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Abstract 

Background The identification and enumeration of medicinal plants at high elevations is an important part of accu-
rate yield calculations. However, the current assessment of medicinal plant reserves continues to rely on field sam-
pling surveys, which are cumbersome and time-consuming. Recently, unmanned aerial vehicle (UAV) remote sensing 
and deep learning (DL) have provided ultrahigh-resolution imagery and high-accuracy object recognition techniques, 
respectively, providing an excellent opportunity to improve the current manual surveying of plants. However, accu-
rate segmentation of individual plants from drone images remains a significant challenge due to the large variation in 
size, geometry, and distribution of medicinal plants.

Results In this study, we proposed a new pipeline for wild medicinal plant detection and yield assessment based on 
UAV and DL that was specifically designed for detecting wild medicinal plants in an orthomosaic. We used a drone to 
collect panoramic images of Lamioplomis rotata Kudo (LR) in high-altitude areas. Then, we annotated and cropped 
these images into equally sized sub-images and used a DL model Mask R-CNN for object detection and segmenta-
tion of LR. Finally, on the basis of the segmentation results, we accurately counted the number and yield of LRs. The 
results showed that the Mask R-CNN model based on the ResNet-101 backbone network was superior to ResNet-50 in 
all evaluation indicators. The average identification precision of LR by Mask R-CNN based on the ResNet-101 back-
bone network was 89.34%, while that of ResNet-50 was 88.32%. The cross-validation results showed that the average 
accuracy of ResNet-101 was 78.73%, while that of ResNet-50 was 71.25%. According to the orthomosaic, the aver-
age number and yield of LR  in the two sample sites were 19,376 plants and 57.93 kg and 19,129 plants and 73.5 kg 
respectively.

Conclusions The combination of DL and UAV remote sensing reveals significant promise in medicinal plant detec-
tion, counting, and yield prediction, which will benefit the monitoring of their populations for conservation assess-
ment and management, among other applications.
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Background
Medicinal plants are valuable sources of herbal goods 
worldwide. More than one-tenth of plant species are 
utilized in health products and medicines. In particular, 
the herbal formulas of traditional Chinese medicine are 
widely used in the treatment of COVID-19 in mainland 
China [1]. China is one of the most species-diverse coun-
tries in the world, with over 10,000 medicinal plant spe-
cies [2, 3]. The rapid rise of the Chinese medicine market 
has resulted in medicinal plant resources disappearing 
at a high speed [4–6], resulting in the rapid expansion 
of medicinal plant cultivation. However, 70% of com-
monly used herbal medicines continue to rely on natural 
resources. Therefore, obtaining information on the status 
of wild medicinal plant resources, such as plant density, 
area or several individuals per hectare, is one of the most 
important yield components in medicinal plants [7, 8]. 
Deep learning (DL) and unmanned aerial vehicles (UAVs) 
are technical and methodological advancements that 
strongly contribute to plant identification shifts. Exam-
ples include crop yield prediction [9, 10] and weed map-
ping [11, 12] in precision agriculture, invasive species 
identification [13, 14], species detection and vegetation 
classification [15, 16] in ecological aspects, and area cal-
culation in cultivated herbal medicine [17, 18].

Identifying and counting of medicinal plant individuals 
is a critical task for yield assessment and resource protec-
tion when dealing with wild medicinal plant resources. 
Usually, wild medicinal plants are diversely and irregu-
larly distributed. Furthermore, medicinal plants are dis-
tributed over several hectares, leading to an extremely 
large obtained image. This situation results in great diffi-
culties in distinguishing wild medicinal plants. High-res-
olution imagery was captured by utilizing UAVs flying at 
low altitudes equipped with red–green–blue (RGB) cam-
eras. Plants can be detected in digital images either by 
manually detection or by using automatic analysis tech-
niques. However, in the calculation of medicinal plant 
yields and mapping of medicinal plants across the entire 
distribution region, the target plants must be correctly 
identified and segmented from the high-resolution ortho-
mosaic generated by UAV photogrammetry. After cap-
turing and correcting images in the presence of camera 
tilt and relief displacement, the product generated from 
the study area is called an orthomosaic. This approach 
is designed to obtain a general image of that study area 
on a single scale. Therefore, the orthomosaic can be used 
to visually assess the field, which will provide contextual 
information about its state and quality [7]. Orthomosaics 

have been successfully used to map the distribution of 
herbaceous species, but the ecological background is 
often too extremely simple or the plants are large and can 
be quantified using vegetation mapping techniques, and 
only a few cases of small target plants mapping exist [19, 
20]. Until now, few studies have attempted to identify or 
quantify herbaceous species from UAV imagery [21, 22], 
particularly medicinal plants. The success of these studies 
usually depends on the main color difference between the 
size of target plants and background vegetation.

