higher than those of the optimal 
SNR model. Hence, RF was the best model for soybean 
leaf parameter estimation based on the phenotypic traits 
extracted from RGB images. Thus, it is possible to pre-
cisely depict the growth curve, which has the potential to 
speed up the soybean breeding process.

Materials and methods
Test site overview and experimental design
This study was conducted in 2021–2022 at the Chong-
zhou Experimental Base of Sichuan Agricultural Uni-
versity (103° 39′ E, 30° 33′ N). The area has a humid 
subtropical monsoon climate with an average annual 
temperature of 16.2 °C, 1400 h of sunlight, and 918 mm 
of rainfall. The basic chemical properties of the 0–20 cm 
soil layer at the test site were as follows: soil organic mat-
ter content: 24.3  g/kg, total potassium 15.2  g/kg, total 
nitrogen 1.6  g/kg, total phosphorus 1.3  g/kg, available 
potassium 169.4 mg/kg, available nitrogen 299.5 mg/kg, 
and available phosphorus 36.5 mg/kg.

Eleven soybean cultivars (Five varieties were planted 
in 2021 and six more varieties were added in 2022), each 
with three replicates and two planting methods (soybean 
monoculture and maize‒soybean relay strip intercrop-
ping), were used in the test. Small-scale spring maize 
variety Zhongyu 3 was used for the maize–soybean inter-
planting strategy. The Engineering Technology Research 
Center of Crop Strip Compound Planting, Department 
of Agronomy, Sichuan Agricultural University, provided 
the planting supplies. Figure 7a displays the field configu-
ration, which has a belt length of 20 m and a bandwidth 
of 2 m. For maize‒soybean relay strip intercropping, two 
rows of maize (the maize belt) were placed within two 
rows of soybean (the soybean belt). The row spacing of 
maize‒maize and soybean‒soybean was 40  cm, and the 
spacing between the maize belt and soybean belt was 
60  cm. Both maize and soybeans were sown in single 
plants with a hole spacing of 20 cm. The soybeans were 
planted in pots with a top diameter of 25 cm, a bottom 
diameter of 20 cm, a height of 25 cm, and 10 kg of soil 
in a long row of maize under relay strip intercropping, 
with two pots planted side by side in each belt. When 
growing soybeans in a monoculture, the plants and their 
row spacing matched those in relay strip intercropping. 
The bottom fertilizer of maize was 923 kg·hm−2 of com-
pound fertilizer (N:P:K = 13:5:7), and 98  kg  hm−2 and 
163 kg hm−2 of urea (N ≥ 46%) were applied at the joint-
ing and corn pumping stages, respectively. The soybeans 
were not fertilized during the whole growth period.

High‑throughput phenotype acquisition
During the whole growth period of soybeans in 2021–
2022, we used the single plant soybean imaging plat-
form independently developed by Sichuan Agricultural 
University. The main body of this platform is an auto-
matic rotary table, with industrial cameras installed 
on the top and side. The rotary table sets the rotation 
speed and number of rotations with a programmable 
logic controller (PLC) controller. Hikvision industrial 
cameras (MV-CH250-90GC, Hangzhou, China), each 
with a Hikvision robot lens (MVL-KF1624M-25MP, 
focal length 16  mm, maximum aperture F2.4, 1.2’’ 
C-mount lens, Hangzhou, China), were used as the sen-
sors. The following camera settings were used for col-
lecting images. The top and side camera focal lengths 
were 2.3  mm and 2.4  mm, respectively, Images were 
collected at distances of 2.6 m and 1.8 m, respectively, 
Camera mode set to Aperture Priority (AV), aperture 
size of 2.4; this resulted in a camera frame rate of 4.5 
fps. JPG files of sizes 3680*4360 and 5108*4604 were 
used to store the side and top photos, respectively. We 
obtained ruler images of the top and side views using a 
white standard plate with a diameter of 30 cm, and we 
utilized these ruler images to determine the value of the 
extracted picture characteristics.

The sampling dates are shown in Table  5. The first 
image collection date was from the soybean V1 period. 
For image acquisition, 3 pots in each process were 
selected randomly. The soybean plants were placed on 
the rotary table. Side images were collected every 60° 
rotation, and the top view was randomly captured. 
Finally, 1 top view and 6 side views were captured for 
each soybean plant. A total of 2160 side view photos 
and 360 top view photos were taken. The specific shoot-
ing process is shown in Fig. 7b.

