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Abstract 

Background:  Wheat is an important food crop globally, and timely prediction of wheat yield in breeding efforts can 
improve selection efficiency. Traditional yield prediction method based on secondary traits is time-consuming, costly, 
and destructive. It is urgent to develop innovative methods to improve selection efficiency and accelerate genetic 
gains in the breeding cycle.

Results:  Crop yield prediction using remote sensing has gained popularity in recent years. This paper proposed a 
novel ensemble feature selection (EFS) method to improve yield prediction from hyperspectral data. For this, 207 
wheat cultivars and breeding lines were grown under full and limited irrigation treatments respectively, and their 
canopy hyperspectral reflectance was measured at the flowering, early grain filling (EGF), mid grain filling (MGF), and 
late grain filling (LGF) stages. Then, 115 vegetation indices were extracted from the hyperspectral reflectance and 
combined with four feature selection methods, i.e., mean decrease impurity (MDI), Boruta, FeaLect, and RReliefF to 
train deep neural network (DNN) models for yield prediction. Next, a learning framework was developed by combin-
ing the predicted values of the selected and the full features using multiple linear regression (MLR). The results show 
that the selected features contributed to higher yield prediction accuracy than the full features, and the MDI method 
performed well across growth stages, with a mean R2 ranging from 0.634 to 0.666 (mean RMSE = 0.926–0.967 t ha−1). 
Also, the proposed EFS method outperformed all the individual feature selection methods across growth stages, with 
a mean R2 ranging from 0.648 to 0.679 (mean RMSE = 0.911–0.950 t ha−1).

Conclusions:  The proposed EFS method can improve grain yield prediction from hyperspectral data and can be 
used to assist wheat breeders in earlier decision-making.
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Background
Under climate change and global population growth, 
declining crop yields are putting the global food supply 
at risk [1, 2]. The development of many superior resist-
ant plant varieties through breeding efforts is an immedi-
ate solution. Improving yields is the primary goal of crop 
breeding programs [3]. However, yield is influenced by 
both quantitative and qualitative traits, and measuring 
yield in a large breeding population consisting of thou-
sands of genotypes can be time-consuming and laborious 
[3–5]. Secondary traits can help breeders predict grain 
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yield at early stages to reduce the time and cost [6], but 
the traditional manual trait survey methods are not effi-
cient. In recent years, developments in remote sensing 
and spectroscopy sensor technologies have facilitated the 
establishment of low-cost, high-throughput phenotyping 
platforms that can collect large amounts of data related 
to yield at different stages under various growth environ-
ments in breeding efforts [4, 6–8].

The spectroscopy of agriculture can measure different 
wavelengths of electromagnetic energy interacting with 
different parts of a growing plant [8]. The goal of spectral 
science is to quantify phenotypes through interactions 
between light and plants, such as reflected, absorbed, 
transmitted, and/or emitted photons [8]. The commonly 
used sensors in precision agriculture include hyperspec-
tral, RGB, multispectral, and thermal infrared [9–12]. 
Compared to other sensors, hyperspectral sensors cover 
many continuous bands, and they have been applied to 
estimate various crop parameters including yield, bio-
mass, leaf area index (LAI), and chlorophyll content [13–
15]. In addition to the raw bands, hyperspectral data can 
be also derived from integer and fractional-order deriva-
tives to reveal hidden information related to crop growth 
[15, 16]. The reflectance of electromagnetic energy at 
different wavelengths is usually summarized as the veg-
etation index [8], and it is further adopted to predict the 
physiological properties and agronomic traits of plants. 
Related studies combined a large number of vegetation 
indices in various wavelength regions to evaluate crop 
parameters [15, 17], and different vegetation indices can 
complement each other to provide more information 
related to plant growth.