For the detection of plants in orthomosaics, different 
model algorithms have been applied in recent studies for 
counting and mapping invasive species, crops and other 
species. While numerous studies have shown the abil-
ity to detect individual plant species from UAV imagery, 
most of these plants are shrubs, trees, or tall herbs that 
are easily identified by the model. For example, James and 
Bradshaw [16] integrated DL in UAV remote sensing to 
perform real-time detection of invasive plant shrubs of 
the Hakea genus, which are 3–5 m tall in the top view of 
the ecological community and are well suited for real-
time detection by UAVs. Zhang et al. [23] identified and 
mapped frailejones in high-altitude ecosystems by using 
UAV images, which have plant sizes ranging between 10 
and 15 m, are aggregated population species within their 
distribution area and are also easily identified using UAV. 
Applications in agriculture are also aimed at the more 
cultivated neatly patched crop classifications or weeds of 
larger strains. Therefore, the present UAV recognition of 
plant objects is primarily for plants of larger size. Tradi-
tional machine learning or DL can be used to achieve a 
high identification effect.

Compared with studies on other plants and wild 
medicinal plants, detecting medicinal plants requires 
delineation of individual medicinal plants with multiple 
leaves. In addition, the yield of medicinal plants in the 
acquired orthomosaic of drones must also be counted 
and calculated. In recent years, many studies have shown 
that mapping and counting other plant species based on 
different UAV imagery attain moderate results. Examples 
include potato and lettuce crop counting [24], rice seed-
ling counting [25], sorghum spike detection and counting 
[26], citrus counting [27]. However, most of these cases 
are for standardized crops or target fruit trees of larger 
size, which poses a great challenge for the identification 
and enumeration of wild medicinal plants, such as com-
plex growth background environment, scattered distribu-
tion of target species with different sizes, interference of 
similar species [28].

The resolution required for individual plant detec-
tion and segmentation has stringent requirements for 
both UAV and DL. Researchers and government man-
agers can monitor resources and predict the yield of 
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medicinal plants by identifying and segmenting each 
plant. A possible approach is to calculate the yield of 
the distribution area by calculating the area of the 
aboveground part of the medicinal plants. Current DL 
has been able to calculate the aboveground biomass 
of plants from UAV imagery, which extracts informa-
tion about targets from an image by separating out the 
target plants [29]. For example, the development of 
semantic segmentation models based on convolutional 
neural networks (CNNs) and the popularization of fully 
connected networks (FCNs) [30] have considerably 
contributed to the semantic segmentation of remote 
sensing images. CNN is designed to analyze spatial pat-
tern analysis. CNNs have been increasingly and widely 
used to detect plant species in the image processing 
field with state-of-the-art performance [31–34]. Some 
of the most popular architectures are the Region CNN 
(RCNN) [35], Fast RCNN [35, 36], Faster RCNN [37], 
Mask RCNN (a network that combines Faster RCNN 
and FCN) [38], and single-shot multibox detector [39]. 
For example, Nie et  al. [40] used an improved Mask 
R-CNN to detect and segment a ship from remote sens-
ing images. In addition, image segmentation can also be 
used to accurately measure plant biovolume. Safonova 
et  al. [41] segmented olive tree crowns and shadows 
to estimate the biovolume of individual trees by Mask 
R-CNN and UAV images. To monitor the growth status 
of maize plants, Lu et  al. [42] proposed the TasselNet 
network to achieve robust in-field counting of maize 
tassels. And, there is also a study the stand counting of 
maize plants from UAV images [43]. Moreover, image 
segmentation can be used for crop and weed segmen-
tation [44–46], medical image segmentation [47, 48], 
and other applications [49, 50]. Thus, the Mask R-CNN 
model was used more often than other models for simi-
lar problems.