The soybean plant segmentation model uses UNet. 
The 2520 images collected on 24 sampling dates in 
2021 and 2022 were preprocessed, including image 
screening (2480 representative images were selected 
from the 2520 images taken as samples), image resiz-
ing (the image was resized to 2048*2048), and manual 
annotation (using Photo Shop to annotate images with 
pixel-level accuracy to obtain black and white labeled 
images). The 2480 images after preprocessing and labe-
ling are divided into training set, test set and valida-
tion set according to the ratio of 8:1:1. The VOC2007 
dataset was used to pre-train the network and obtain 
the weights. Transfer learning using pre-trained 
weights, formal training is divided into two phases. The 
first stage freezes the weights of the backbone feature 



Page 12 of 16Li et al. Plant Methods           (2023) 19:59 

Fig. 7  Soybean high-throughput phenotype
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extraction network and strengthens the feature extrac-
tion network, and only trains the classification network. 
The second stage is to unfreeze the feature extraction 
network and train the entire network. and the specific 
training parameters are shown in Table 6.

The specific processing steps for feature extraction 
(Fig. 7C) are as follows:

(1)	The preprocessed image is input into the trained 
UNet to obtain a binary map. After obtaining the 
binary plot, the results need to be evaluated. In 
semantic segmentation tasks, common evaluation 
methods are the intersection over union (IOU), pixel 
accuracy (PA), and recall (Recall). Among them, IOU 
reflects the degree of coincidence between the pre-
dicted result and the real result, which is the most 
important indicator, PA reflects the probability that 
each pixel in the image is classified correctly, and 
Recall reflects the proportion of the target area that 
is correctly recognized. The labels in the test set are 
compared with the prediction results of the Unet 
network to calculate the IOU, PA, and Recall of each 
graph. Average all images in the test set. The calcula-
tion formulas are as follows:

(1)IOU =
TP

TP+ FP+ TN

TP represents a pixel that is actually a plant pixel and 
is judged by the network to be a plant; FP represents a 
pixel that is actually a plant pixel but is judged by the 
network to be background; TN represents a pixel that 
is actually a background pixel and is judged by the net-
work to be background; and FP represents a pixel that 
is actually a background pixel but is judged by the net-
work to be a plant.

The IOU, PA and Recall of the VGG16-Unet model 
used in this paper are as high as 0.98, 0.99, and 0.98, 
which are very close to the manually annotated images 
and can meet the needs of program analysis.

(B)	 To create a precisely segmented color map, the 
preprocessed picture and binary map mask are com-
bined. The following is the calculation formula:

where (x,y) is the coordinate of a certain pixel, image_
roi refers to the segmented color image, image_binary 
is the binary image output by UNet, and image_orginal 
is the original color image. image(x,y) is the value of the 
pixel in the image with coordinates (x,y).

(C)	The color space of the accurately segmented color 
map is converted to the HIS color space, and the I 
channel is used as the grayscale map. The calcula-
tion formula is as follows:

(D)	The OpenCV library is used to process the image. 
The NumPy library is called for data calculation, 

(2)PA =
TP+ TN

TP+ FP+ TN

(3)Recall =
TP

TP+ TN

(4)

imageroi(x,y) =

{

(0, 0, 0), imagebinary(x,y) = 0

imageorginal(x,y), imagebinary(x,y) = 1

(5)I =
R+ G + B

3

Table 5  Sampling dates for the experiments

V1 indicates the period when soybeans grow their first three leaf complex

Years Transplanting date Sammpling dates Number 
of 
samples

(month-day) (month-day)

2021 6–19 7–3(V1)、7–10、7–26、8–3、8–10、8–17、 672

8–24、8–31、9–7、9–14、9–24、9–31

2022 6–9 6–26(V1)、7–3、7–10、7–17、7–24、7–31、 1848

8–7、8–14、8–21、8–28、9–4、9–11

Table 6  UNet model training parameters

*represents a multiplication sign

Stage Learning rate Epoch Batchsize Learning 
rate 
decay

1 1*10–4 30 2 0.9

2 1*10–5 50 1 0.95
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and the independent programming code is used 
to extract the feature values of the soybean image.
Forty-six morphological features were retrieved 
based on binary images; 12 color features were 
retrieved based on finely segmented color images; 
and 34 texture characteristics were retrieved based 
on grayscale photos. The image feature values were 
determined by averaging the feature values from 
the six side views and top view. In Additional file 1, 
the parameters are categorized, and in Additional 
file 2, the characteristic parameters are described.

