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Abstract 

Background:  As one of the most widely planted fruit trees in southern China, citrus occupies an important position 
in the agriculture field and forestry economy in China. There are many kinds of citrus diseases. If citrus infected with 
diseases cannot be controlled in time, it easily seriously affects citrus production and causes large economic losses. 
Timely monitoring of disease characteristics in the citrus growth process is important for implementing timely control 
measures. Citrus images are easily disturbed by environmental factors such as dust, low light, clouds or leaf shadows. 
This makes it easy for some disease spot features in citrus pictures to be obscured. Occluded lesions cannot be effec-
tively extracted and recognized. Second, similar characteristics of different diseases also make it difficult to distinguish 
the different types of diseases. However, the existing machine vision technology for identifying citrus diseases still has 
some difficulties in dealing with the above problems.

Results:  This paper proposes a new citrus disease identification framework. First, a citrus image enhancement 
algorithm based on the MSR-AMSR algorithm is proposed, which can enhance the image and highlight the disease 
characteristic information. The AMSR algorithm can also greatly alleviate the interference of clouds and low light 
on image lesions, making the image features clearer. Second, an MF-RANet network is proposed to recognize citrus 
disease images. MF-RANet is composed of a main feature frame and a detail feature frame. The main feature frame 
uses the cross stacking structure of ResNet50 and RAM to extract the main features in the citrus image dataset. RAM is 
used to extract the attention weight in the feature layer, which enables RAM to give higher weight to disease features. 
The detailed feature frame path uses AugFPN to extract features from multiple scales and fuse the main feature frame 
path. AugFPN enables the network to retain more detailed features, so it can effectively distinguish similar features in 
different diseases. In addition, we use the ELU activation function not only to solve the problem of gradient explosion 
and gradient disappearance but also to effectively use the negative input of the network. Finally, we use the label 
smoothing regularization method to prevent overfitting the network in the classification process. Finally, the experi-
mental results show that the highest detection accuracy of the network for Huanglong disease, Corynespora blight of 
citrus, fat spot macular disease, citrus scab, citrus canker and healthy citrus is 96.77%, 96.22%, 95.96%, 95.93%, 94.04% 
and 97.55%, respectively.

Conclusions:  The citrus disease algorithm based on AMSR and MF-RANet can effectively perform the disease detec-
tion function. It has a high recognition rate for different kinds of citrus diseases. With the addition of AMSR preprocess-
ing, RAM, AugFPN, ELU activation function and other structures, the MF-RANet network performance improves.
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Introduction
As one of the most widely planted fruit trees in southern 
China, citrus occupies an important position in the field 
of agriculture and forestry economy in China  [1, 1]. With 
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the continuous expansion of citrus market demand, its 
planting area is also increasing. This not only improves 
the citrus planting yield but also increases the probability 
of large-scale outbreaks of citrus diseases and economic 
losses [3]. There are many kinds of citrus diseases, and 
symptoms can appear in fruits, leaves, roots and other 
parts. Several disease symptoms may occur concurrently, 
which greatly increases the difficulty of judging the type 
of disease. At present, citrus disease diagnosis in China 
is based on the rich experience of fruit farmers. However, 
human judgement has problems such as strong subjec-
tivity, large error, and difficulty unifying standards, and 
it is not easy to find early symptoms. Therefore, devel-
oping a reliable identification method for citrus diseases 
is conducive to taking effective measures to prevent and 
control diseases in time, which is of great significance to 
citrus production.

Traditional disease recognition technology is usu-
ally based on global features such as the colour, shape 
and texture of the disease spot and multiple indica-
tors are selected to reflect the gap between the diseases. 
For example, Stegmayer et  al. [4] used 10 characteristic 
parameters of colour, shape and texture to detect diseases 
such as citrus canker, black spot and citrus scab. How-
ever, this method has the disadvantages that it is difficult 
to distinguish different categories when the indicators 
cross and overlap, and the illumination intensity eas-
ily blurs the characteristics. Zhang et  al. [5] proposed 
an apple defect detection method based on the fuzzy 
c-means algorithm and nonlinear programming genetic 
algorithm (FCM-NPGA) combined with multivari-
ate image analysis. The FCM-NPGA algorithm is used 
to segment the suspicious defect image. This effectively 
detects the apple defect image. Zhang et al. [6] proposed 
a citrus surface defect classification method based on 
machine vision. They combined the improved convolu-
tion neural network with state transition algorithm (STA) 
to identify citrus surface defects. Compared with tradi-
tional disease identification technology, neural networks 
show obvious advantages in identification. An improved 
citrus surface defect recognition method based on con-
volution (STA) and neural networks was proposed. The 
discrimination rate of 1,000 defective and nondefec-
tive citrus images reached 99.1%. However, this method 
is limited to the recognition of defective and nondefec-
tive citrus images. It still shows obvious deficiencies in 
distinguishing citrus diseases. Mohanty et  al. [7] con-
structed a method to recognize 26 plant disease images, 
including Huanglong disease images, based on a CNN 
and obtained a high overall recognition rate. The real 
environment is often different from the laboratory envi-
ronment. The collected images are easily affected by the 
surrounding environment, which affects the recognition 

accuracy of the network. Lin et al. [8] proposed a banana 
disease recognition model based on EM-ERNet, which 
improved the adaptability of the model to banana dis-
ease image samples. However, different kinds of diseases 
also have similar characteristics, and the characteristics 
are more difficult to distinguish due to the influence of 
image quality. The citrus symptoms in the early stage are 
not obvious, and there may still be problems that make it 
difficult to collect detailed features. Therefore, the main 
problems in recognizing citrus diseases are as follows. (1) 
The characteristics of citrus lesions in the image are not 
clear. In the real environment, the disease spots in citrus 
images are easily affected by dust, clouds or leaf shadows. 
When the ambient brightness is low, it is difficult to rec-
ognize and extract citrus lesions where the local bright-
ness is too low in the citrus image. The above reasons 
lead to the network not being able to extract the com-
plete disease information and reduce the accuracy of cit-
rus disease recognition. (2) There are similarities among 
different kinds of citrus disease spots. If similar lesions 
want to be accurately classified, it requires the network 
to extract detailed features with differences between dif-
ferent types. Detailed features are often easily lost in the 
extraction process, which easily affects the citrus disease 
recognition accuracy on the network.

To solve the problem that the disease features in the 
image are vulnerable to environmental interference, LV 
et  al. [9] used pulse coupled neural network (PCNN) 
image segmentation method based on minimum cross 
entropy to segment apple image. The recognition accu-
racy of Apple disease after segmentation is 93%. Zhang 
et al. [10] segmented the lesion and extracted the color, 
shape and texture features of the lesion. Then, the k-near-
est neighbor (KNN) classification algorithm is used to 
identify five kinds of corn leaves, and the recognition 
accuracy is more than 90%. Zhou et al. [11] proposed a 
fast rice disease detection method based on the fusion of 
FCM-KM and fast R-CNN to solve the problems of noise, 
blurred edges, large background interference and low 
detection accuracy in rice disease images. A two-dimen-
sional filter mask combined with a weighted multistage 
median filter (2DFM-AMMF) is used for noise reduction, 
and a faster two-dimensional Otsu threshold segmenta-
tion algorithm is used to reduce the interference of com-
plex backgrounds on target leaf detection in the image. 
Chen et  al. [12] used the binary wavelet transform and 
retinex algorithm to enhance and denoise the image, but 
the above two methods lose some overall image features 
when denoising and extracting important texture infor-
mation in the target object.

Therefore, this paper proposes the AMSR algorithm to 
enhance citrus disease images. The AMSR algorithm is 
improved based on the traditional MSR [13] algorithm. 
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Therefore, the AMSR algorithm inherits the advantages 
of the traditional MSR algorithm. It can not only enhance 
the overall brightness of the image but also has denoising 
ability. The AMSR algorithm removes some noise points 
generated by the equipment and environmental noise, 
such as clouds and dust, in citrus disease images. Sec-
ond, the uneven brightness distribution of the target in 
the image can be compensated by introducing the bright-
ness factor in the AMSR algorithm. Therefore, the AMSR 
algorithm can also realize local illumination in places 
with low local illumination in the image.