In this study, we used Mask R-CNN on ultrahigh reso-
lution UAV-based imagery to properly identify and map 
individuals of a specific herbaceous species growing 
close to the ground in natural complex environments. 
In 2015, Girshick [36] proposed a fixed-size pooling 
layer for regions of interest that can improve the speed 
of R-CNN, that is, Fast R-CNN. In 2017, He et  al. [38] 
introduced Mask R-CNN, which performs excellently in 
image classification, semantic segmentation and instance 
segmentation. Mask R-CNN not only accurately detects 
the target class and location information in the remote 
sensing images but also obtains the binary mask for each 
class instance. The proposed method counts and predicts 
the yield of medicinal plants on UAV remote sensing and 
maps the distribution of the species. This study aims to 
demonstrate the usefulness of the method in the detec-
tion of small target individual medicinal plants, solve the 

ecological survey problems, develop an efficient and fast 
survey methodology, and create a new technical method 
that makes it possible to utilize Chinese medicine 
resources effectively.

Our case study takes as an example the Tibetan medi-
cine Lamiophlomis rotata (Benth. ex Hook. f.) Kudo (LR), 
a perennial medicinal herb endemic to the Qinghai-Tibet 
Plateau, has been one of the traditional medicines of the 
Tibetan, Mongolian and Na Xi peoples for thousands of 
years and is locally known as “Daba” or “Daerba” [51]. LR 
has the efficacy of hemostasis and alleviating pain and 
is widely used in the treatment of postsurgical incision 
pain, bleeding, rheumatism arthralgia, etc. [52, 53]. LR 
grows in alpine meadows, gravel beaches or riverbanks at 
altitudes ranging between 2700 and 4500 m above mean 
sea level. In recent years, owing to their strong demand 
in the market, LR herbs have encountered severe overex-
ploitation, as medicinal herbs all rely on wild resources. 
In fact, LR was listed as a first-level endangered Tibetan 
medicine in 2000. Moreover, LR is an indicator plant for 
degraded ecosystems of high-altitude grasslands, scrub 
grasslands and wetlands. Furthermore, LR is under pres-
sure from ecological conservation and degradation of 
wild resource populations. Population monitoring of LR 
wild resources is crucial for artificial cultivation, but it 
is rarely implemented due to the lack of basic research 
on related field resources [54]. Consequently, yield pre-
diction and species distribution mapping of LR should 
be urgently performed to further guide germplasm 
resource utilization, conservation, and breeding strategy 
development.

Results
Classification results
Details of the training of the Mask R-CNN network are 
shown in Additional file  1: Figure S1. The classification 
results of ResNet-50 and ResNet-101 are shown for 4 
image subsets of S1 and S2 (Figs. 1 and 2). Mask R-CNN 
differentiated each individual LR successfully with 
accurate boundaries between plants. Obviously, both 
ResNet-50 and ResNet-101 merged individual LR plants 
into some continuously distributed patches, such as the 
green circles of Fig.  1a. ResNet-101 achieved a higher 
accuracy through the edges of LR (Fig. 1c and d), black 
circles). Moreover, ResNet-101 can identify smaller 
LR plants than ResNet-50 cannot (yellow circles). Some-
times ResNet-50 will identify weeds that are similar in 
color and morphology to the LR, but ResNet-101 will not 
(white circles). Both ResNet-50 and ResNet-101 delivered 
a similar and better classification result, while still having 
difficulty separating neighboring LR plants (Fig. 1, green 
circles and black circles). By contrast, ResNet-101 can 
distinguish neighboring LR  plants more accurately and 
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Fig. 1 Four subsets (a–d) of LR classification in S1 by using ResNset-50-FPN and ResNet-101-FPN
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Fig. 2 Four subsets (a–d) of LR classification in S2 by using ResNset-50-FPN and ResNet-101-FPN
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with fewer misidentifications, with individual plants dif-
ferentiated clearly.

Figure  2 shows the classification results for four sub-
sets in S2. Figure  2 shows an area containing LR spe-
cies within a matrix of bare land, rat holes and grass. As 
illustrated by Fig.  2a–d, ResNet-101 is also superior to 
ResNet-50 in identifying both smaller and neighboring 
LR plants and separating individual plants.

The performance of the two methods differs slightly 
depending on the morphological appearance of LR. In S2, 
individual LR plants were often merged into continuous 
patches by the Mask R-CNN, and the geometric shapes 
of the classified plants were distorted, such as the green 
circles and black circles in Fig.  2. However, ResNet-101 
still outperformed ResNet-50 in segmenting LR (Fig. 2b 
and c, black circles). The white circles in Fig. 2a and the 
yellow circles in Fig.  2d are ignored by ResNet-50 and 
ResNet-101, respectively.