Traditional phenotype acquisition
After image acquisition, the plants were destructively 
sampled to obtain manual agronomic parameters. Specif-
ically, the plants with collected image information were 
destructively sampled, the soybean leaves were picked 
off and photographed, the number of leaves was counted 
with Image-Pro, the leaf area was extracted, and finally, 
the weighing record was recorded. LAI is the ratio of leaf 
area to floor space.

Soybean leaf parameter prediction
To better estimate soybean leaf parameters, including 
LN, LFW, and LAI, three different regression methods, 
SNR, RF, and Cat Boost, were used. Tenfold cross-vali-
dation was performed on the data collected from 24 sam-
pling dates in 2021 and 2022, and R2, the mean absolute 
error (MAE), and ATPA were used to evaluate the per-
formance of each estimation method. ATPA is calculated 
as follows:

Simple nonlinear regression (SNR)
Prior to performing a regression analysis, the image 
parameters and soybean leaf parameters (LN, LFW, 
and LAI) were compared using the Pearson correlation 
analysis. The image parameters with the highest correla-
tion coefficients were then chosen for further investiga-
tion. A straightforward nonlinear regression model was 
selected because, as Additional file 3: Figure S1 demon-
strates, there is a nonlinear relationship between the two 
variables. The significance of the p value in the output 
indicates that the second-order polynomial is the most 
significant when using the poly function to identify the 
order of the best multinomial regression equation. As 
a result, the polynomial quadratic function (Eq.  7) and 
exponential function (Eq. 8) were carefully chosen.

(6)ATPA =

(

1−
1

N

∑N

i=1

|TA − TP |

TA

)

∗ 100

Random forest (RF)
The training set is used for the preliminary training of 
the random forest model, whereas the test set is used 
to assess the effectiveness of the model training. Not all 
92 image features make a significant contribution to the 
regression accuracy, and certain image index features are 
not readily apparent, which may cause much noise and 
lead to high model accuracy errors. Thus, low-contribu-
tion image metrics must be eliminated. The importance 
function in the Sklearn library was used in this study to 
assess each variable’s significance using "%IncMSE" as 
the assessment index. The average total nodal impurity 
reduction (also known as the average impurity reduc-
tion or Gini coefficient importance) for all the trees in the 
entire forest was used to calculate the importance of the 
input variable [41, 51, 52]. The importance of each vari-
able was calculated as a percentage of the total contri-
bution of all the variables in the model, where the total 
importance of all the variables was 100. Each predictor 
was rounded against the result from the tenfold cross-
validation curve. This curve suggests that retaining n sig-
nificant predictors is the best possible regression result 
because the error is reduced. Hence, the predictors were 
ordered from high to low according to the determined 
value of each predictor’s relevance, and then the top n 
predictors were chosen as input parameters into the ran-
dom forest model.

To determine the optimal number of trees (ntree) esti-
mated by soybean LN, LFW, and LAI, the tree values 
were tested in increments of 50 from 100 to 500, and a 
value of 300 trees was chosen because stable and low 
MAE and higher R2 and ATPA were achieved for all 3 leaf 
parameter estimation models. Other hyperparameters in 
RF regression were set to default values according to the 
regressor function in the scikit-learn library.

Cat boost
As input variables for the Cat Boost model, the SNR- and 
RF-based study findings were combined with a variety 
of measures that have the highest correlation and rel-
evance. To reduce prediction error and boost prediction 
accuracy, modification parameters were also applied. The 
learning rate was set to 0.04, the loss function was set 
as the RMSE, the number of iterations was set to 2000, 
and the other hyperparameters were set to their default 
values.

(7)y = a + bx + cx2

(8)y = axb
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Data analysis
RGB images were segmented using UNet, and image 
parameters were extracted with Python 3.7 (Python 
Software Foundation, https://​www.​python.​org/) and the 
scikit-learn module version 0.21.3. Using the R-based sta-
tistical modeling package named anomaly, 68 sets outli-
ers were removed from 2520 sets of data using the test 
function in the vehicle package, and the remaining 2452 
sets of data were used for the analysis. The model gen-
eralizability was examined using tenfold cross-valida-
tion, and the R2, MAE, and ATPA distributions (interval, 
median, and mean ranges) were employed for the model 
evaluation to lessen the impact of data segmentation on 
the model estimation error. To create the figures, RStudio 
and Origin 2018 was used.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13007-​023-​01023-z.