To solve the problem that the feature similarity and 
detail feature loss of citrus diseases affect neural net-
work recognition, Sankaran et  al. [14] used the mas-
sive accumulation effect of Huanglong disease leaves on 
starch. They used mid-range infrared spectroscopy to 
detect Huanglong disease. The classification accuracy 
of Huanglong diseased leaves, healthy leaves and defi-
cient diseased leaves reached more than 90%. However, 
the process of hyperspectral data acquisition is complex, 
and this method has difficulty meeting the requirements 
of orchard operations in practice. Liu et al. [15] proposed 
a real-time detection method of tomato grey spot under 
complex background. This method can effectively extract 
the early characteristics of tomato grey spot. Chen et al. 
[16] established a model for fruit classification based on 
a multiple optimized convolution neural network. The 
optimized convolutional neural network has a high rec-
ognition rate for fruit classification. The data acquisition 
process of deep neural networks is relatively simple, and 
it shows advantages in some visual recognition tasks. 
However, when the network layer is too deep, disappear-
ing or exploding gradient occurs. LV [17] and others used 
the PReLU activation function and AdaBound optimizer 
to improve convergence and accuracy when identifying 
corn leaf diseases. However, they do not have strong anti-
interference ability, and the network has a poor cogni-
tive effect on some similar fine-grained features of citrus 
diseases.

Therefore, aiming at the problem that there are simi-
lar characteristics among different citrus disease species 
and the details are easily lost, this paper constructs an 
MF-RANet model. The MF-RANet model contains two 
frame paths for feature extraction: the main feature frame 
path and the detail feature frame path. The main feature 
frame takes ResNet50 as the main structure of the net-
work and adds the attention mechanism [18–20]—RAM 
to extract the fine-grained features of the citrus diseases 
image. The detail feature frame uses the AugFPN feature 
fusion algorithm, which can preserve some detail fea-
tures while deepening the network. In addition, we use 
the ELU activation function not only to solve the prob-
lem of gradient explosion and gradient disappearance 

but also to effectively use the negative input part of the 
network. Finally, we use the label smoothing regulariza-
tion method in the classification output of the softmax 
function to prevent overfitting the network during clas-
sification. In the implementation process of this paper, 
the main contributions are as follows: a new citrus image 
enhancement algorithm, AMSR, is proposed. The AMSR 
algorithm adopts a Gaussian filter and the retinex [21] 
algorithm to realize three-channel global enhancement 
for the three colour channels after image decomposition. 
Second, the three enhanced colour channels are weighted 
and combined according to the frequency difference in 
the image. Finally, the brightness compensation factor is 
introduced for local and detail enhancement.

(1)	 To prevent the loss of detailed features and extract 
similar features among different citrus diseases, a 
new MF-RANet network is proposed to identify 
citrus diseases. The design is as follows:

(2)	 We use RAM for MF-RANet. RAM cross cascades 
the 1– 4 layers of ResNe50 with RAM blocks with 
the same residual structure, which can realize the 
residual structure with high depth and high width. 
This residual structure is conducive to extracting 
important features.

(3)	 We use the AugFPN feature fusion algorithm for 
MF-RANet. AugFPN can effectively reduce the 
loss of small citrus disease features by extracting 
and fusing features of multiple scales. The AugFPN 
structure and ResNet50 extract features together 
and can jointly realize size feature extraction.

(4)	 In MF-RANet network, we use ELU activation 
function instead of ReLU activation function. The 
ELU activation function can not only solve the 
problems of gradient explosion and gradient dis-
appearance in the network but also effectively use 
the negative input part of the network. Second, the 
effective activation brought by the ELU activation 
function can improve the network citrus disease 
recognition rate and convergence speed.

(5)	 We add label smoothing regularization after the 
softmax function of MF-RANet network. Label 
smoothing regularization can effectively prevent 
overfitting in the label smoothing network classifi-
cation process. Introducing label smoothing regu-
larization can effectively improve citrus disease rec-
ognition network accuracy.

(6)	 The average test recognition accuracy of the six 
citrus pictures was 96.87%, and the F1 score was 
96.56%. This method not only has a good effect on 
identifying citrus health and disease but also has a 
good effect on classifying citrus diseases with simi-
lar disease spots. The method in this paper can also 
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be used in public datasets with good effect. It can 
reduce the agricultural citrus loss due to disease. 
Rapid and accurate identification and classification 
of diseases can effectively reduce the loss of citrus 
to diseases in agricultural production.

A schematic diagram of citrus disease recognition 
is shown in Fig.  1 Schematic diagram of citrus diseases 
identification. First, the citrus disease image is enhanced 
through image preprocessing and the image is high-
lighted globally. Details and local enhancement are real-
ized at low local illumination or with shadows caused by 
clouds, dust and leaves. It can effectively reduce the inter-
ference of low illumination, clouds, dust and leaf occlu-
sion on the disease characteristics in the image. Second, 
the enhanced citrus disease image is widened. Finally, the 
amplified dataset is used to identify and classify citrus 
diseases through the MF-RANet network.

Materials and methods
Data acquisition
The dataset used in the experiment comes from 2 
sources: the dataset website and orchard collection. The 
dataset website includes the China Science Data Network 
[22] and digipathos Website [23]. A total of 736 images of 
5 common citrus diseases were carefully selected on the 
dataset website. The other source is in cooperation with 
Central South University of Forestry Science and Tech-
nology. The image data were collected from the economic 
forest and fruit production, study and research base 
jointly built by Central South University of Forestry Sci-
ence and Technology and Changsha Forestry Bureau. The 
camera model is a Canon EOSR, and its image pixels are 
2400*1600. We used a camera to take optical images of 
different diseases and normal citrus from different angles 
in the morning, middle and evening under sunny, cloudy 
and foggy weather conditions. The shooting background 
is the complex background of the orchard. Such photos 
can reflect many complex citrus growth situations in the 

orchard to ensure that the collected images are more 
representative. A total of 1772 images were finally col-
lected, including 482 samples with uniform illumination 
on sunny days, 531 samples with uneven illumination 
and 368 samples on cloudy days. A total of 391 samples 
were disturbed by clouds and dust. A total of 2525 images 
of five diseases and normal citrus were finally obtained 
through orchard collection and dataset websites. There 
are 687 samples with uniform illumination in sunny days, 
534 samples in cloudy days and 757 samples with uneven 
illumination. 557 samples disturbed by clouds and dust. 
Because a large number of datasets are needed for net-
work training, we enhanced the original citrus image and 
amplified the data by rotating, flipping, random clipping 
and brightness transformation. A total of 10,100 images 
were finally obtained in the database. Table  1 shows 
the categories and data distribution of citrus diseases 
selected in this paper, including healthy citrus, Huan-
glong disease, citrus Corynespora, citrus fat spot yellow 
spot, citrus scab and citrus canker.

Citrus image enhancement based on AMSR
A variety of citrus plants are planted in mountainous and 
hilly areas, which are prone to cloudy and rainy weather. 
In the process of collecting citrus disease images, the 
images may be disturbed by dust, clouds, low light and 
other environments. This may result in some lesions in 
the dataset being blocked or unclear. For example, in 
Fig. 3, citrus yellow dragon disease with fog and Corynes-
pora blight on citrus with low light. The disease charac-
teristics of some citrus were not obvious under low light 
and cloud occlusion. Due to the limitation of the citrus 
environment, the network citrus diseases identification 
accuracy is reduced to a certain extent. To help further 
improve citrus disease recognition accuracy in the fol-
low-up network, this paper uses the AMSR algorithm 
to enhance citrus disease images. The AMSR algorithm 
can effectively alleviate the interference of clouds and low 
light on the clarity of citrus disease spots. Figure 3 shows 

Fig. 1  Schematic diagram of citrus diseases identification
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that after image enhancement, the disease spot features 
in the citrus Huanglong image obscured by clouds and 
the Corynespora brightness of the citrus image in low 
light become clear and obvious. This is more conducive 
to the neural network for extracting the characteristics of 
subsequent citrus diseases.