The parsing of large data sets acquired by high-
throughput phenotyping platforms requires intensive 
computational and statistical analysis, which is a chal-
lenge for plant breeding programs [18]. Nowadays, many 
statistical and machine learning-based regression tech-
niques such as support vector regression, random for-
est regression and extreme learning machine have been 
applied to build predictive models of plant traits and 
achieve accurate predictions [15, 19–21]. As a subfield 
of machine learning, deep learning can automatically 
learn data representations with multi-layer architecture. 
The architecture supports complex nonlinear functions, 
which are learned from the hierarchical output of the 
previous layers [22]. Deep learning methods such as con-
volutional neural network , deep neural network (DNN), 
and residual neural network have achieved high accuracy 
in various regression and classification tasks in the field 
of precision agriculture [23–25].

To obtain accurate yield predictions and avoid model 
overfitting, machine learning algorithms often use fea-
ture selection methods to reduce the redundancy of the 

data [26]. Feature selection methods such as recursive 
feature elimination, Pearson correlation coefficient, ran-
dom forest-based mean decrease impurity, and partial 
least squares based variable importance in the projection 
have been used to estimate crop parameters ranging from 
alfalfa and soybean yield prediction to sorghum leaf chlo-
rophyll concentration estimation [3, 16, 17]. Each feature 
selection method has its unique focus, and most studies 
have utilized only a single feature selection method for 
modeling, which inspires this study to combine the char-
acteristics of multiple feature selection methods. Ensem-
ble learning such as stacking regression has gained a lot 
of attention in the machine learning community. Ensem-
ble learning achieves higher accuracy than base learners 
in the analysis of hyperspectral data. For the regression, 
the prediction accuracy of alfalfa yield was improved by 
combining stacking regression and hyperspectral vegeta-
tion indices and reflectance [17]. For hyperspectral image 
classification, both tangent space collaborative repre-
sentation classification (TCRC)-bagging and TCRC-
boosting ensemble methods outperform the individual 
classifier [27]. In addition, the deep ensemble method in 
classification and unmixing experiments of hyperspec-
tral data outperform base spectral and spectral-spatial 
deep models and classical ensembles employing voting 
and averaging as a fusing scheme [28]. The above stud-
ies demonstrate the superiority of the ensemble approach 
in processing hyperspectral data. Generally, higher het-
erogeneity among base learners helps to improve the 
accuracy of ensemble models [29]. Similarly, there are 
differences in the features selected by various feature 
selection methods, resulting in heterogeneity among the 
output predictions. Therefore, combining multiple fea-
ture selection methods in an ensemble pattern has the 
potential to obtain higher prediction accuracy than indi-
vidual feature selection methods and full features.

Based on the above descriptions, this study aim to (1) 
explore the potential application of hyperspectral veg-
etation indices and DNN in predicting wheat yield; (2) 
compare the yield prediction accuracy of individual fea-
ture selection methods and propose an ensemble feature 
selection (EFS) method; (3) identify the optimal stage for 
acquiring hyperspectral data at late wheat growth.

Materials and methods
Experimental design
This study adopted a panel of 207 varieties. During the 
growing season in 2018–2019, all varieties were culti-
vated at the research station of the Chinese Academy 
of Agricultural Sciences (CAAS) at Xinxiang (35°18′N, 
113°51′E; Henan Province, China) (Fig.  1) under two 
water irrigation levels, namely full and limited irriga-
tion. The field experiments were set up in randomized 



Page 3 of 13Fei et al. Plant Methods          (2022) 18:119 	

complete blocks with two replications. Each plot was 
4.2 m2 in size, with a dimension of 3 m × 1.4 m and six 
rows with a spacing of 0.2 m. Both irrigation treatments 
were irrigated with the same amount of water (250 
mm) at the tillering stage, while irrigation was contin-
ued for full irrigation treatment at the early jointing, 
heading, and early grain filling stages. The application 
of fertilizer was optimized based on the soil conditions 
in the area. All plants were harvested at physiological 
maturity using the combined harvester. The grain yield 
was measured at a grain moisture level of 12.5%. The 
workflow of this study is shown in Fig. 2. 