Additional file 1. Thumbnail Table of Image Parameters.

Additional file 2. Definitions and Calculation Formulas of Image 
Parameters.

Additional file 3. Supplementary Illustration Figure.

Acknowledgements
We would like to thank Teacher Wang Wenyan, Teacher Xu Mei, Teacher Liu 
Chunyan and Teacher Yu Liang for their help in the work. We apologize to 
those colleagues who cannot be quoted due to space limitations.

Author contributions
XL, XX, and SX jointly wrote the article, prepared the figures and tables, and 
is the co-first author. MC and SH participated in the acquisition and data col-
lation of Daejeon Data. WW, MX, CL, and LY provided the manuscript overall 
guidance and some references. WL helped to modify and improve the article. 
All authors read and approved the final manuscript.

Funding
This work was supported by the Molecular mechanism of relay intercropping 
light environment regulating shade-tolerant plant architecture formation 
in soybean (3217150631), the Physiological mechanism of light regulating 
branch development in relay intercropping soybean (31871570), the Physiol-
ogy and regulation technology of high quality and high yield of soybean 
(2018YFD1000905), and the Study and demonstration of corn—legume 
strip compound planting and mixed silage technology in Plateau Tibetan 
area(2020YFN0021).

Availability of data and materials
The datasets used in this study is available from the corresponding author on 
reasonable request.

Declarations

Ethics approval and consent to participate
All authors agreed to publish this manuscript. Applicable for both human and/ 
or animal studies. Ethical committees, Internal Review Boards and guidelines 
followed must be named. When applicable, additional headings with state-
ments on consent to participate and consent to publish are also required.

Consent for publication
Consent and approval for publication was obtained from all authors.

Competing interests
All authors declared no competing interest.

Received: 4 April 2023   Accepted: 3 May 2023

References
	1.	 Zhou Y, et al. Research progress on soybean leaf development. Seed 

Technol. 2021;39:13–4.
	2.	 Kokubun M, et al. Soybean cultivar difference in leaf photosynthetic rate 

and its relation to seed yield. Jpn J Crop Sci. 1988;57:743–8.
	3.	 Lu S, et al. Counting dense leaves under natural environments via an 

improved deep-learning-based object detection algorithm. Agriculture. 
2021;11:1003.

	4.	 Allen J, et al. Leaf number and maturity in hybrid corn. Agron J. 
1973;65:233–5.

	5.	 Van E, et al. Leaf appearance rate and final leaf number of switchgrass 
cultivars. Crop Sci. 1997;37:864–70.

	6.	 Liu B, et al. Efferts of nitrogen fertilization and number of residual leaves 
on structure, yield and quality of flue-cured tobacco in high altitude 
tobacco—planting areas. Tob Technol. 2017;50:25–30.

	7.	 Deblonde P, et al. Effects of moderate drought conditions on green leaf 
number, stem height, leaf length and tuber yield of potato cultivars. Eur J 
Agron. 2001;14:31–41.

	8.	 Fulkerson W, et al. Leaf number as a criterion for determining defoliation 
time for Lolium perenne, 1. effect of water-soluble carbohydrates and 
senescence. Grass Forage Sci. 1994;49:373–7.

	9.	 Zhao X, et al. Response of maize genotypes with different plant architec-
ture to drought stress. Acta Pratacultural Sinica. 2020;29:149–62.

	10.	 Ma Y, et al. Research proggress on identification of chilling tolerance in 
maize. Crop Mag. 2012;149:1–8.

	11.	 Song K, et al. Correlative analyses of hyperspectral reflectance, soybean 
LAI and aboveground biomass. Trans Chin Soc Agric Eng. 2005;21:36–40.

	12.	 Richter GL, et al. Estimating leaf area of modern soybean cultivars by a 
non-destructive metho. Bragantia. 2014;73:416–25.

	13.	 Hayashida R, et al. Are economic thresholds for IPM decisions the same 
for low LAI soybean cultivars in Brazil? Pest Manag Sci. 2021;77:1256–61.