Accuracy comparison of instance segmentation
A quantitative assessment of classification accuracy pro-
vides further evidence of which method is more effec-
tive to use. We conducted 10 experiments with different 
numbers of randomly selected images from the dataset, 
as shown in Table  1. For both study sites, ResNet-101 
achieved the largest precision for the classification of 
individual LR in S1 (i.e., 93.46%) and the classification 
of individual LR in S2 (i.e., 85.21%). ResNet-50, however, 
achieved the highest recall, F1 and mAP for the valida-
tion datasets, overall 1% higher than ResNet-101. Among 
them, the overall accuracy, detection rate and geomet-
ric accuracy results of S1 are higher than those of S2, 
which may be due to the more complex background and 
morphology of LR in S2. Among the benchmarks, the 
best performing approach was ResNet-101, followed in 
sequence by ResNet-50.

Evaluating the accuracy of the counting
We first evaluate the counting capability of the Mask 
R-CNN method. Tables 2 and 3 show the Acc and MAE 
obtained from each for the S1 and S2 datasets. The results 
shown do not include any postprocessing methods. 
According to the results, we observed that the average 

counting accuracy of ResNet-101 was approximately 7% 
higher than that of ResNet-50. Therefore, in the case of 
ResNet-101, the average counting accuracy of S1 was 
approximately 90%, and the average MAE of the count-
ing was approximately 1.2. However, compared with the 
findings for S1, the average counting accuracy of S2 was 
approximately 64%, and the average MAE was approxi-
mately 3.7. The reason for the low counting accuracy in 
S2 was the incorrect identification of weeds as LR plants. 
Therefore, the complexity of the background environ-
ment and the size of the dataset affect the accuracy of the 
LR identification counts.

Figure  3 shows the predicted counts (using 
ResNet-101) for each sample and their true counts (using 
only ResNet-101). The image sources are 30 samples sites 
of size 2048 × 2048 selected from the orthomosaics of 
the LR distribution area. In S1, for most images, Mask 
R-CNN can accurately calculate the number of LR plants, 
and a few are less than the exact count. In S2, for almost 
all images, the Mask R-CNN tended to overestimate 

Table 1 Accuracy assessment for two methods using precision, recall, F1-score and mAP (IOU = 50)

The value is the mean ± standard deviation of 10 experiments

Study sites Method Precision Recall F1 mAP

S1 ResNet-50-FPN 92.75 ± 0.61 98.56 ± 1.04 97.99 ± 1.27 97.59 ± 1.65

ResNet-101-FPN 93.46 ± 0.71 98.90 ± 1.21 98.61 ± 1.40 98.32 ± 1.60
S2 ResNet-50-FPN 83.89 ± 0.95 90.43 ± 1.36 87.61 ± 1.42 84.98 ± 1.57

ResNet-101-FPN 85.21 ± 0.74 91.38 ± 1.86 88.51 ± 2.05 85.81 ± 2.26

Table 2 Performance of the Mask R-CNN in S1

ResNet-101-FPN ResNet-50-FPN

ACC (%) MAE ACC (%) MAE

Fold-1 93.42 1.261 87.18 2.418

Fold-2 93.49 1.219 87.08 2.398

Fold-3 90.82 1.226 83.62 2.395

Fold-4 92.70 1.252 86.21 2.438

Average 92.61 1.240 85.93 2.412

Table 3 Performance of the Mask R-CNN in S2

ResNet-101-FPN ResNet-50-FPN

ACC (%) MAE ACC (%) MAE

Fold-1 65.71 3.719 56.91 4.532

Fold-2 60.41 3.823 51.18 4.453

Fold-3 64.32 3.672 56.31 4.312

Fold-4 68.90 3.579 61.88 4.304

Average 64.84 3.698 56.57 4.400
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counts. This overestimation can be regarded as a func-
tion of the presence of other “objects,” such as weeds, 
which are incorrectly assigned a small number of density 
values by the Mask R-CNN.