In citrus image enhancement based on ASMR, first, the 
original image of citrus diseases is decomposed to obtain 
three RGB colour channels. Second, the incident compo-
nent of a single channel is estimated, and three Gaussian 
surround functions are constructed by using three scale 
parameters. The Gaussian surround function is used 
to filter the image channels, and then the weight coeffi-
cient is introduced to obtain the three-channel incident 
component weight of each region. Next, the reflection 
component is calculated. The reflection component is 
obtained by subtracting the original image from the illu-
mination component in the logarithmic domain. Finally, 
the R, G and B channels of the whole picture are restored, 
and the brightness compensation factor is added to 
repair and adjust the defect of colour distortion caused 
by contrast enhancement in local areas of the image. The 

schematic diagram of the AMSR algorithm is shown in 
Fig. 2, in which the original input image Fig. 2a is the cit-
rus yellow dragon disease image taken on cloudy days, 
Fig.  2b is the citrus scab image with uneven illumina-
tion on sunny days, and Fig. 2c is the citrus ulcer disease 
image with uniform illumination on sunny days. Finally, 
the enhanced images in three different cases are obtained 
by the AMSR algorithm. The operation process of the 
AMSR algorithm is divided into the following steps:

Image decomposition
The resulting citrus disease image is decomposed into 
three colour channels: R, G and B. Subsequent calcula-
tions are implemented in each channel.

Incident component estimation
(1) Single‑channel incident component estimation
The incident component reduces the high-frequency 
difference of the original fluctuating citrus diseases 
image, covers the disease features, blurs the edge 
details, and visually becomes a large black (homoge-
neous area). Due to the influence of incident light, the 

Table 1  Image quantity distribution of six citrus diseases

Disease rate Example Number Proportion (%) Weather conditions of the picture

Sunny Cloudy Foggy Uneven 
illumination

Normal citrus 1624 16.08 444 335 490 355

Huanglong disease 1696 16.79 459 353 509 375

Corynespora mildew 1891 18.72 510 401 557 423

Fat spot macular disease 1694 16.77 458 353 508 375

Citrus scab 1556 15.41 427 318 471 340

Citrus canker 1639 16.23 450 336 493 360
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resulting picture deviates from the inherent properties 
of the object, so it is necessary to eliminate the inter-
ference of incident light. Next, the Gaussian surround 
function is used to filter the three channels of the citrus 
disease image to estimate the incident light. The three-
channel Gaussian surround function can be expressed 
by the following formula:

In the formula, σ is the Gaussian surround scale, which 
is related to the overall smoothness of the Gaussian 

(1)G
(

x, y
)

=
1

2πσ 2
e

(

−
x2+y2

2σ2

)

function. The incoming and outgoing images are calcu-
lated by Fourier transform.

(2) Weight analysis of three channels
Three different weights represent different incident com-
ponents in different regions. Because different pixels are 
located in different regions, they have different weights. 
The pixel weight is determined by judging whether the 
pixel is in the image edge area carrying high-frequency 
information or in the homogeneous area carrying low-
frequency information. If the pixel is in the edge area 

Fig. 2  AMSR algorithm block diagram

Fig. 3  Comparison of citrus disease images before and after enhancement
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(carrying high-frequency information), the effect image 
with a smaller σ value has greater weight. If the pixels are 
in the homogeneous area (carrying low-frequency infor-
mation), the rendering with a larger σ value has greater 
weight. This article presents a new weight coefficient, the 
frequency comparison coefficient, which is calculated as 
follows:

σ is the standard deviation of the local area where the 
pixel is located. When the standard deviation of a region 
is small, the pixel value fluctuation in the region is very 
small, which means that the region where the pixel is 
located belongs to the homogeneous region. The arccot 
function is applied to σ to make the value in the homo-
geneous area larger, that is, the part with lower bright-
ness information in the homogeneous area is taken into 
account to make the image information more clearly 
visible. In contrast, the value in the edge detail area is 
smaller. The estimated three channel reflection image can 
be obtained by adding their respective weights to the fil-
tering results obtained on the three scales.

Acquisition of the reflection component
A given citrus disease image S (x, y) can be decomposed 
into two different images: reflected image R(x, y) and 
incident image L (x, y). The incident light is reflected on 
the reflected object and is reflected into the human eye 
after reflection of the object. The final formed image can 
be represented by the following formula:

where S (x, y) represents the image taken by the camera, 
L (x, y) represents the irradiation component of external 
light, R (x, y) represents the reflection component of the 
photographed object, and * represents simple multiplica-
tion. Then, a logarithmic operation is performed on the 
above formula, and the formula is as follows:

L (x, y) is approximately replaced by the convolution of S 
(x, y) and a Gaussian kernel. L (x, y) is the incident com-
ponent estimated above; then, R (x, y) can be expressed 
by the following formula:

In the above formula, S is the original input image, F is 
the Gaussian filter function, N is the number of scales, ω 
is the weight of each scale, and R represents the output 

(2)A = a1 cos
−1 (σ )+ a2

(3)S
(

x, y
)

= R
(

x, y
)

*L
(

x, y
)

(4)Log
[

R
(

x, y
)]

= Log
[

S
(

x, y
)]

− Log
[

L
(

x, y
)]

(5)
RMSRi =

∑N

n=1
ωnRni

=
∑N

n=1
ωn

{

logSi
(

x, y
)

− log
[

G
(

x, y
)

∗ Si
(

x, y
)]}

of the image in the log domain. Since the incident com-
ponent L (x, y) is obtained by Gaussian convolution, the 
reflected component can be obtained by using the above 
formula. Then, the weights of the filtered results on the 
3 scales are added to obtain the estimated illuminance 
image. ωk represents the weighting coefficient when the 
k-th scale is weighted, which needs to be met:

Channel merging and brightness compensation
The grey reflection components are combined and 
brightness compensated to restore the three colour chan-
nels of R, G and B, and the increased brightness compen-
sation factor is � . The formula is as follows:

Ij(x, y) refers to the R, G and B channels of the original 
image, and � refers to adjusting the brightness factors of 
the three bands. Through experiments, it is found that 
the effect of � taking 1 is better. The AMSR algorithm 
proposed in this article can enhance and preserve the 
edge information under low illumination based on ensur-
ing the image colour, and the principle of the algorithm 
is simple. The AMSR algorithm can solve the contradic-
tion that details and picture colours cannot be retained 
simultaneously, and its actual effect on image enhance-
ment is significantly improved compared with the MSR 
algorithm.

The comparison of citrus disease images in the AMSR 
enhancement algorithm before and after enhancement 
is shown in Fig. 3. Figure 3a shows the actual images of 
five diseases and healthy citrus taken in three scenarios: 
cloudy, even and uneven light on sunny days; Fig.  3b is 
the citrus image enhanced by AMSR:

Identification of citrus diseases based on MF‑RANet
Many kinds of citrus diseases have similar characteris-
tics. For example, both corynespora blight of citrus and 
fat spot macular disease in Fig. 3 have dark brown scar-
like concave small particles, and a few are yellow–brown 
spots. Yellow white upwards convex lesions were found 
in both citrus scab and citrus canker disease, and their 
distribution positions were relatively concentrated. There 
are also different imaging features in the early and late 
stages of the same disease. The location of early diseases 
is hidden, and the area is small. Therefore, recognizing 
citrus diseases is difficult and requires the use of a deep 
neural network to extract more detailed feature recog-
nition to achieve a higher degree of recognition. When 

(6)
∑N

n=1
ωk = 1

(7)Rj

(

x, y
)

=
Ij
(

x, y
)

I
(

x, y
) ∗ �
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using a deep neural network for feature extraction, the 
network deepens after reaching a certain depth, and the 
possibility of gradient degradation increases, which does 
not improve the classification performance. This leads to 
slower network convergence, lower accuracy, and easy 
loss of the main features. At this time, even if the dataset 
is increased, the classification performance and accuracy 
will not be improved. Therefore, we propose a new net-
work structure MF-RANet to solve the above problems. 
MF-RANet is composed of a main feature frame path and 
a detail feature frame path. They extract the main recog-
nition features and detailed features in citrus diseases.