	14.	 Haboudane D, et al. Hyperspectral vegetation indices and novel 
algorithms for predicting green LAI of crop canopies: modeling and 
validation in the context of precision agriculture. Remote Sens Environ. 
2004;90:337–52.

	15.	 Alexandridis TK, et al. Relationship between MODIS EVI and LAI across 
time and space. Geocarto Int. 2020;35:1385–99.

	16.	 Yang G, et al. Unmanned aerial vehicle remote sensing for field-based 
crop phenotyping: current status and perspectives. Front Plant Sci. 
2017;8:43–58.

	17.	 Ji Y, et al. Estimation of plant height and yield based on UAV imagery in 
faba bean (Vicia faba L.). Plant Methods. 2022;18:1–13.

	18.	 Fei S, et al. Entropy weight ensemble framework for yield prediction of 
winter wheat under different water stress treatments using unmanned 
aerial vehicle-based multispectral and thermal data. Front Plant Sci. 
2021;12:1–18.

	19.	 Chiozza MV, et al. Comparative prediction accuracy of hyperspectral 
bands for different soybean crop variables: From leaf area to seed com-
position. Field Crop Res. 2021;271:1–10.

	20.	 Hughes A, et al. Non-destructive, high-content analysis of wheat 
grain traits using X-ray micro computed tomography. Plant Methods. 
2017;13:1–16.

	21.	 Roth L, et al. Extracting leaf area index using viewing geometry effects—
a new perspective on high-resolution unmanned aerial system photogra-
phy. ISPRS J Photogramm Remote Sens. 2018;141:161–75.

	22.	 Bai G, et al. Field-based scoring of soybean iron deficiency chlorosis using 
RGB imaging and statistical learning. Front Plant Sci. 2018;9:1002–14.

	23.	 Naik HS, et al. A real-time phenotyping framework using machine 
learning for plant stress severity rating in soybean. Plant Methods. 
2017;13:23–40.

https://www.python.org/
https://doi.org/10.1186/s13007-023-01023-z
https://doi.org/10.1186/s13007-023-01023-z


Page 16 of 16Li et al. Plant Methods           (2023) 19:59 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	24.	 Hu D, et al. Experimental study of airborne thermal infrared camera 
applied to agricultural drought monitoring, Journal of Capital Normal 
University. Nat Sci Ed. 2017;38:1–8.

	25.	 Miao C, et al. Automation of leaf counting in maize and sorghum using 
deep learning. Plant Phenome J. 2021;4:e20022.

	26.	 Hati AJ et al. Towards Smart Agriculture: a deep learning based phe-
notyping scheme for leaf counting[C]//2020 International conference 
on smart technologies in computing, electrical and electronics. 2020: 
510–514.

	27.	 Ma Y, et al. Monitoring of cotton leaf area index using machine learning. 
Transact Chin Soc Agric Eng. 2021;37:152–62.

	28.	 Abdelghffar EA, et al. Pink Cedar (Acrocarpus fraxinifolius): its prophylactic 
role vs APAP–induced toxicity in rats and its antiviral activity vs HSV-1. J 
Taibah Univ Sci. 2021;15:1108–22.

	29.	 Gong Y, et al. Remote estimation of leaf area index (LAI) with unmanned 
aerial vehicle (UAV) imaging for different rice cultivars throughout the 
entire growing season. Plant Methods. 2021;17:1–16.

	30.	 Chen Q, et al. Unsupervised plot-scale LAI phenotyping via UAV-based 
imaging, modelling, and machine learning. Plant Phenomics. 2022. 
https://​doi.​org/​10.​34133/​2022/​97682​53.

	31.	 Castro-Valdecantos P, et al. Leaf area index estimations by deep learning 
models using RGB images and data fusion in maize. Precision Agric. 
2022;23:1949–66.

	32.	 Sarkar S, et al. Aerial high-throughput phenotyping of peanut leaf area 
index and lateral growth. Sci Rep. 2021;11:21661.

	33.	 Maimaitijiang M, et al. Unmanned Aerial System (UAS)-based phenotyp-
ing of soybean using multi-sensor data fusion and extreme learning 
machine. ISPRS J Photogramm Remote Sens. 2017;134:43–58.

	34.	 Zhou J, et al. Classification of soybean leaf wilting due to drought stress 
using UAV-based imagery. Comput Electron Agric. 2020;175:105576.