Linear regression analysis was performed on the 
number of LR  plants detected based on manual counts 
(ground truth) and automatic counts derived from the 
Mask R-CNN for all images in datasets S1 and S2. As 
shown in Fig. 4, the Mask R-CNN model performed well 
in terms of estimating the number of LR plants. In S1, the 
relationship between manual and automatic LR counts 

was positive and strong for all images, with  R2 and RMSE 
values of 0.98 and 2.1, respectively. In S2, the  R2 and 
RMSE were 0.88 and 4.5, respectively. In contrast, the 
points in S1 are mostly concentrated around y = x, while 
the points in S2 are mostly located above y = x, indicating 
more false identification in S2 and better identification in 
S1. This finding indicates that the Mask R-CNN model 
can reasonably estimate the number of in-field LR plants.

Fig. 3 Predicted counted obtained from the Mask R-CNN (ResNet-101) versus ground truth count for each of the 30 plots (2048 × 2048) in the 
orthomosaic of   S1 and S2 

Fig. 4 Manual counting versus automatic counting by using the Mask R-CNN (ResNet-101) model at study sites S1 and S2. The red line of 1:1 is the 
equation of y = x.  R2 and RMSE represent the coefficient of determination and the root mean square error, respectively
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Orthomosaic identification and yield calculation results
Orthomosaic identification
By identifying LR  plants in orthomosaics and creating 
distribution maps from them, the leaf area and yield of 

the distribution area were calculated, and the errors of 
the two methods of calculating yield were compared. 
Therefore, we used the Mask R-CNN model to perform 
recognition statistics for LR  plants in orthomosaics, 
and the results are shown in Fig.  5. The statistics are 
shown in Table 4.

Yield calculation
Figure  6 shows a significant regression relationship 
between the dry weight of aboveground parts and leaf 
area, and the  R2 of the regression equation was 0.86. 
The accuracy of this linear model was good, indicating 
that the yield can be predicted by the leaf area index. 
The average weight of the LR of S1 was 2.99 g, which is 
lighter than the average weight of the LR of S2, which 
was 4.01 g. This result was consistent with the field sur-
vey results.

Fig. 5 LR identification results in orthomosaic S1 and S2. The black marked points are the locations of the identified LR plants, and the red boxes 
are enlarged to show the detailed view of the identified image and mask

Table 4 LR data statistics in orthomosaic

Study 
sites

Study 
area 
 (m2)

Orthomosaic 
resolution 
(m/pixel)

Pixel 
value 
(pixel)

Number Leaf area 
 (m2)

S1 9186 0.005 5,323,734 19,376 133.09

S2 2971 0.003 11,453,007 19,129 103.08

Fig. 6 Relationship between LR’s dry weight of above-ground parts  
and leaf area in S1 and S2

Table 5 Yield prediction results for LR in S1 and S2

Study 
sites

Average 
dry 
weight 
(plant/g)

Number Leaf area 
 (m2)

Model-
identified 
leaf area 
calculation 
yield (kg)

Model-
identified 
quantity 
calculation 
yield (kg)

S1 2.99 19,376 133.09 90.75 57.93

S2 4.01 19,129 103.08 70.29 76.71
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As shown in Table 5, the difference between the yield 
calculation results of S1 was 32.82  kg, while the yield 
calculation results of S2 only differ by 6.42 kg. The rea-
son for this may be that the location of S1 is in a hillside 
location, the relative flight height of the UAV is incon-
sistent, and the resolution in the orthomosaic is the 
average resolution, which has a large error with the leaf 
area calculated by the mask. Therefore, when the land is 
not flat, the yield calculation error is larger.

Discussion
In this study, we demonstrate a method for accurately 
predicting the yield of wild medicinal plants and the 
number of plants in their distribution area. With image 
analysis approaches based on DL, an opportunity was 
provided to identify, map, count, predict yield and moni-
tor endangered medicinal plant individuals in complex 
and diverse highland ecosystems. The average plant 
diameter in our study was between 2 and 35 cm. When-
ever the target object is extremely small, instance seg-
mentation models face a huge challenge [55, 56]. Using 
the Mask R-CNN architecture, we propose a model that 
can output the location and number of all LR  plants in 
an orthomosaic and can perform the instance segmen-
tation task more efficiently, essentially achieving excep-
tional plant detection and counting. On this basis, yield 
prediction is also performed. In this task, the goal is to 
accurately detect plants, estimate the number of plants 
in each image and show the boundaries of each plant at 
the pixel level. This finding is contrary to previous related 
studies, which relied on regression-based models to pre-
dict counts in a given area, with mostly regular cultivated 
plants and without any plant location or plant segmenta-
tion [57–59]. Therefore, we have demonstrated its poten-
tial in assessing wild medicinal plant reserves by using 
UAV photographic imagery instead of in-field imagery 
taken from the ground.