The MF-RANet overall model built in this article is 
shown in Fig.  4. In the figure, the main feature frame 
path takes the ResNet50 network as the main body, and 
layers 1–4 in the ResNet50 network are represented as 
stages 1–4 in the figure. First, the attention mechanism is 
used to focus attention on some important or interesting 
information. Then, each layer of the ResNet50 network 
is cross stacked with four attention modules, and the 
resulting structure is Boxes 1–4 in Fig.  4. The resulting 
structure gives different weights to the feature informa-
tion processed in the ResNet50 network to filter out the 
unimportant information and extract the large available 
features required for the identification of citrus diseases. 
This process can effectively improve processing effi-
ciency and model performance. In addition, the detailed 
feature frame path extracts features in parallel with the 
main feature frame path in the graph, and all lead to the 
full connection layer. A feature fusion module is added 
on each layer of the main feature frame path in parallel. 
The micro features in each layer are extracted to obtain 
the detail feature layers of layers M1–4 in Fig. 4. Finally, 
the detailed features fused in layers M1–4 are input to 

the whole company layer and detected together with the 
large information features. This avoids the loss of small 
features to a great extent and optimizes the network 
performance. The experimental results show that the 
network structure composed of the main feature frame 
and detail feature frame plays an important role in cit-
rus disease recognition accuracy. In addition, we use the 
ELU activation function in the basic ResNet50 network 
to solve the problems of gradient disappearance and gra-
dient explosion. At the end of the network, we use label 
smoothing regularization to suppress the overfitting of 
the MF-RANet network and improve citrus disease clas-
sification accuracy.

Main feature box road
The main feature box is composed of each layer of the 
ResNet50 network and attention module. The following 
focuses on the ResNet50 and RAM structures.

1. ResNet50
ResNet is a network model proposed by He et  al. [24] 
in 2015. At present, it has surpassed a series of algo-
rithms, such as VGG [25], R-CNN [26], Fast R-CNN [27], 
and Faster R-CNN [28], in image classification and has 
become a basic feature extraction network in the field of 
general computer vision. ResNet50 uses a residual unit, 
which reduces the number of parameters and adds a 
direct channel in the network, increasing CNN’s ability 
to learn features [29]. It can solve the difficult problem of 
gradient vanishing network training in a deep network. 
Through this residual unit structure, the network learn-
ing goal can be simplified, and the classification accuracy 
can be improved, which has good portability.

Fig. 4  Schematic diagram of the MF-RANet model
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Each layer of the ResNet50 network contains 2 mod-
ules, an identity block and a convolution block. Convolu-
tion blocks can change the network dimension, but they 
cannot be connected in series; identity blocks are used to 
deepen the network and can be connected in series. With 
the deepening of the network level, the learned things 
become more complex, and the number of output chan-
nels increases. Therefore, while using identity blocks to 
deepen the network, it is also necessary to use convolu-
tion blocks to convert dimensions so that the features of 
the part in front can be transmitted to the feature layer 
in the back. Compared with previous networks, it is still 
one of the classic and used networks because of its few 
parameters, deep layers and excellent classification and 
recognition effect. However, for the problems that small 
features are easy to ignore and similar features are not 
easy to distinguish in the identification of citrus diseases, 
a single ResNet50 structure is still not enough. Therefore, 
this article improves upon ResNet50.

2. RAM
When people observe and recognize the target, they 
will focus on the prominent part of the target and 
ignore some global and background information. This 
selective attention mechanism is consistent with the 

characteristics of the discrimination part in fine-grained 
image classification. Then, in order to focus on monitor-
ing the different features of the citrus diseases image, this 
paper cross adds the residual attention mechanism in 
each layer of resnet50. The RAM can give higher weight 
distribution to the features containing disease identifi-
cation information. It can effectively improve the effect 
of fine-grained classification. There are two branches in 
RAM, namely, the mask branch and trunk branch. The 
trunk branch is convolution, and the mask branch out-
puts the attention feature map with the same dimension 
through feature map processing. Then, the characteristic 
graphs of the 2 branches are combined by point multi-
plication to obtain the final output characteristic graph. 
Finally, the RAM model is formed, as shown in Fig. 5. The 
structure and model construction of the RAM module 
are introduced below:

In the trunk branch structure, there are two convolu-
tions in the main RAM branch structure, and the input 
features are directly processed into the same size as the 
mask branch structure 7 × 7.

In the mask branch structure, the processing operation 
of the feature map includes a forward downsampling pro-
cess and an upsampling process. The downsampling pro-
cess ensures fast coding and obtains the global features 

Fig. 5  RAM schematic diagram
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of the feature map. Upsampling combines the extracted 
global high-dimensional features after upsampling with 
the features without downsampling to fuse the features of 
high and low latitudes. The specific operations are as fol-
lows: mask branch for fixed input, after multilayer con-
volution calculation, use maximum pooling to reduce the 
feature map dimension. The dimension is reduced until 
the width and height of the feature map reach the mini-
mum size of the network output feature map 7 × 7. Then, 
the width and height dimensions of the feature graph are 
expanded layer by layer by using the bilinear difference 
method and added to the previous features under the 
same dimension. The mask branching structure com-
bines global and local features to enhance the expression 
ability of the feature map.

The RAM model built from these 2 parts is described 
below. The trunk branch output characteristic diagram 
is Ti,c(x) . The output characteristic diagram of the mask 
branch is Mi,c(x) . Finally, the output characteristic dia-
gram of the attention module is Hi,c(x) ; the framework 
formula of the model is:

Mi,c(x) is the value in the [0,1] interval. Adding them to 1 
can well solve the problem of reducing eigenvalues pro-
posed in 1. In this part, the difference between this arti-
cle and the residual network is that the formula Hi,c(x)

=x+Ti,c(x) of the residual network learns the residual 
result between output and input, while in this article, 
Ti,c(x) is learned and fitted by a deep convolutional neu-
ral network structure. Combined with the results of the 
mask branch output, the important features in the out-
put characteristic diagram of Ti,c(x) can be strength-
ened, while the unimportant features can be suppressed. 

(8)Hi,c(x) = [1+Mi,c(x)] ∗ Ti,c(x)

Finally, the overlapping residual attention module and 
the residual block of ResNet50 can gradually improve the 
expression ability of the network.

Detailed feature box road (AugFPN)
The detail feature box is used to extract the detail fea-
tures by AugFPN feature fusion. As mentioned above, 
a network for identifying citrus diseases is proposed 
based on ResNet50. Although the features are extracted 
by convolution, after resampling again, some small pixel 
object features have been lost and cannot be recognized 
effectively. To ensure that the detailed features are not 
lost in the citrus disease recognition, the object features 
of any size can be effectively detected, and the correct 
recognition results can be obtained. Based on the main 
feature frame path, this article uses the AugFPN after the 
improved FPN [30] to add feature fusion. First, the con-
sistency monitoring mechanism is used to implement the 
same monitoring signal on these feature maps so that the 
laterally connected feature maps contain similar semantic 
information. Second, the residual features are enhanced, 
and the ratio invariant adaptive pool is used to extract 
different context information to reduce the information 
loss of the highest level features in the feature pyramid 
by means of residuals. Third, soft ROI selection is intro-
duced to make better use of ROI features at different pyr-
amid levels to provide better ROI features for subsequent 
location refinement and classification. A schematic dia-
gram of its principle is shown in Fig. 6. B1–4 in the figure 
represent the four feature layers added to the attention 
mechanism of ResNet50. M1–4 layers represent the aux-
iliary loss of 4 characteristic layers, and P represents the 
main loss. The same supervision signal is added to the 
features of each layer. The specific steps are as follows:

