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Abstract 

Background Stomata are tiny pores on the leaf surface that are central to gas exchange. Stomatal number, size and 
aperture are key determinants of plant transpiration and photosynthesis, and variation in these traits can affect plant 
growth and productivity. Current methods to screen for stomatal phenotypes are tedious and not high throughput. 
This impedes research on stomatal biology and hinders efforts to develop resilient crops with optimised stomatal 
patterning. We have developed a rapid non-destructive method to phenotype stomatal traits in three crop species: 
wheat, rice and tomato.

Results The method consists of two steps. The first is the non-destructive capture of images of the leaf surface from 
plants in their growing environment using a handheld microscope; a process that only takes a few seconds com-
pared to minutes for other methods. The second is to analyse stomatal features using a machine learning model that 
automatically detects, counts and measures stomatal number, size and aperture. The accuracy of the machine learn-
ing model in detecting stomata ranged from 88 to 99%, depending on the species, with a high correlation between 
measures of number, size and aperture using the machine learning models and by measuring them manually. The 
rapid method was applied to quickly identify contrasting stomatal phenotypes.

Conclusions We developed a method that combines rapid non-destructive imaging of leaf surfaces with automated 
image analysis. The method provides accurate data on stomatal features while significantly reducing time for data 
acquisition and analysis. It can be readily used to phenotype stomata in large populations in the field and in con-
trolled environments.
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Background
Stomata are pores on the surface of leaves, stem and flo-
ral tissues of plants [1]. Stomata play an essential role 
in plant growth and plant response to abiotic and biotic 
stress. Approximately 98% of carbon dioxide  (CO2) 
uptake and water loss from the plant occurs through sto-
matal apertures [2]. Stomata are dynamically regulated 
by environmental factors such as drought, heat, salinity, 
light, to name a few. When water supply is ample, stomata 
open to allow  CO2 entry into the leaf for photosynthesis. 
Simultaneously, water is released to the atmosphere via 
transpiration [2, 3]. When water supply is limited, plants 
close stomata to prevent water loss, which also results in 
reduced  CO2 assimilation and subsequently growth. The 
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balance between  CO2 assimilation and water loss is pri-
marily important for adaptation to environmental cues 
without compromising growth [2, 3]. Stomata are also 
a gateway for pathogen entry into leaves and stomatal 
defence is a major physical defence mechanism in plant 
immunity [4, 5].

Stomatal gas exchange and its regulation are deter-
mined by stomatal morphology, density and sensitivity 
to the environment [6]. Plants show a range of stomatal 
sizes and shapes on the leaf epidermis depending on the 
plant species and variety [7]. Diversity in stomatal fea-
tures allowed plants to adapt to a wide range of environ-
ments [8, 9]. Considering a changing climate, the flexible 
and dynamic nature of stomatal traits makes them pri-
mary targets for improving crop productivity and sta-
bility. Despite extensive research on stomatal biology, 
current knowledge is poorly translated into the context of 
field experiments and outputs for breeders. Conventional 
methods to phenotype stomata are time-consuming and 
costly, and do not allow screening large populations for 
beneficial stomatal traits. A commonly used method to 
investigate stomatal traits is a nail polish method (NP 
method) [10–15]. It consists of applying nail polish on 
the leaf surface to get a leaf imprint, waiting for the pol-
ish to dry, carefully peeling off the polish, examining the 
leaf imprint under a light microscope, taking and analys-
ing images to determine stomatal traits. In addition to 
the length of time it takes to obtain a nail polish imprint, 
a common issue with this method is the unavoidable 
presence of air bubbles that interfere with stomata imag-
ing [16], which can result in missing data and repeating 
the imprinting stage. Manual measurement of stoma-
tal traits is time-consuming and inevitably introduces 
inconsistencies. Altogether, obtaining images of stomata 
from leaf imprints and analysing data is time-consuming, 
which limits the number of samples that can be analysed 
at any one time, making it impractical for phenotyping 
large mapping populations or diversity panels.