Hyperspectral data acquisition and processing
A high-spectral-resolution spectrometer (Fieldspec 3, 
Analytical Spectral Devices ASD, Boulder, CO, USA) 
connected with a 25° field of view fiber optic was used 
to collect the canopy reflectance of each plot from 350 
to 2500  nm. The visible-to-near-infrared range (350–
1000 nm) had a spectral resolution of 3 nm, while the 
shortwave infrared region had a spectral resolution of 
10 nm (1000–2500 nm). The sensor was placed 100 cm 
above the canopy in a nadir position and operated ver-
tically. The canopy reflectance was measured at four 
separate sites in each plot between 11:00 a.m. and 1:00 
p.m. local time on a clear day. For each site, ten read-
ings were taken, and the average of these 40 readings 
was taken to calculate the canopy reflectance of the 
plot. Before measuring canopy reflectance, a BaSO4 
calibration panel was used to estimate the incoming 
radiation and reflectance. This processing was con-
ducted every ten plots. Then, spectral measurements 
were carried out at flowering, early grain filling (EGF), 
mid grain filling (MGF), and late grain filling (LGF) 
stages. The View Spec software (ASD Inc, Boulder, 
CO, USA) was employed to eliminate noise from spec-
tral curves, calculate the average of numerous spectral 
curves, and generate a reflectance file. To eliminate 
noise during the spectrum collection process, the adap-
tive degree polynomial filter (ADPF) was used [30]. 
ADPF adds a statistical heuristic to the Savitzky–Golay 
method to improve signal fidelity while reducing statis-
tical noise. Following filtering, a database of 115 vegeta-
tion indices (Additional file 1: Table S1) was established 
as input features to the yield prediction model.

Deep neural network
In this study, the fully-connected feedforward DNN 
based on a multi-layer artificial neural network was 
used to analyze the effectiveness of the proposed 
EFS method, which has been applied to solve vari-
ous machine learning problems [22–24]. This study 
designed a fully-connected input layer and multiple 
hidden layers and connected them to a final fully con-
nected layer for the final regression to predict the grain 
yield (Fig. 3). A detailed description of DNN can refer 
to [31]. Search for appropriate hyperparameters is a key 
step in the implementation of DNN models. The hyper-
parameters (Table 1) were tuned for DNN by perform-
ing a grid search with tenfold cross-validation on the 
training dataset. The DNN model was implemented in 
R software using the H2O package (https://​CRAN.R-​
proje​ct.​org/​packa​ge=​h2o). 

Fig. 1  Test site location

Fig. 2  Overall workflow of this study. ADPF adaptive degree 
polynomial filter, CV cross-validation, DNN deep neural network, MDI 
mean decrease impurity, MLR multiple linear regression

https://CRAN.R-project.org/package=h2o
https://CRAN.R-project.org/package=h2o
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Feature selection method
In this study, four feature selection methods, namely 
MDI, Boruta, FeaLect, and RReliefF, were used to ver-
ify the effectiveness of the proposed EFS method. The 

impurity measurements to calculate the importance of 
various features [34]. When the random forest employs 
the Gini index as its impurity measurement, one such 
technique is referred to as MDI. Breiman [34] proposed 
to estimate the importance of a variable k for predicting 
y (i.e., grain yield) by cumulating the weighted impurity 
decreases (p(t) ∆i(st, t)) for all nodes t, and k is used and 
averaged over all NT trees in the forest in the following 
equation:

where p(t) represents the proportion Nt/N of a sample 
reaching t, and v(st) represents the variable used in split 
st.

Boruta
The Boruta algorithm is an extension of the idea pro-
posed by [35]. Boruta calculates the Z-scores for each 
input feature concerning the shading attribute [36]. In 
this study, the ranking of each vegetation index was 
determined based on its Z-score. The Z-score was calcu-
lated as follows [36]. First, generate a randomly ordered 
duplicate variable x′

t for a particular input vector, xv for 
increasing randomness and eliminating the correla-
tions between duplicate predictors and targets 

(
yt
)
 for a 

group of discrete inputs (xt ∈ Rn) , T and a target variable (
yt ∈ R

)
 with several inputs (n) and t = 1, 2, …T. Then, 

use the random forest algorithm to predict the target 
( yt ) with the duplicated input ( x′

t ) and actual input ( xt ). 
Finally, the variance importance measure, i.e., permuta-
tion importance or mean decrease accuracy (MDA) is 
calculated for each input xt and respective shadow input 
( x′

t ) overall trees as follows:

where I(∙) represents the indicator function; OOB repre-
sents the prediction error of each training sample based 
on bootstrap aggregation; yt = f (xt) represents predicted 
values before permuting; and yt = f

(
xnt
)
 represents pre-

dicted values after permuting. The Z-scores are calcu-
lated as:

where SD is the standard deviation of accuracy losses.