Fig. 6  Schematic diagram of the AugFPN fusion framework
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1. Consistency monitoring module
First, the feature pyramid is constructed based on the mul-
tiscale features (B1, B2, B3, B4) in the main feature box. 
The ROI characteristics of each level (M1, M2, M3, M4) 
are obtained through ROI align. Then, the ROI features of 
(M1, M2, M3, M4) are convoluted by 3 × 3 to obtain the fea-
ture pyramid (P1, P2, P3, P4) to generate multiple ROIs. A 
detector and a classifier are added after (P1, P2, P3, P4) each 
feature before fusion. These classification and regression 
parameters are shared at different levels, which can further 
force different feature maps to learn similar semantic infor-
mation outside the same monitoring signal. For more stable 
optimization, the weight is used to balance the auxiliary loss 
and original loss caused by consistent supervision. Formally, 
the final loss function formula is as follows:

Lcls,M and Lloc,M are the objective functions correspond-
ing to the auxiliary losses attached to (M1, M2, M3, M4). 
Lcls,P and Lloc,P are the original loss functions on the char-
acteristic pyramids (P1, P2, P3, P4). pM , dM and p , d are 
the predictions of the middle layer and the final pyramid 
layer, respectively. t∗, b∗ are basic fact category labels and 
regression targets, respectively. λ is the weight used to 
balance the auxiliary loss and the original loss. β is the 
weight used to balance classification and localization 
losses. Finally, these classification and regression param-
eters are shared at different levels, which can further 
force different features to map in the same monitoring. 
Learn similar semantic information outside the signal. As 
shown in Fig. 6 Schematic diagram of the AugFPN fusion 
framework (a), through the above measures, consistency 

(9)
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[
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(

pM, t∗
)

+ β
(

t∗ > 0
)

Lloc,M
(
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)]
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(
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)

+ β
(

t∗ > 0
)

Lloc,P
(

d, b∗
)

monitoring can reduce the semantic gap between differ-
ent scales of information.

3. Residual feature enhancement
AugFPN fusion proposes residual feature enhancement 
to reduce the loss of semantic information caused by 
the reduction in the number of channels through spatial 
information compensation. First, B4 is downsampled into 
three parts as large as B4 through adaptive pooling. Then, 
the four layers are fused into P5. The weight of each layer 
is α1,α2,α 3, which are 0.1, 0.2 and 0.3, respectively. After 
generating P5, it is combined with P4 by summation and 
propagated to other functions at a lower level. The resid-
ual feature enhancement structure is shown in Fig. 6b.

3. Soft ROI feature selection
First, because (P1, P2, P3, P4) each layer contains ROI fea-
tures, we use the adaptive spatial fusion module (ASF) to 
adaptively fuse ROI features. ASF generates different spatial 
weight maps for different levels of region of interest features 
and weights and fuses the region of interest features. The 
specific fusion process of different levels of features and the 
framework of adaptive fusion (ASF) are shown in Fig. 7.

Based on the above principles, AugFPN reduces the 
semantic gap between different scale features before feature 
fusion through consistency monitoring. In feature fusion, 
the ratio invariant context information is extracted by resid-
ual feature enhancement to reduce the information loss of 
feature mapping at the highest pyramid level. The soft ROI 
selection method is used to better realize feature extrac-
tion and fusion through adaptive spatial fusion. Then, they 
are integrated with the full connection layer of the network, 
which can effectively solve the common problem of losing 
small image features in the main feature frame.

Fig. 7  Fusion process of different levels of features and adaptive fusion framework diagram
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Mixed activation function—ELU function
The introduction of an activation function increases the 
nonlinearity of the neural network model. The nonlin-
ear expression ability of the activation function is strong. 
When the linear input is large, the output will not expand 
infinitely, which does not easily lead to gradient explosion. 
In addition, gradient descent can be effectively realized 
because the nonlinear activation function is differentiable. 
Traditional saturation activation functions such as sigmoid 
and tanh have the problem of gradient disappearance. This 
will make the convergence of the training network increas-
ingly slower.

The activation function used in the original ResNet50 
model is the ReLU [31] function. The linear and unsatu-
rated form of the ReLU function allows the ResNet50 
model to solve the problem of gradient disappearance in 
the positive region. However, if the input distribution after 
network initialization is not ideal, or a large gradient sud-
denly occurs in the training process, which affects the dis-
tribution of the next input, the distribution centre becomes 
negative. Then, most of the inputs in the ResNet50 model 
are negative. When the negative input is activated and 
zeroed, the gradient will not be obtained. Finally, the weight 
of the negative input cannot be updated.

In view of the above shortcomings of the ReLU function, 
we choose another improved ReLU-ELU activation func-
tion. The image and its derivative function are shown in 
Fig. 8:

The expression of the ELU function is:

The ELU function is consistent with the part where 
the ReLU function is greater than 0. When it is less than 

(10)f (x) =

{

x, if (x > 0)
α
(

ex − 1
)

, otherwise

0, the ELU function expression is α(ex − 1) . Thus, the 
ELU function still outputs when the input is negative. 
First, this ensures that the ELU function can inherit the 
advantages of the ReLU function and solve the problems 
of gradient explosion and gradient disappearance in the 
network. Second, when the input value of the ELU func-
tion is less than 0, the parameters can also be updated, 
which can effectively solve the problem of neuron death 
so that the negative part of the activation function can 
be used effectively. It can also make the network conver-
gence faster.

Label smoothing regularization
In neural network, because of too many model param-
eters, it is easy to cause overfitting of the model. Typical 
regularization methods such as L1, L2 and dropout [32] 
are used to suppress the overfitting phenomenon of the 
network due to too many model parameters. However, in 
citrus disease classification, we add the softmax function 
to calculate the probability that the input image belongs 
to each disease. Then, the image with the highest prob-
ability is used as the input of the disease category, and the 
cross entropy is used as the loss function. This leads to 
the maximum reward for correct classification and the 
maximum penalty for incorrect classification. Therefore, 
in the classification task, the phenomenon of overfitting 
easily exists. Therefore, in the MF-RANet network, this 
paper uses label smoothing regularization to alleviate the 
overfitting phenomenon in classification. The specific 
steps of label smoothing regularization are as follows:

In the citrus disease classification task, the confidence 
scores of citrus disease images corresponding to various 
diseases are obtained through the MF-RANet network. 
These scores are normalized by the softmax function 

Fig. 8  Image of the ELU function and its derivative function
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[33], and finally, the probability that the current input 
belongs to each category is obtained. The formula of the 
softmax function is as follows, where k represents a total 
of 6 citrus images (5 disease images and 1 health image):

Label smoothing changes the probability distribution 
into simple uniformly distributed noise. The formula is as 
follows: ε varepsilon is a small super parameter:

The cross entropy is

When training the MF-RANet network, the cross 
entropy of the prediction probability and label real prob-
ability is minimized to obtain the optimal prediction 
probability distribution. The prediction probability distri-
bution of the optimal fitting effect of label smoothing is:

The essence of label smoothing regularization is to sup-
press the output difference between positive and negative 
samples and smooth the label. The smoothed label can 
prevent the network from overlearning. This can effec-
tively alleviate the overfitting phenomenon.

ResNet50 is the basic network of the MF-RANe net-
work. Before the hidden layer of the ResNet50 network, 
there is a batch normalization layer to normalize the data. 
Therefore, the overfitting phenomenon of the network in 
training citrus disease samples is inhibited by batch nor-
malization. Unlike batch normalization regularization, 
the use of label smoothing regularization can effectively 
alleviate the overfitting phenomenon in the classification 
process.