	35.	 Du X, et al. Multi-temporal monitoring of leaf area index in rice under 
different nitrogen treatments using UAV images. Int J Precis Agric Aviat. 
2018;1:11–8.

	36.	 Liu S, et al. Estimating leaf area index using unmanned aerial vehicle 
data: shallow vs. deep machine learning algorithms. Plant Physiol. 
2021;187:1551–76.

	37.	 Zhang Y, et al. Toward multi-stage phenotyping of soybean with multi-
modal UAV sensor data: a comparison of machine learning approaches 
for leaf area index estimation. Remote Sens. 2022;15:1–25.

	38.	 Nagano S, et al. Leaf-movement-based growth prediction model using 
optical flow analysis and machine learning in plant factory. Front Plant 
Sci. 2019;10:227–37.

	39.	 Wang J, et al. UAV- and machine learning-based retrieval of wheat SPAD 
values at the overwintering stage for variety screening. Remote Sens. 
2021;5166:1–20.

	40.	 Breiman L, et al. Random forests: finding quasars. Statistical challenges in 
astronomy. New York: Springer-Verlag; 2003. p. 243–54.

	41.	 Rodriguez-Galiano VF, et al. An assessment of the effectiveness of a 
random forest classifier for land-cover classification. ISPRS J Photogramm 
Remote Sens. 2012;67:93–104.

	42.	 Huang Y. FPGA implementation of ECG identity recognition algorithm 
based on convolutional neural network. Jilin: Jilin University; 2020.

	43.	 Liu F. Root cause localization application of abnormal faults based on 
CatBoost model. Lanzhou: Lanzhou University; 2020.

	44.	 Lu C, et al. Improved estimation of coalbed methane content using the 
revised estimate of depth and CatBoost algorithm: a case study from 
southern Sichuan Basin. Comput Geosci. 2022;158:1–12.

	45.	 Maimaitijiang M, et al. Unmanned Aerial System (UAS)-based phenotyp-
ing of soybean using multi-sensor data fusion and extreme learning 
machine. ISPRS J Photogramm Remote Sens. 2017;134:43–58.

	46.	 Roth L, et al. Extracting leaf area index using viewing geometry effects—
a new perspective on high-resolution unmanned aerial system photogra-
phy. ISPRS J Photogramm Remote Sens. 2018;14:161–75.

	47.	 Yan J, et al. Machine learning bridges omics sciences and plant breeding. 
Trends Plant Sci. 2022;23:1–12.

	48.	 Shi P, et al. Rice nitrogen nutrition estimation with RGB images and 
machine learning methods. Comput Electron Agric. 2021;180:1–11.

	49.	 Han L, et al. Modeling maize above-ground biomass based on machine 
learning approaches using UAV remote-sensing data. Plant methods. 
2019;15:1–19.

	50.	 Zhang F, et al. Evaluation of Leaf Area Index (LAI) of Broadacre crops using 
UAS-Based LiDAR point clouds and multispectral imagery. IEEE J Sel Top 
Appl Earth Obs Remote Sens. 2022;15:4027–44.

	51.	 Cen H, et al. Dynamic monitoring of biomass of rice under different nitro-
gen treatments using a lightweight UAV with dual image-frame snapshot 
cameras. Plant Methods. 2019;15:1–16.

	52.	 Zhou X, et al. Estimation of biomass in wheat using random forest regres-
sion algorithm and remote sensing data. Crop J. 2016;4:212–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.34133/2022/9768253

	Soybean leaf estimation based on RGB images and machine learning methods
	Abstract 
	Background 
	Results 
	Conclusion 

	Background
	Results
	High correlation image parameter selection
	Simple nonlinear regression performance
	Important parameter selection
	Random forest performance
	Input variable selection
	Cat boost performance
	Comparison of the best prediction effect for the three models
	Prediction effect of soybean leaf parameters under RF model

	Discussion
	Soybean leaf parameter prediction based on RGB images
	Performance of the three models
	Future direction

	Conclusion
	Materials and methods
	Test site overview and experimental design
	High-throughput phenotype acquisition
	Traditional phenotype acquisition
	Soybean leaf parameter prediction
	Simple nonlinear regression (SNR)
	Random forest (RF)
	Cat boost
	Data analysis

	Anchor 30
	Acknowledgements
	References