(1)MDIk =
1

NT

∑
T

∑
t∈T :v(st )=k

p(t)�i(st , t)

(2)MDA =
1

mtree

∑mree

m=1

∑
t∈OOBI

(
yt = f (xt)

)
−

∑
t∈OOBI

(
yt = f

(
xnt
))

|OOB|

(3)Z − score =
MDA

SD

Fig. 3  A schematic diagram of the deep neural work. h hidden layers

Table 1  Deep neural network hyperparameter tuning and the 
range for each hyperparameter

Model parameters Value

Units From 50 to 150 by a step of 10

Epochs 10

Hidden layers 3, 4, 5, and 6

Learning rate 0.005

Loss function Automatic setting

Regularization method Dropout

Activation function Rectified linear activation unit function

EFS method is based on the idea of ensemble learning. 
The four feature selection methods have different prin-
ciples, and they have achieved satisfactory accuracy in 
previous studies [14, 16, 32, 33], which is in line with 
the principles of diversity and adequacy of ensemble 
learning [29].

Mean decrease impurity
MDI is a random forest-based feature selection method. 
The random forest utilizes randomized decision trees and 
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FeaLect
FeaLect is a feature selection method proposed by [32] 
based on combinatorial analysis of least absolute shrink-
age and selection operator (LASSO). Let B be a random 
sample of size m, and it is generated by selecting with-
out replacement from the given training data D, where 
n =|D| and γ ∈ (0, 1) represents a parameter that con-
trols the size of the sample set. The Lars algorithm is 
applied to recover the entire regularization path using 
the training set B. Let FB

k  be a set of selected features by 
the LASSO when λ allows the selection of k features. The 
number of selected features is decreasing in λ, and we 
have:

For each feature f, a scoring mechanism was defined 
based on whether it is selected in FB

k :

(4)∅ = FB
0 ⊂ . . . FB

k ⊂ FB
k+1 ⊂ · · · ⊂ FB

d = F .

(5)SBk (f ) :=

{
1
k
if f ∈ FB

k
0 otherwise

,

The above randomized process was randomly cycled 
several times for various random subsets B to calculate 
the average score of f when k features were selected. 
Then, the sum of average scores was used to calculate the 
total score for each feature:

For features with a score of 0, the FeaLect program was 
rerun on them to ensure that the relative importance 
among all features was determined.

RReliefF
The RReliefF algorithm is an improvement on Relief 
[37]. It can solve noisy multi-class problems and regres-
sion problems and can handle incomplete data. RReliefF 
introduces probabilities that can be modeled by the rela-
tive distance between the predicted values of two obser-
vations, thus allowing to calculate the weights of features 
[14]. The pseudo code of RReliefF algorithm is shown in 
Algorithm 1.

(6)S
(
f
)
:=

∑
k
EB

[
SBk

(
f
)]
.
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where diff
(
A, Ij ,Ri

)
=

|value(A,Ij)−value(A,Ri)|

(Amax−Amin)
 , value 

(
A, Ij

)
 

is the value of A attributes for samples Ij and Ri , and Amax 
and Amin are respectively the maximum and minimum 
values of variable A for m samples.

Ensemble feature selection method
Instead of using a single machine learning method, 
ensemble learning builds and combines multiple learn-
ers to accomplish the learning task. This study referred 
to the idea of ensemble learning to combine models con-
structed by different feature selection methods to verify 
whether the EFS method can achieve better model per-
formance than individual feature selection methods.