Results
To analyse the effectiveness of the MF-RANet network in 
citrus disease identification and classification. We design 
experiments to compare the effectiveness of different 
models. However, because there are no clear standards 
and instructions for the specific codes and data seg-
mentation of other models, we have to reproduce their 
models independently and conduct comparative experi-
ments on the datasets we collected. In the comparative 

(11)qi =
exp (zi)

∑K
j=0 exp(zi)

(12)Pi =

{

(1− ε), f (i = y)
ε

K−1 if (i �= y)
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(1− ε) ∗ Loss, if
(

i = y
)
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(14)Zi =
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log (k−1)(1−ε)
ε+α
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(

i = y
)

α, if
(

i �= y
)

(

α can be any real number
)

experiment, the test sets of different models are com-
pletely consistent. This part includes the experimental 
environment, experimental device, effectiveness analysis 
of each module of the MF-RANet network, evaluation 
index, ablation experiment and comparison experiment 
between different models.

Laboratory environment
This paper constructs a neural network framework on 
Colaboratory, edits, compiles and runs the MF-RANet 
network on Colaboratory. The programming environ-
ment of the code is Python 3.7 and PyTorch. In addition, 
we use MATLAB to perform AMSR image enhancement. 
The hardware environment of the simulation experiment 
is a Google cloud disk GPU and Windows 10 (64 bit), in 
which the system memory is 32 GB.

Experimental settings
The homemade dataset used in this paper contains 6 cat-
egories of citrus: Huanglong disease, Corynespora blight 
of citrus, fat spot macular disease, citrus scab, citrus 
canker and healthy citrus. The size of the input image is 
224*224. This can improve the efficiency of image pro-
cessing technology and reduce the time for model train-

ing and classification. After image enhancement and 
image amplification, we obtained a total of 10,100 citrus 
images. The number of six types of images is evenly dis-
tributed, all in the range of 15–20%. The dataset in this 
paper is divided into a training set: verification set: test 
set = 6:2:2. There are 6060 citrus images in the training 
set. There are 2020 citrus images in the test set.

In deep learning training, the selection of super param-
eters is difficult and time-consuming. This is because the 
best combination of super parameters depends not only 
on the model itself but also on the software and hardware 
environment. The super parameters of the MF-RANet 

Table 2  Parameter Setting

Parameter category Parameter name Parameter setting

Adam Learning rate(0–20) 0.001

Learning rate(21–30) 0.005

Weight decay 1 × 10–4

Momentum 0.9

Input data parameters Size of input images (224,224)

Batchsize 32

Iteration epochs 200

Iteration number 3200
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network in this paper are shown in Table  2. Parameter 
Setting The Adam optimizer [34] is used in the model 
in this paper. The batch size of the experiment is set to 
32, the momentum parameter is set to 0.9, and the epoch 
number is set to 200. Each round has 190 iterations, 200 
epochs have 3200 iterations in total, and they are verified 
once every 1000 iterations. The weight attenuation value 
is 1× 10−4. The initial learning rate of the first 20 epochs 
is set to 0.001, and the initial learning rate of the last 10 
epochs is set to 0.005 to improve the fitting speed.

Effectiveness of AMSR
To verify the impact of the dataset after AMSR image 
enhancement on the classification performance, we use 
the MF-RANet network to train the dataset with image 
enhancement and the dataset without image enhance-
ment simultaneously. The image divisions in the training 
set, the dataset verification set and the test set with and 
without image enhancement are the same. When other 
configurations are the same, the experimental results are 
shown in Fig. 9.

It can be seen in Fig. 9 that in the training set without 
AMSR image enhancement, when the epoch is 75 times, 
the MF-RANet network converges, and the final train-
ing accuracy is 85.41%. After the training set of AMSR 
image enhancement, when the epoch is approximately 
75 times, the MF-RANet network converges, and the 
final training accuracy is 97.95% (+ 12.54%). Through the 
test, the final test accuracy obtained in the test set with-
out AMSR image enhancement is 84.69%. The final test 
accuracy obtained in the test set enhanced by the AMSR 
image is 96.23% (+ 11.54%). Although the epoch times of 
MF-RANet convergence in the two training sets are the 
same due to the same training model, the recognition 

and classification accuracy of the MF-RANet network 
enhanced by the AMSR image is significantly higher.

Therefore, after the dataset is enhanced by AMSR, the 
training accuracy of the MF-RANet network is signifi-
cantly improved. This shows that the AMSR algorithm 
makes the disturbed lesion features clearer after image 
enhancement. The clearer lesion features are easier to 
learn and recognize by the MF-RANet network.

Performance comparison experiment between the ELU 
activation function and other activation functions
To verify that among the different activation functions, 
the ELU activation function is the most helpful for 
improving the recognition rate of citrus diseases in the 
MF-RANet network. We designed a comparative experi-
ment of the influence of 5 activation functions on the 
network recognition rate and recorded the experimental 
results. The 5 activation functions selected in the com-
parative experiment are the tanh function [35], sigmoid 
function [36], ReLU function, leaky ReLU function [37] 
and ELU function. The tanh function and sigmoid func-
tion are traditional saturation activation functions, and 
the ReLU function is the activation function used by the 
original ResNet50 model. The leaky ReLU function and 
ELU function are activation functions improved based on 
the ReLU function. Both can be output in the interval less 
than 0, but the expression is different. First, this paper 
defines five networks with different activation functions 
but the same structure in the network: MF-RANet-1 
(tanh), MF-RANet-2 (sigmoid), MF-RANet-3 (ReLU), 
MF-RANet-4 (leaky ReLU) and MF-RANet (ELU). This 
paper trains the above five networks with different acti-
vation functions but the same structure in the network 
with the same dataset. We record the citrus recognition 
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Fig. 9  MF-RANet’s citrus disease training and test accuracy images in the AMSR-enhanced dataset and non-AMSR-enhanced dataset
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accuracy and convergence time of the above five net-
works in the training set and test set in Table  3 Train-
ing accuracy and test accuracy using different activation 
functions in MF-RANet.

The data in Table 3 Training accuracy and test accuracy 
using different activation functions in MF-RANet show 
that each activation function has different effects on the 
MF-RANet network. When there are saturated tanh and 
sigmoid activation functions in the MF-RANet network, 
the training accuracy and testing accuracy of citrus dis-
eases are greatly reduced, and the training time is greatly 
prolonged. This is because the phenomenon of gradient 
disappearance and gradient explosion under the action 
of the saturation activation function not only leads to the 
nonupdating of network parameters and reduce the rec-
ognition ability of the network but also greatly reduces 
the network training speed. In addition, according to our 
experimental data, the MF-RANet network significantly 
improves the recognition accuracy and training speed 
under the activation of leaky ReLU and ELU functions, 
but the effect of the ELU function is better. It is proven 
that the activation effect of the ELU function on the MF-
RANet network is more obvious.

Self‑contrast experiment
To verify the performance of the improved MF-RANet 
network, we used the original unmodified ResNet50 and 
the improved MF-RANet to experiment on the same 
training set, verification set and test set of AMSR in the 
same test environment. Table  4 shows the performance 
comparison between ResNet50 and MF-RANet.

Table 4 Performance comparison of ResNet50 and MF-
RANetshows that the training accuracy and test accu-
racy of the improved MF-RANet network are improved 
(+ 12.21%, + 11.81%). In terms of program running time, 
the training time of ResNet50 is 5 h 48 min 12  s, while 
the training time of the improved MF-RANet network is 
3  h 47  min 46  s. The total training time was shortened 
by nearly 2 h. This reflects that the improved model has 

better performance in terms of training cost. In addition, 
the number of parameters of our improved MF-RANet 
network is much smaller than that before (−  2  M). In 
summary, the performance of our improved model is 
greatly improved compared with that of the basic model. 
Its effectiveness is reflected not only in preventing over-
fitting to improve the test accuracy but also in the time 
cost of training, which is very practical.

Ablation experiment
To verify the effectiveness of each part of the MF-RANet 
network, we performed ablation experiments on the cit-
rus image dataset enhanced by AMSR images. Taking 
ResNet50 as the backbone, RAM (R), AugFPN (a) the 
ELU activation function (E) (replace the activation func-
tion in the original ResNet50 with the ELU function as 
ReLU) and label smoothing regularization (L) are added. 
By comparing the test accuracy of the network for each 
kind of disease and the training time of the network, the 
performance of each module is analysed. The overall 
ablation experiment is shown in Table 5.