Recently, a number of methods have been published 
which address the issues with manual processing by 
including machine learning algorithms that automatically 
detect and analyse stomatal features [16–20]. While this 
improvement significantly accelerated image analysis and 
offers an effective substitute to manual analysis, these 
methods are limited by providing either information on 
stomatal number, size or aperture in one species in isola-
tion; having data on all stomatal traits is desirable to have 
a comprehensive view on stomatal phenotype. In addi-
tion these faster image processing methods still depend 
on traditional time consuming approaches to obtain 
images, such as nail polish methods that require indirect 
leaf imaging from leaf imprints. Use of nail polish meth-
ods are impractical when working with large populations 

and having to take thousands of measurements from 
greenhouse or field grown plants, which require higher 
throughput image acquisition and analysis. To over-
come indirect leaf imaging, approaches of directly taking 
images of leaves by bringing harvested plant material or 
whole plants to a microscope have been trialled [21–23]. 
Direct leaf imaging further accelerates stomatal pheno-
typing and demonstrates the potential of high-through-
put stomata phenotyping tools in revealing novel insights 
on the genetic basis of stomata-related traits [24]. How-
ever, these methods are typically destructive or only 
provide partial information on stomata number and/or 
aperture.

Facing the need for a high-throughput method to phe-
notype stomatal traits in large populations and iden-
tify favourable stomatal traits, we developed a rapid 
non-destructive method for phenotyping stomata at 
large scale by combining a portable handheld micro-
scope (HHM) for direct imaging of a leaf surface, with a 
machine learning model for automated stomata analysis 
(Fig. 1). This method was tested on three species: wheat, 
rice and tomato.

Materials and methods
Plant material
Three plant species were tested in this work: two mono-
cotyledons (wheat—Triticum. aestivum cv. Cadenza 
and Gladius, and rice—Oryza sativa cv. R12) and one 
dicotyledons (tomato—Solanum lycopersicum cv. Sweet-
bite and Mighty Red). Wheat and tomato plants were 
grown in 20  cm pots containing UC Davis soil mix 
(50% peat and 50% sand) in a glasshouse located at the 
Waite campus (South Australia, 34°58′16.72″S latitude 
138°38′23.17″E longitude) under natural photoperiod and 
22  °C/15  °C  day/night. Wheat was grown from June to 
October 2021 and tomato plants from July to November 
2021. Rice was grown in 15 cm pots containing UC David 
soil mix in a glasshouse located at the Waite campus from 
September to December 2021 at 29 °C/21 °C day/night.

Stomata imaging using the handheld microscope method
A handheld microscope (ProScope HR5, Bodelin, 
USA) was used to directly take images of plant leaves 
which were still attached to the plant. Three mag-
nifying objectives were tested: 100 × lens (field of 
view: 2.87 × 2.17  mm; resolving power: 4 microns; 
pixel density: 1  mm = 198 pixels), 200 × (field of view: 
1.36 × 1.03  mm; resolving power: 2 microns; pixel 
density: 1  mm = 415 pixels) and 400 × (field of view: 
0.75 × 0.57 mm; resolving power: 1 micron; pixel density: 
1  mm = 652 pixels). Images were captured using Pro-
Scope Capture v6.14 software.
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Stomata imaging using a nail polish method
For comparison with the HHM method, leaf imprints 
were collected by applying nail polish on the adaxial and 
abaxial leaf surface of 4-month-old wheat, 2-month-old 
rice and 3-month-old tomato. Nail polish (Insta-Dri Top 
Coat, Sally Hansen, USA) was applied on the leaf surface 
in a thin layer, and left to air dry for 5 min. Dry nail pol-
ish was peeled off using clear tape (Crystal clear Office 
tapes, Winc, Australia) and was placed on a microscope 
slide. Stomata on leaf imprints were observed using a 
light microscope (Nikon Ni-E compound microscope, 
Tokyo, Japan) connected to a DS-Ri1 colour cooler digital 
camera and a 40 × objective. Images of leaf imprints were 
taken using NIS-elements software (Nikon).

Machine learning model training
Stomata detection model
Images taken with the HHM were used to train the 
machine learning model to detect stomata for each spe-
cies and magnification used. Open-source software 
LabelImg [25] was used to annotate images by labelling 

a bounding box around individual stomata. The anno-
tated images were uploaded to roboflow platform [26] 
for image augmentation. Images were random split 
into training, validation and testing sets (Additional 
file  1: Table  S1). YOLOv5 algorithm [27] was used to 
train models for stomatal detection. For each species, a 
model was trained for 100 epochs with the default hyper-
parameters in YoLOv5. The validation set was used to 
choose the best model evaluated with a test performance. 
Accuracy of stomata detection models was assessed with 
YOLOv5 using three parameters: precision, recall and F1 
score. Precision is defined as

Recall is defined as

F1 score is the harmonic mean of precision and recall 
and is defined as

Precision =

#(True Positive Stomata)

#(All detected stomata)
.

Recall =
#(True Positive Stomata)

#
(

Total number of stomata
) .