First, according to the importance ranking of each fea-
ture selection method, features were input to the DNN 
in turn until the training error reached the minimum. At 
this time, the input features were considered the optimal 

Fig. 4  Structure of the proposed ensemble feature selection framework. B Boruta, CV cross-validation, DNN deep neural network, F FeaLect, FF full 
features, M mean decrease impurity, MLR multiple linear regression, R RReliefF

feature combination. Then, the four optimal feature com-
binations obtained by the four feature selection methods 
and full features were taken to train five DNN models. 
Finally, the predictive capability of these five models 
was combined through a modeling framework similar to 
stacking ensemble learning [38]. As shown in Fig. 4, the 
steps for the proposed EFS method are as follows:

(a)	 The original datasets of each feature selection 
method and full features are divided into a training 
dataset and a test dataset at the ratio of 4:1;

(b)	 For each DNN model at level-1, fivefold cross-val-
idation without stratification is performed to train 
and output the val_pre dataset for the validation 
dataset and test_pre set for the test dataset in each 
fold. The val_pre datasets are combined as the new 
training dataset and the test_pre sets are averaged 
as the new test set;
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(c)	 The new training set is adopted to train the final 
model by multiple linear regression (MLR) at 
level-2 through fivefold cross-validation. The final 
prediction for each fold on the new test dataset are 
output and then averaged to obtain the final predic-
tion.

In this study, the above process was repeated 20 times, 
and the average accuracy parameters of 100 tests gener-
ated in the cross-validation process were used to evaluate 
the model performance.

Model accuracy assessment parameters
Coefficient of determination (R2) and root mean square 
error (RMSE) were used to evaluate the accuracy of the 
yield prediction model. The calculation of R2 and RMSE 
are as follows:

where yi and ŷi are the measured and the predicted grain 
yield, respectively; y is the mean of the measured grain 
yield, and n is the total number of testing samples. A 
larger R2 and a smaller RMSE indicate a stronger predic-
tive capability of the model.

Statistical analysis
A mixed linear model was adopted to test the significance 
of variation between genotypes, irrigation treatments, 
and their interactions for the measured and predicted 
grain yield. The equation of the model is as follows [39]:

where Y is the response demonstrated by fixed effect (β) 
and random effect (µ) with a random error (ε); X and Z 
denote fixed and random effects, respectively. Broad-
sense heritability refers to the percentage of genetic vari-
ation to the total variation in the phenotype, with a value 
between 0 and 1. The heritability of 0 and 1 indicate that 
the phenotypic variation is entirely influenced by envi-
ronmental and genetic factors, respectively. The herit-
ability was calculated by the following formula:

where r represents the number of replications per treat-
ment; σg

2 and σε
2 are the genotypic and error variances, 

respectively.

(7)R2 = 1−

∑n
i=1

(
ŷi − yi

)2
∑n

i=1

(
yi − y

)2

(8)RMSE =

√∑n
i=1

(
ŷl − yi

)2

n

(9)Y = Xβ + Zµ+ ε,

(10)H2 = σ 2
g /

(
σ 2
g + σ 2

ε /r
)
,

Results
Descriptive statistics of measured wheat yields
The descriptive statistics and distribution of measured 
yields from both irrigation treatments are shown in Fig. 5. 
The resulting mean yield values for the full and limited 
irrigation treatments were 9.64 and 7.79 t ha−1, respec-
tively. Compared to the limited irrigation treatment (1.11 
t ha−1), the yield under full irrigation treatment had a 
wider range of distribution with a higher standard devia-
tion (1.43 t ha−1). Meanwhile, the results of the Shapiro–
Wilk test (P ≤ 0.05) indicated that the yields under both 
irrigation treatments were normally distributed.

Feature selection results
The 115 vegetation indices were ranked according to the 
results of the MDI, Boruta, FeaLect, and RReliefF meth-
ods, respectively. The detailed ranking of vegetation indi-
ces is shown in Additional file 1: Table S2–S5. The results 
show that there are differences in the ranking of vegeta-
tion indices among the four feature selection methods. 
Meanwhile, the performance of some vegetation indices 
was stable and excellent. For example, the Datt8, PWI, 
Datt7, DPI, PRI, PRI_norm, mREIP, and REP_Li ranked 
in the top 30 for all four feature selection methods at the 
flowering stage (Additional file  1: Table  S2–S5). These 
better-performing indices form the basis for the model’s 
outperformance.