As seen from Table  5, the recognition rate of citrus 
diseases based on ResNet50 is the lowest among the six 
models. The average citrus test accuracy of the ResNet50 
model increased (+ 3.28%, + 2.98%, + 6.77%, + 6.93%), and 
the training time decreased after adding the ELU activa-
tion function, label smoothing regularization, RAM and 
AugFPN (−  54ʹ38ʺ, −  59ʹ39ʺ, −  17ʹ02ʺ, −  19ʹ08ʺ). The 
size of the model is reduced (−  0  M, −  0  M, −  0.8  M, 
−  1.2  M). According to the rising data, the contribution 
of the four parts to the recognition rate in the MF-RANet 
network is AugFPN > RAM > ELU > label smoothing. 
Because ELU can inhibit gradient disappearance and gra-
dient explosion, label smoothing can inhibit overfitting, 
and AugFPN and RAM can reduce parameters, the train-
ing time of the four models is shorter than ResNet50.

Compared with the recognition accuracy of 6 kinds of 
citrus images in the MF-RANet network, the recognition 
rate of healthy citrus images is the highest. The image 
recognition rates of the MF-RANet network for citrus 

Table 3  Training accuracy and test accuracy using different 
activation functions in MF-RANet

Methods Training 
accuracy 
(%)

Test accuracy (%) Training time

MF-RANet-1(tanh) 76.70 75.41 6 h 21 min 05 s

MF-RANet-2(sigmoid) 79.73 79.06 6 h 15 min 41 s

MF-RANet-3(ReLU) 93.10 92.49 4 h 45 min 53 s

MF-RANet-4(leaky 
ReLU)

95.54 94.13 4 h 17 min 30 s

MF-RANet (ELU) 97.95 96.87 3 h 47 min 46 s

Table 4  Performance comparison of ResNet50 and MF-RANet

Method ResNet50 MF-RANet

Training accuracy 85.74% 97.95%

Testing accuracy 85.06% 96.87%

mAP 79.49% 90.27%

FPS 49 88

GFLOPs 4.12G 6.1G

Training time 5 h 48 min 12 s 3 h 47 min 46 s

Model size (MB) 26 M 24 M



Page 16 of 21Yang et al. Plant Methods          (2022) 18:113 

canker and citrus scab are similar and lower than those 
of other diseases. This is mainly due to the high similar-
ity of disease texture features between citrus canker and 
citrus scab. However, the recognition accuracy of the 
MF-RANet network for these 2 diseases is still higher 
than that of the other networks in the table for citrus 
canker and citrus scab. It still shows that the detailed 
feature frame designed in this paper has an effect on the 
identification of these 2 diseases with high similarity and 
improves the identification degree of similar features.

Comparative experiment between the MF‑RANet model 
and other networks
To compare the classification performance between the 
MF-RANet model and the neural network model. We 
compared the performance of eight models and tested 
the same dataset in the same experimental environment 
(the dataset has been enhanced by AMSR). During the 
experiment, we trained 8 networks for comparison from 
0. Because there is no description of all codes and specific 
data of all networks, it creates repeatability problems. We 
have to reproduce most of these models independently 
and compare them when the datasets are completely con-
sistent. We built the environment, reproduced the code, 
sorted out the dataset, trained the model and counted 

the training results we needed. The recognition accuracy, 
training time and model size of each model correspond-
ing to each citrus image are filled in Table  6 The train-
ing and testing accuracy, training time, model size and 
GFLOPs of 8 models corresponding to citrus images. In 
this experiment, the experimental models we selected 
include the basic models MF-RANet, CNN, AlexNet 
[38], VGG16, and DesnseNet121 [39] and relatively new 
models, including NTS-Net [40], DFL-Net [41], and 
BSNet [42].

Compared with the CNN, AlexNet, VGG16, 
DenseNet121, NTS-Net, DFL-Net, BSNet and MF-
RANet models, the disease identification accuracy of the 
MF-RANet model proposed in this paper is generally 
higher than that of the other networks. This shows that 
the disease identification ability of the MF-RANet model 
built in this paper is higher than that of other com-
mon networks. Although the GFLOP values of VGG16, 
DenseNet121, NTS-Net, and DFL-Net are higher than 
those of the MF-RANet network, the final training time 
is much longer than that of the MF-RANet network 
because the network parameters of the above four mod-
els are too large. Thus, the value of the MF-RANet model 
in the current neural network model is verified.

Table 5  Ablation Experiment

Network Normal 
citrus 
(%)

Huanglong 
disease (%)

Corynespora 
blight of 
citrus (%)

Fat spot 
macular 
disease (%)

Citrus scab 
(%)

Citrus canker 
(%)

Average 
testing 
accuracy (%)

Training 
time

Model size 
(MB)

ResNet50 86.24 84.26 86.65 86.27 83.70 83.24 85.06 5:48ʹ12ʺ 26 M

ResNet50(E) 90.76 89.67 88.19 87.40 87.65 86.37 88.34 4:53ʹ40ʺ 26 M

ResNet50 + L 89.47 89.39 89.02 86.57 86.31 87.48 88.04 4:48ʹ33ʺ 26 M

ResNet50 + R 93.21 92.10 92.76 91.83 90.96 91.00 91.82 5:31ʹ10ʺ 25.2 M

ResNet50 + A 92.99 92.04 92.71 92.26 90.29 91.65 91.99 5:29 ʹ04ʺ 24.8 M

MF-RANet 97.55 96.77 96.22 95.96 93.93 94.04 96.87 3:47ʹ46ʺ 24 M

Table 6  The training and testing accuracy, training time, model size and GFLOPs of 8 models corresponding to citrus images

Network Average training 
accuracy (%)

Average testing 
accuracy(%)

Training time Model size (MB) GFLOPs

CNN 65.84 68.36 10: 14ʹ57ʺ 0.6 MB 0.009

DenseNet121 83.74 82.39 7: 21ʹ55ʺ 14.15 MB 2.8

AlexNet 73.17 73.29 19: 34ʹ28ʺ 61 MB 0.7

VGG16 81.35 83.14 8: 00ʹ49ʺ 138 MB 15.5

NTS-Net 87.91 85.73 7: 38ʹ04ʺ 230 MB 17.81

DFL-Net 90.56 91.75 7: 04ʹ24ʺ 255 MB 18.6

BSNet 91.44 90.07 6: 51ʹ32ʺ 179 MB 15.03

MF-RANet 97.95 96.87 3: 47ʹ46ʺ 24 MB 6.1
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Performance verification experiment of the MF‑RANet 
model under different datasets
To better verify the performance of the MF-RANett 
model, we found a total of 1,860 images of the same 6 
kinds of citrus diseases on the PlantVillage [43] dataset. 
Among them, there were 285 images of citrus split skin 
disease, 313 images of citrus oil spots, 288 images of cit-
rus sunburn, 305 images of citrus sand skin disease, 315 
images of citrus black rot and 354 images of healthy cit-
rus. The size of the input image is 224*224. After image 
enhancement and image amplification, we obtained a 
total of 7,440 citrus images. The dataset was divided into 
a training set: verification set: test set = 6:2:2. We used 
these 7740 images to carry out the supplementary experi-
ment of citrus disease recognition.

The experimental results are shown in Fig.  10. In 
Fig. 10, the curve in the figure shows the training and test 
recognition accuracy of six citrus images on the PlantVil-
lage dataset. When epoch = 65, the training and testing 
accuracy curves converge and flatten. The highest train-
ing accuracy was 97.13%, and the highest test accuracy 
was 96.06%. This shows that our network structure can 
also achieve a better recognition effect on other kinds of 
citrus diseases in the PlantVillage dataset.