Fig. 1 Overview of the rapid stomata phenotyping method (a) and experimental setup in controlled environment (b) and in the field (c)
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Stomata measurement model
A similar protocol was followed to develop stomata 
measurement models. Data from the stomata detec-
tion models were used to extract individual stomata 
from the HHM images. Instance segmentation was done 
using Roboflow platform by manually outlining stoma-
tal perimeter, including guard cells and subsidiary cells 
if applicable, and aperture of individual stomata. Indi-
vidual stomata images were random split into training, 
validation and testing sets (Additional file  1: Table  S2). 
Detectron2 platform [28] was used to train the model 
for measurement of stomatal area and aperture. For each 
species, a model was trained for 300 epochs with learning 
rate of 0.00025. The validation set was used to choose the 
best model evaluated with a test performance.

Comparative analysis of automated vs manual 
measurements
Data on stomatal traits measured using the developed 
machine learning models were compared with data 
measured manually on 100 images. The number of sto-
mata was counted visually. Stomatal size and aperture 

F1score = 2×
Precision× Recall

Precision+ Recall
.

were measured manually using Fiji [28] by outlining 
stomatal perimeter and aperture.

Results
Optimal magnification for each species
To assess the suitability of each magnification in pro-
viding accurate data on stomatal traits, three magni-
fying objectives were tested: 100 × , 200 × and 400 × . 
The suitability of a magnification in quantifying sto-
matal traits depended on the size of stomata in each 
species (Fig. 2). In wheat, the large field of view of the 
100 × magnification allowed the counting of stomata 
over a large area, but the lower resolution did not 
allow accurate measurement of stomata size (Fig.  2a). 
The intermediate specifications of 200 × magnifica-
tion enabled both counting the number of stomata in 
a smaller area on the wheat leaf and could be used to 
determine stomatal size (Fig.  2b). The high resolution 
of 400 × magnification was optimal for determining 
stomatal size and aperture in wheat (Fig.  2c). Stomata 
in rice and tomato are significantly smaller than sto-
mata in wheat and therefore only the 400 × magnifica-
tion could be used to determine the number and size of 
stomata (Fig. 2 d-e).

Fig. 2 Handheld microscope images of wheat leaves with 100 × (a), 200 × (b) and 400 × (c) magnification, rice (d) and tomato leaves (e) with 
400 × magnification. Scale bar = 100 μm



Page 5 of 9Pathoumthong et al. Plant Methods           (2023) 19:36  

Comparison between nail polish and handheld microscope 
images
The HHM provided good quality images faster than the 
nail polish method. Although leaf imprint images taken 
with a light microscope were generally at higher resolu-
tion than the HHM images, air bubbles were frequently 
present in imprint samples (Fig. 3). Handheld microscope 
images of wheat leaves using 400 × magnification were 
at high resolution given the large size of stomata in this 
species and allowed automated measurement of num-
ber of stomata, stomatal size and aperture (Fig.  3a). In 
rice and tomato and leaves, images taken with the HHM 
were at a lower resolution compared to light microscope 
images given the smaller size of stomata in these species, 
but stomata were distinct enough to allow for automated 
detection of stomata and measurement of stomata num-
ber and size (Fig.  3b-c). Rice leaf imprints were uneven 
and required taking two images at different focus to visu-
alise all stomata present on the leaf. The HHM allowed 
the observation of all rice stomata in one image (Fig. 3b). 
Given their smaller size, stomata in rice leaves could only 
be observed using the 400 × magnification but image 
quality was still suitable for machine learning. In tomato, 

leaf imprint images were as clear as images taken with the 
HHM and stomata could be observed with a 400 × mag-
nification (Fig. 3c).

Data accuracy of detection and measurement models
The machine learning models were highly accurate in 
detecting stomata in wheat, rice and tomato. Model accu-
racy depended on the species and the magnification used 
(Table 1, Additional file 1: Fig. S1). In wheat, model accu-
racy was highest with 400 × images (F1 = 0.99) compared 
to 200 × (F1 = 0.91) and 100 × (F1 = 0.89), as stomata are 
more distinct at higher magnification. When comparing 

Fig. 3 Qualitative comparison between images from nail polish imprint images and handheld microscope images of wheat (a), rice (b) and tomato 
leaves (c), and automated detection and annotation of stomata and aperture. Scale bar = 100 μm

Table 1 Detection models’ statistics

Species Magnification Precision Recall F1 score

Wheat 400 × 0.993 0.998 0.995

Wheat 200 × 0.898 0.917 0.907

Wheat 100 × 0.977 0.815 0.889

Rice 400 × 0.868 0.926 0.896

Tomato 400 × 0.836 0.913 0.873
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across all species using the 400 × magnification, stoma-
tal detection in wheat images had the highest accuracy 
compared to rice and tomato (F1 = 0.99, 0.90 and 0.87, 
respectively).