Vegetation indices were added to the DNN model in 
turn according to the ranking result, and the model train-
ing error (RMSE) was updated until all 115 indices were 
included to further investigate the features with superior 
performance. Note that in this procedure, the default 
hyperparameters of DNN in the h2o.deeplearning func-
tion were used to improve the efficiency of feature selec-
tion. With the input of more features, the training error 
of the DNN model first declined to the minimum and 

Fig. 5  Distribution of wheat yield under full and limited irrigation 
treatments
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then slightly increased (Fig. 6). The training error of the 
MDI method was the lowest at all measured stages. Fur-
thermore, the MDI method achieved the lowest error 
with the minimum number of features at the early, mid, 
and late grain filling stages. The performances of the 
remaining feature selection methods varied across the 
stages. For each feature selection method, the number 
of features that contributed to the lowest training error 
was selected to develop the ensemble feature selection 
model. The Venn diagram (Fig. 7) was used to represent 
the number of features that are common and unique to 
multiple feature selection methods. 

Performance of yield prediction model
To validate the model adaptability, the prediction accu-
racy based on the selected features, full features, and 
the EFS method on the test set was analyzed, the accu-
racy statistics are illustrated in Fig.  8. As for the fea-
ture selection methods at the flowering stage, the MDI 
method yielded the highest mean R2 of 0.636 (mean 
RMSE = 0.964 t ha−1), followed by the Boruta method 
(mean R2 = 0.627, mean RMSE = 0.977 t ha−1) and the 
FeaLect method (mean R2 = 0.617, mean RMSE = 0.990 
t ha−1). Compared to full features (mean R2 = 0.604, 
mean RMSE = 1.006 t ha−1), the prediction accuracy 

based on the RReliefF method was slightly lower (mean 
R2 = 0.589, mean RMSE = 1.030 t ha−1). The best pre-
dictive performance for the EGF stage was achieved by 
the MDI method with a mean R2 of 0.634 and an RMSE 
of 0.967 t ha−1, followed by the Boruta method (mean 
R2 = 0.612, mean RMSE = 0.995 t ha−1). Also, the Fea-
Lect method (mean R2 = 0.608, mean RMSE = 1.001 t 
ha−1) obtained a similar predictive result to the RReliefF 
method (mean R2 = 0.607, mean RMSE = 1.003 t ha−1). 
Besides, full features yielded the lowest mean R2 of 0.570 
(mean RMSE = 1.046 t ha−1). The best predictive per-
formance for the MGF stage was also achieved by the 
MDI method (mean R2 = 0.666, mean RMSE = 0.926 t 
ha−1), followed by the Boruta method (mean R2 = 0.658, 
mean RMSE = 0.938 t ha−1), the RReliefF method (mean 
R2 = 0.643, mean RMSE = 0.958 t ha−1), the FeaLect 
method (mean R2 = 0.639, mean RMSE = 0.963 t ha−1), 
and full features (mean R2 = 0.616, mean RMSE = 0.992 
t ha−1). Different from the first three stages, at the LGF 
stage, the Boruta method achieved the highest prediction 
accuracy (mean R2 = 0.643, mean RMSE = 0.957 t ha−1), 
followed by the MDI method (mean R2 = 0.639, mean 
RMSE = 0.962 t ha−1). The prediction performance of the 
FeaLect method (mean R2 = 0.624, mean RMSE = 0.982 
t ha−1), the RReliefF method (mean R2 = 0.627, mean 
RMSE = 0.979 t ha−1) and full features (mean R2 = 0.622, 
mean RMSE = 0.985 t ha−1) was similar.

Compared to the individual feature selection method 
with the highest prediction accuracy, the EFS method 
improved the mean R2 to 0.648, 0.650, 0.679, and 0.652 
respectively for the stages of flowering, EGF, MGF, and 
LGF, and the values of RMSE decreased. In the EFS 
method, MDI contributes more, and the regression coef-
ficients assigned within MLR were higher in all periods 
(Fig. 9).