Previous studies have developed algorithms aimed at 
individual plant segmentation, such as cotton [57] and 
sorghum heads [60]. However, the targeted plant types 
and the complexity of the context are not comparable 
with our work. In terms of the study target, the detec-
tion targets were neatly cultivated crop seedlings that 
were not grown together and could not be evaluated 
due to a lack of accurately digitized ground-truth masks. 
Zhang et  al. [23] proposed the SS Res U-Net model for 
semantic segmentation and classification of frailejones by 
using UAV remote sensing. This work is extremely differ-
ent from ours, as our goal is not only to generate accu-
rate masks, but also to count and calculate the yield of 
all target plants under a large-scale area of UAV remote 
sensing. As a result, our task is much more complex and 
comprehensive.

Traditional methods of Chinese medicine resource 
surveys rely on sample surveys and field surveys. Then, 
the location, area, slope direction, slope, elevation, veg-
etation, and names and numbers of plants in the sample 
sites were manually recorded [61]. This method is time-
consuming, labor-intensive, and financially demanding, 
such as the census of Chinese herbal resources in China 
[62]. To the best of our knowledge, UAV remote sensing 
has not yet been applied to medicinal plant resource sur-
veys, especially for small target medicinal plants at high 
altitudes. A direct automated scientific approach to plant 
instance segmentation is illustrated in this study by com-
bining UAV remote sensing and Mask R-CNN. Infield 
detection of invasive plant DL has been investigated 
[16]. Alien vegetation detection in orthomosaic has also 
been conducted in the field of remote sensing [63] and in 
real-time applications [64]. In contrast to the approach 
of previous studies, the features used in this study were 
learned rather than created. By using  DL algorithm, the 
final quantity and yield predictions were also produced 
within the orthomosaic. This study provides new tech-
niques and methods for assessing the wild medicinal 
plant resources on the plateau and improves the accuracy 
of yield prediction. This method breaks the traditional 
method of Chinese medicine resource surveys, and the 
use of UAV remote sensing is also an inevitable trend for 
future development.

For the DL model presented in this study to be applied 
in the real world, additional refinement is required. First, 
terrain-imitation flight may be conducted to avoid large 
errors in yield prediction results at different flight alti-
tudes. Second, the growing stages, different weather con-
ditions, and times needed to be varied in the datasets to 
improve the robustness of the model. Third, the model 
and the UAV are integrated to perform real-time detec-
tion in the field. Finally, the predicted results of yield and 
plant population were not verified by a substantial sam-
ple survey.

Conclusion
In this study, UAV remote sensing and DL are used to 
segment, count, and predict the yield of medicinal plants 
on the plateau, combining a straightforward and auto-
mated cutting-edge approach. The proposed method is 
a viable alternative to sample surveys and helps quantify 
the role of medicinal plants in the ecosystem. We devel-
oped an LR dataset from UAV images in this study, and 
after training with the Mask R-CNN model, the results 
indicated that the ResNet-101 architecture had higher 
accuracy metrics than ResNet-50, with a maximum accu-
racy of 98.9% for S1. According to cross-validation, the 
average ACC of S1 was 92.61% and MAE was 1.240, and 
the average ACC of S2 was 64.84% and MAE was 3.698. 
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Furthermore, we used the model to identify LR in large-
scale orthomosaics, map the distribution of LR  plants, 
count the number of LR  plants in the distribution, and 
predict the yield by using different calculation methods.

Future research can explore the following directions: 
First, we will deploy our method to an embedded sys-
tem on a UAV for online yield estimation of medicinal 
plant yields, and second, we will continue to enrich the 
LR dataset, as training data are always key to obtaining 
good performance, especially with the diversity of such 
data. Third, the precise localization of wild plants enables 
us to quantify the role of plant species in the ecosystem; 
for example, the distribution of LR was analyzed in terms 
of density, clustering and dispersal, and the information 
was translated into location, density and hotspot maps to 
provide advanced visualization tools. Finally, our method 
can be applied to the identification of other similar 
medicinal plants, especially in areas difficult for humans 
to reach at high altitudes.