The developed models were able to detect nearly all 
of the stomata in an image and to measure stomatal 
size and aperture (Fig. 4). In wheat, data from machine 
learning models were highly correlated with manual 
measurements for stomata number  (R2 = 0.99), stoma-
tal size  (R2 = 0.87) and stomatal aperture  (R2 = 0.94) 
(Fig.  4a). In rice, data from machine learning models 

were highly correlated with manual measurements 
for stomata number  (R2 = 0.99). The correlation was 
lower for stomatal size  (R2 = 0.74) (Fig. 4b). In tomato, 
data from machine learning models were highly cor-
related with manual measurements for stomata num-
ber  (R2 = 0.99) and stomatal size  (R2 = 0.88) (Fig.  4c). 
The accuracy of detection and measurement models in 
wheat, rice and tomato allowed rapid identification of 
contrasting stomatal number and size; high stomatal 
density with smaller stomata, and low stomatal density 
with larger stomata (Fig. 5).

Fig. 4 Scatterplots of stomatal traits comparing data measured by machine learning models with manual measurements of 100 images of wheat 
(a), rice (b) and tomato leaves (c).  R2 is the coefficient of determination of a linear regression between computed and manual counts
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Fig. 5 Rapid identification of contrasting stomatal phenotypes: high stomatal density (left) and low stomatal density (right) in wheat (a), rice (b) 
and tomato (c). Scale bar = 100 μm
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Discussion
Research on crop adaptation to biotic and abiotic stresses 
involves phenotyping large populations to identify germ-
plasm with desirable traits. This requires non-destructive, 
high-throughput phenotyping tools that accurately meas-
ure traits of interest [29]. The current low throughput 
methodology for studying stomatal physiology limits its 
use in forward genetics screens. Given the central role of 
stomata in plant physiology, a rapid method was needed 
to capture the diversity in stomatal traits in plants [24]. 
One of the principles of non-destructive phenotyping is 
to bring the instrument to the plant, rather than the plant 
to the instrument. Portable handheld microscopes are 
therefore convenient tools for non-destructive imaging 
of the leaf surface. The method described here overcomes 
the tedious image acquisition process by using a HHM to 
acquire images directly from the leaf of plants growing 
in natural conditions. The HHM provided clear images 
of wheat, rice and tomato leaf surface in a few seconds, 
rather than minutes as is the case with the NP method. 
Images taken with a HHM can be viewed immediately, 
and alternative images of the same leaf can be taken if 
image quality is not satisfactory.

In rice and tomato, the small size of stomata only 
allowed the use of 400 × lens, the highest magnification 
currently available. This magnification provided satisfac-
tory images to count and measure stomata in the three 
species. Wheat has larger stomata that were visible with 
100 × , 200 × and 400 × magnifications. The 100 × lens 
offers a wider field of view and therefore provides a more 
representative view on stomata number. The 400 × lens 
offers higher resolution of stomata and allows accurate 
quantification of stomatal size and aperture. The high 
resolution of the 400 × lens makes it possible to record 
videos of the leaf surface in wheat and to observe and 
quantify the dynamic changes of stomatal aperture in 
response to environment, a technique successfully tested 
in wheat [21]. The 200 × lens offers a satisfactory com-
promise between field of view and resolution and can 
be used to phenotype all stomatal traits in wheat using 
the same image, which further reduces the time of image 
acquisition.

This method described here combines the advantages 
of a portable HHM (rapid, non-destructive acquisition of 
stomata from leaves on plants in their growing environ-
ment), with automated accurate analysis of stomatal fea-
tures, thus making stomata phenotyping significantly faster 
than conventional methods. The method was successfully 
applied to identify contrasting stomatal phenotypes, which 
is the ultimate purpose of a stomata phenotyping tool. The 
rapid method is affordable and can be readily used since it 
does not require specific skills in computer science or pro-
gramming. The stomata image analysis pipeline is publicly 

available for each species [30]. HHM images can be ana-
lysed immediately using the machine learning model.

Conclusion
Our stomatal phenotyping method provides a rapid, non-
destructive tool to determine stomata number, size and 
aperture if applicable. The experimental setup is portable 
and allows stomata phenotyping at a large scale, in con-
trolled environments and in the field. This screening tool 
will accelerate research in stomatal biology in the context 
of increasing biotic and abiotic pressure on crop produc-
tion. The method is versatile and can be further adapted 
to more species using the same HHM and image analysis 
pipeline.
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