Analysis of yield prediction value
The predicted wheat yield under both irrigation treat-
ments was output by the EFS method. The wheat yield 
under full irrigation treatment was significantly higher 
(P ≤ 0.0001) than that under limited irrigation treat-
ment for all measured stages (Fig. 10). ANOVA (Table 2) 
revealed that genotypes, treatments, and the interactions 
of genotype and treatment had significant effects on the 
predicted yield for all measured stages, which was con-
sistent with the measured yield. Similar to the measured 
yield (H2 = 0.63), the H2 of the predicted yield was high, 
with the value of 0.73, 0.71, 0.77, and 0.62 for the stages 
of flowering, EGF, MGF, and LGF respectively under the 
two irrigation treatments, suggesting that most of the 
phenotypic variation was determined by genetic factors. 

Fig. 6  The training accuracy of the deep neural network model as 
a function of the number of features. EGF early grain filling, MGF mid 
grain filling, LGF late grain filling, MDI mean decrease impurity



Page 9 of 13Fei et al. Plant Methods          (2022) 18:119 	

Discussion
The application of canopy hyperspectral data to predict 
crop yields in precision agriculture management is not 
new [3, 14, 17]. However, the similarity of traits among 
many breeding lines will lead to a heavy workload and 
make it difficult to perform accurate monitoring [40]. The 
traditional method of collecting phenotypes reduces the 
efficiency of selecting superior breeding varieties [11]. 
Hyperspectral remote sensing method with high spec-
tral resolution can obtain continuous and fine spectral 
profiles of terrestrial objects at wide-range wavelengths 
[41]. Compared with RGB and multispectral data, hyper-
spectral data contains rich information related to plant 
growth and can help to detect minor differences between 
various breeding varieties [11].

Previous studies have shown that the full bands 
of hyperspectral reflectance contribute higher yield 

prediction accuracy than the vegetation index set [8, 
14], but the ultra-high dimensionality of the full bands 
makes the program run much longer. Considering the 
strong collinearity and information overlap among a 
large number of vegetation indices composed of hyper-
spectral data, choosing appropriate input features plays 
an important role in reducing the dimensionality and 
improving the prediction accuracy. Recent developments 
[42, 43] in hyperspectral image analysis based on deep 
learning and feature selection have inspired us to develop 
improved feature selection algorithms for crop yield 
evaluation using hyperspectral vegetation indices. In this 
study, four feature selection methods and a newly pro-
posed EFS method were applied. MDI has been widely 
used for crop phenotype assessment [16, 24], the results 
showed that the MDI method performed better among 
the four feature selection methods at all growth stages. 

Fig. 7  The Venn diagram of the selected features for each feature selection method. a flowering, b early grain filling, c mid grain filling, and d late 
grain filling. MDI mean decreasing impurity
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Fig. 8  The statistical distributions of the yield prediction accuracy of various feature selection methods. EGF early grain filling, MGF mid grain filling, 
LGF late grain filling, MDI mean decrease impurity, FF full features, EFS ensemble feature selection
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The MDI score was calculated based on node impurity, 
which measures the homogeneity of the variable [16]. 
Our selected vegetation indices use a wide band inter-
val, which makes vegetation indices vary widely from 
each other. In addition, since MDI is a tree-based scor-
ing measure, the problem of multicollinearity is avoided, 
and the selected features are simple and efficient [16]. 
Compared to MDI, only a few studies have investigated 
the effectiveness of Boruta in estimating crop parameters 
[33, 36]. The Boruta method in this study showed a pre-
dictive performance second only to MDI (at the stages 
of flowering, EGF, and MGF) or comparable to MDI (at 
the LGF stage). The excellent performance of MDI and 
Boruta methods proves the effectiveness of random for-
est algorithms in selecting features. The FeaLect method 
has only been used in the diagnosis of lymphoma and has 
achieved satisfactory classification results [32], and this 
study is the first to deal with the regression problem. Fea-
Lect obtained better prediction results than RReliefF and 
full features and showed its potential in estimating crop 
parameters. Although the RReliefF algorithm performed 
well in previous report [14], its performance in this study 
was only higher than the full features. The advantage of 
the RReliefF method is that it does not require train-
ing, which helps to save program execution time. As a 
deep learning method, DNN has shown high prediction 
accuracy in evaluating crop yields and has advantages in 
handling large samples of complex nonlinear data [23]. 
Although deep learning models are generally consid-
ered to be good at extracting information from raw fea-
tures, this study suggests that feature engineering in deep 
learning is still beneficial. Previous studies have also per-
formed feature selection by combining remote sensing 
data and DNN to predict crop yield [24].