Methods
Study area and target plant
The imagery for our case study was collected from two 
ecosystems within the Ruoke River Ranch, Aba County, 
Sichuan Province (S1: lat. − 33.21800; long. − 101.46722; 
elev. − 3774 to 3794 masl), and Jiuzhi County, Qing-
hai Province (S2: lat. − 33.59244; long. − 100.82794; 
elev. − 3848 masl) (Fig. 7). LR was located in the top eco-
logical area in the field of view, its size ranged between 
2 and 40  cm, it grew close to the ground, and its mor-
phological appearance was different, hindering automatic 
detection by drone images. The two sample sites were 

selected to represent most of the ecological environ-
ments in which LR grows. Therefore, we focused on map-
ping the distribution of LR species in the two localities, 
counting the number of plants, and calculating the yield 
of the distribution area. Drone images from two sites reg-
istered different growth periods and different morpho-
logical appearances, including adult plants and young, 
flowering, unflowered, and clumped plants (Table 6).

LR grows on slopes and hilltops. The type of grassland 
degradation is moderately degraded grassland, with 80% 
to 95% Graminaceae, a few Gentianaceae Asteraceae, and 
other forbs. LR had a high number of seedlings, mature 
plants and mature flowers, which also included no flow-
ered medium-size plants. The S2 site have many bare 
ground and rat holes. The type of grassland degradation 
is heavily degraded grassland with toxic weeds account-
ing for 60% to 80% and few Graminaceae.

Dataset collection and annotation
Aerial photography was obtained by a DJI MAVIC 2 pro 
drone (DJI Company, Guangdong, China) equipped with 
a built-in RGB camera with a resolution of 5472 × 3648. 
Image acquisition was conducted under clear and calm 
weather conditions in July 2020 because the seasonal 
LR leaves are dark green, which makes them easily dis-
tinguishable from background grass. The flight path was 
created by the application Pix4D Capture. The flight 
height was 10 m, and front and side overlaps of 60% were 
chosen. For the S1 and S2 sites, 353 and 154 images were 
collected, respectively. The images were aligned using DJI 
Terra software to produce an orthomosaic and a digital 
elevation model for each site. For S1 and S2, the stitched 

Fig. 7 Two study areas in China: Aba County, Sichuan Province (S1) and Jiuzhi County, Qinghai Province (S2) with typical Lamiophlomis species 
highlighted
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Table 6 The Lamiophlomis rotata species found in the study sites with their descriptions and ground photos of representative plants

Type Study sites Descriptions Plant representative photos

Mature flower S1 Light green, plant length is approximately 7–35 cm, leaf blade cespitose at the 
base, mostly 4 leaves, rotate two opposite each other, verticillasters densely 
arranged in capitula or spikes

 

Seedling S1, S2 Yellowish green—light green, small plant form, not flowering, plant size 
2–7 cm

 

Mature plant S2 Dark green, large leaves, often broken and incomplete, plant size 8–30 cm

 

Clustered plant S2 Dark green, growing after the first year of harvest, two to three plants growing 
together, leaves curled and often squeezed together, plant size 5–30 cm
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images were 22,229 × 20,600 with 0.3 cm average spatial 
resolution and 30,140 × 15,531 with 0.5 cm average spa-
tial resolution, respectively. We segmented the panorama 
into several nonoverlapping 512 × 512 images, which 
ensured that the yield evaluation did not lead to the dou-
ble counting of yields. Then, each tile was semantically 
annotated as foreground (target plants) and background 
(all other land covers), as shown in Fig. 8.

The datasets used are composed of 5700 RGB image 
tiles, and they contain two types of images: moder-
ately degraded grassland (S1, 3410 images) and severely 
degraded grassland (S2, 2290 images), with each image 
being 512 × 512 pixels. The dataset is divided into two 
subsets with a ratio of 6:4, that is, 3420 pictures as the 
training set and 2280 pictures as the testing set. Addi-
tionally, to enhance the adaptability of our algorithm 
to the natural environment, the dataset is flipped and 
enhanced to cover the complex natural environment.