Similar to ensemble learning, different feature selection 
methods may yield feature subsets that can be considered 
as local optima in the feature subset space, while EFS can 
combine the local optima in each feature subset to obtain 
a better model performance. The EFS method proposed 
by [44] selects the top-ranked features of multiple feature 
selection methods to improve prediction accuracy. A new 
EFS method based on stacking regression was proposed 
in this study. The results showed that the proposed EFS 
method improved prediction accuracy at all growth 
stages and made good predictions of wheat yield. Mean-
while, the significant differences between treatments 
and varieties indicated the practical value of the ensem-
ble method in screening varieties (Table 2). Overall, the 
newly proposed EFS method maximizes the potential of 
the huge vegetation index dataset for crop yield predict-
ing, thus enabling the best yield trait-related information 
to be fully utilized. The unsatisfactory performance of 
RReliefF inspires future research to combine more model 

Fig. 9  The mean value of regression coefficients assigned to each 
feature selection method. EGF early grain filling, MGF mid grain filling, 
LGF late grain filling, MDI mean decrease impurity, FF full features

Fig. 10  Distribution of yield prediction values output by the 
ensemble feature selection method. EGF early grain filling, MGF mid 
grain filling, LGF late grain filling. *** significant at P ≤ 0.0001

Table 2  Analysis of variance for the predicted grain yield output 
by the ensemble feature selection method and the measured 
grain yield

EGF early grain filling, MGF mid grain filling, LGF late grain filling

*** significant at P ≤ 0.0001

Grain yield F-value H2

Genotype (G) Treatment (T) G × T interaction

Flowering 5.27*** 1789.08*** 1.59*** 0.73

EGF 5.43*** 1487.70*** 1.80*** 0.71

MGF 6.60*** 2334.92*** 1.68*** 0.77

LGF 4.64*** 2050.94*** 2.23*** 0.62

Measured 3.43*** 781.97*** 1.44*** 0.63
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training-based feature selection methods, such as recur-
sive feature elimination and variable importance in pro-
jection, to explore a more reasonable combination of the 
EFS method. To verify the adaptability of the proposed 
method, experiments will be conducted on other crops 
for future analyses.

Winter wheat canopy display different structural prop-
erties during the growth cycle, which affects the optical 
signal at different growth stages [45]. Therefore, the dif-
ference in collection time may result in some prediction 
errors of winter wheat yield. The middle and late stages 
of wheat growth were proven to have higher yield pre-
diction accuracy than the early stages [9, 19]. Our results 
indicate that the MGF stage achieved the highest predic-
tion accuracy, which helps to save the number of data 
collection and reduce the cost.

Conclusions
Pre-harvest insight to yield can help to reduce breeding 
efforts and optimize field management practices. Remote 
sensing platforms have been widely used to predict yield, 
which provides a fast approach for collecting data and 
reduces labor costs and problems associated with destruc-
tive sampling. This study developed an EFS method that 
combines multiple feature selection methods based on 
DNN and hyperspectral vegetation indices. The results 
indicated that the MDI feature selection method performs 
best in grain yield prediction among the four feature selec-
tion methods at most measured stages, followed by Boruta, 
FeaLect, and RReliefF. The EFS method outperformed 
all individual feature selection methods, and the highest 
accuracy was achieved at the MGF stage. Our study dem-
onstrated the efficacy of using hyperspectral vegetation 
indices and the proposed EFS method for predicting wheat 
yield. In future work, comprehensive studies will be con-
ducted in different environments to validate the transfera-
bility of this EFS method and identify the best combination 
of feature selection methods.
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