Mask R-CNN
We identified LR  plants from the orthomosaics by 
using R-CNN masks and subsequently counted and 
predicted their areas (Fig.  9). Moreover, we also used 
YOLOACT++ and SOLOv2 networks, but the results 
were not as good as Mask R-CNN, and the results are 

shown in Additional file 1: Table S1. Mask R-CNN con-
sists of a region proposal network (RPN), a region-based 
classification subnetwork, and a semantic segmentation 
subnetwork. On the basis of the input images, the back-
bone network creates feature maps; the RPN generates 
a category-agnostic region of interest (RoI) from the 
extracted feature maps. Using ROI alignment, we can 
extract the region feature map by extracting the features 
that correspond to the ROI. In the detection branch, 
these region features are used for object classification 
and bounding box registration. For pixel-level segmen-
tation, the region features from the detection branch of 
the prediction phase will be updated to the mask branch 
based on the prediction regions.

In our study, we first extracted the feature map of LR 
from the cropped image tiles, then the orthomosaic was 
cropped into image blocks and finally stitched after rec-
ognition to obtain the distribution map of LR. The yield 
of the distribution area was calculated based on the aver-
age weight of each plant.

In this work, the ResNet-50 and ResNet-101 are used. 
This work also compares Mask R-CNN with different back-
bone networks, and the results are shown in Additional 
file 1: Table S1. Taking the ResNet-50 as an example, first, 
the image is cropped to a size of 512 × 512 by using bilinear 

Fig. 8 Image annotation by Labelme software. A Image tile. B Manual labeling. C Display after labeling
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Fig. 9 Mask R-CNN network structure and workflow
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interpolation and then input to the ResNet network to con-
struct some candidate RoI regions for each element point 
of each layer of the feature map in the image pyramid, with 
the long and short dimensions of the RoI regions consisting 
of two-by-two combinations of (0.5, 1, 2) scales and (8, 16, 
32, 64, 128) lengths. The RoI regions in total 15 for a sin-
gle element point. Coordinate regression and foreground 
and background classification are performed for each RoI 
region separately by using the RPN network. For each real 
region, matching RoI regions are selected, and the regions 
judged as foreground are ranked according to the intersec-
tion of union (IoU) and the output score of the RPN net-
work. The RoI regions with the highest IoU and the highest 
score are selected as the matching regions for the real 
regions and classification networks for training.

Evaluation metrics
Model evaluation metrics
As the format of the COCO dataset [65] was adopted in 
our dataset, four evaluation metrics, mean average preci-
sion (mAP50), mean average recall (mAR) and F1-score 
(balanced score), are used to verify the effectiveness of 
ResNet-50 and ResNet-101. AP is the average of all the pre-
cisions of the IoU threshold. AR represents the average of 
all recalls with an IoU threshold being in the range of 0.5 
to 0.95. The precision, recall and F1-score are calculated as 
follows:

where TP represents positive samples correctly identified 
as positive, FP represents negative samples incorrectly 
identified as positive, and FN represents positive samples 
incorrectly identified as negative. Precision reflects the 
proportion of positive samples predicted to be positive 
by ResNet, and recall is used to assess how many positive 
samples were correctly predicted out of the total positive 
samples.

Automatic evaluation metrics
The multifold cross validation step was performed to 
explore the efficacy of the LR automatic counting after 
determining the final FPN [66, 67]. UAV images of S1 and 
S2 were randomly assigned to one of four splits. In each 
cross-validation, we repeated the experiments five times, 

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2×
precision+ recall

precision+ recall

and the average mean absolute error, accuracy,  R2, and root 
mean squared error were used as evaluation metrics:

where ti , ti, and pi represent the ground truth count for 
the i-th image, the average ground truth count, and the 
predicted count for the i th image, respectively; n repre-
sents the number of UAV images in the test set; MAE and 
Acc quantify the prediction accuracy; and R2 and RMSE 
assesses the model performance. The lower the values 
of MAE and RMSE are, the better the counting perfor-
mance, while the higher the values of Acc and R2 are, the 
better the counting performance.

Yield calculation
We collected the aboveground part of LR in the field, 
measured its length and width, brought it back to the 
laboratory for drying and then weighed it. The dry weight 
of aboveground parts was predicted by a linear regres-
sion model, and the measured length × width was the 
independent variable. Moreover, we collected 56 and 86 
LR plants from the S1 and S2 research areas, respectively, 
brought them back to the laboratory to dry and weighed 
them, and calculated the average weight of the LR in S1 
and S2. Finally, we used the Mask R-CNN model to pre-
dict the LR leaf area and number for S1 and S2 to calcu-
late the LR yield.
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