Evaluating indicator
In fact, it is one-sided to only rely on classification accu-
racy to determine whether the model is truly effective. 
Therefore, this article selects the F1-score and its cor-
responding recall, precision and corresponding confu-
sion matrix of 6 different citrus images as the evaluation 
index. The F1-score is the measurement function of pre-
cision and recall, and its calculation formula is as follows:

(15)F1 =
2PR

P+ R

In Formula (15), P represents precision, and R repre-
sents recall. The precision in the evaluation index is dif-
ferent from the accuracy of citrus recognition above in 
meaning and value. Precision in the evaluation index rep-
resents the average value obtained after calculating the 
correct prediction rate of each of the 6 disease predic-
tion samples. TP in Formulas (16) and (17) represents the 
number of citrus disease samples predicted to be class A 
and actually class A. FP represents the number of citrus 
disease samples that are not predicted to be class a but 
are actually class A. FN represents the number of samples 
of citrus diseases predicted to be class a but not actually 
class A. The F1-score is an index used to measure the 
accuracy of the binary classification model in statistics. 
It takes into account both the accuracy and recall of the 
classification model. The F1-score can be regarded as a 
weighted average of model accuracy and recall. Its maxi-
mum value is 1, and its minimum value is 0. The greater 
the value is, the better the model performance.

In this experiment, recall, precision and F1-score are 
selected to verify the performance of the model. This 
article selects the above 12 models compared with MF-
RANet and calculates their recall rate, precision and 
F1-score.

Figure  11 MF-RANet is the accurate numerical his-
togram of the recall rate, precision and F1-score of the 
above 12 models. The data in the figure are F1-scores 
of 12 models obtained according to recall rate and pre-
cision. The experimental results show that the F1 value 
of the classification model in this article has reached the 
expected level of the experiment, which proves the cor-
rectness of the above discussion and analysis.

In the machine learning field, the confusion matrix 
is also called the possibility table or error matrix. It is a 
specific matrix used to visualize the performance of the 
algorithm, usually supervised learning (unsupervised 
learning, usually a matching matrix). Each column rep-
resents the predicted value, and each row represents the 
actual category. This is very important because in the 
actual classification, the TP value and FP value are the 
most direct indicators for determining whether the clas-
sification is correct. The F1-score value is the compre-
hensive embodiment of these two indicators. We selected 
and compared the confusion matrices of MF-RANet, 

(16)P =
TP

TP+ FP

(17)R =
TP

TP+ FN
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Fig. 10  Recognition accuracy of citrus disease training and testing 
on the PlantVillage dataset
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Fig. 11  MF-RANet and other network model evaluation index histograms

Fig. 12  a–d Show the confusion matrices of MF-RANet, BSNet, ResNet50 and CNN, respectively
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BSNet, ResNet50, and CNN, as shown in Fig. 12a–d show 
the confusion matrices of MF-RANet, BSNet, ResNet50 
and CNN, respectively.

From the confusion matrix of the above four models, 
it can be seen that the MF-RANe model proposed in 
this paper has a good image recognition effect of citrus 
diseases. Compared with the ResNet50 network, CNN 
network and BSNet, the FP values of citrus canker and 
citrus scab with a large number of complex and similar 
characteristics in the MF-RANet model are significantly 
lower than those of the other models. This is because the 
algorithm of the MF-RANet model tends to pay more 
attention to the main features and the features that retain 
the detailed features and filter out the useless informa-
tion. The decrease in the FP value increases the recall 
rate of these 2 kinds of disease identification. According 
to Eq. (15), under the same precision, the increase in the 
recall rate eventually increases the F1 value. Therefore, 
experiments show that the MF-RANet model is more 
powerful in terms of integrity and has a good effect on 
improving the F1 value. In the same experimental envi-
ronment, our algorithm is more suitable for citrus dis-
ease recognition than other classification models.

Discussion
Through the above experiments, it can be seen that the 
AMSR preprocessing + MF-RANet network designed in 
this article has a good effect in realizing the identifica-
tion of citrus diseases. However, the network designed 
in this article still has some defects, so the recognition 
rate of all types of diseases cannot reach 100%. AMSR 
preprocessing improves the retinex algorithm to achieve 
image enhancement, and the retinex algorithm also has 
a certain denoising effect. 2. Therefore, in AMSR pre-
processing, the denoising process causes the loss of some 

features. Although there are detail feature frames in the 
MF-RANet network to reduce the loss of detail features, 
it can only reduce the details lost in the main feature 
frame. It cannot reduce the detailed features lost before 
entering the MF-RANet network. 2. Due to the imper-
fection of transmission media and recording equipment, 
digital images are often polluted by a variety of noise in 
the process of transmission and recording. Although 
the retinex algorithm in AMSR preprocessing can play a 
certain role in denoising, it cannot completely filter the 
noise, and the greater the noise generated by the picture 
is, the greater the impact on the recognition accuracy.

Therefore, this article adds different levels of noise 
to the test set of the dataset collected in this article 
and selects four models, AMSR + MF-RANet, BSNet, 
ResNet50 and CNN, for experimental analysis. After add-
ing salt noise and Gaussian noise, the accuracy of these 
models for citrus disease recognition is shown in Fig. 13.

Figure 13 shows that when two kinds of noise with dif-
ferent levels are added, the recognition accuracy of the 
AMSR preprocessing + MF-RANet network is the high-
est among the four methods as a whole. According to 
Fig.  13a and b, the recognition accuracy of the AMSR 
preprocessing + MF-RANet network decreases gradu-
ally with the improvement of the noise level. However, 
among the four different levels of noise interference, the 
change is the slowest. This shows that among the four 
networks, the AMSR preprocessing + MF-RANet net-
work has the strongest anti-interference ability to noise. 
The reason is that the retinex algorithm in AMSR pre-
processing also has a certain denoising function in image 
enhancement. However, because the enhancement func-
tion of AMSR preprocessing is significantly greater than 
the denoising function, the recognition rate decreases 
with the improvement of the noise level.

Fig. 13  a Recognition accuracy of each network after adding Gaussian noise. b Recognition accuracy of each network after adding salt noise
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Conclusions
With the progress of deep learning and computer vision 
technology, image recognition, image analysis and other 
fields have been widely studied. In recent years, crop dis-
ease image recognition and management based on deep 
learning have also been widely used. To improve citrus 
yield, ResNet50 was improved in this paper. From the test 
results of the improved model, we can see that.

1.	 To eliminate the interference of environmental fac-
tors such as low local illumination or shadows caused 
by clouds, dust and leaves, the AMSR enhance-
ment algorithm designed in this paper can not only 
brighten the citrus disease image overall but also 
enhance the local illumination where the local illu-
mination is low, make the features of the input image 
more obvious and reduce the difficulty of recogni-
tion.

2.	 The RAM and AugFPN feature fusion method is 
used to enhance the model parameters and improve 
the detection ability of the model. In the MF-RANet 
network, RAM used in the main feature frame and 
AugFPN used in the detail feature frame have a 
residual structure, which can effectively broaden the 
width of ResNet50. In this article, label smoothing 
regularization is used to improve the generalization 
ability of the whole network. Additionally, the ELU 
function is selected to improve the anti-interference 
ability of the network.

3.	 Through the comparison of MF-RANet and many 
other models, it is found that the citrus disease rec-
ognition effect of MF-RANet combined with AMSR 
pretreatment is the best in the selected network, and 
the recognition rate of different kinds of citrus dis-
eases is the highest.

4.	 According to the experimental results in Fig. 10 Rec-
ognition accuracy of citrus disease training and test-
ing on the PlantVillage dataset, when MF-RANet is 
applied to the PlantVillage dataset, the accuracy of 
citrus disease identification can also be effectively 
improved by applying MF-RANet to other datasets. 
This is of great significance to the application level of 
citrus disease identification. Compared with the tra-
ditional ResNet50 model, the MF-RANet network 
designed in this paper can not only greatly reduce 
the number of parameters and improve the operation 
efficiency but also improve its recognition accuracy. 
This can also reduce the occupation of hardware 
resources and verify the effectiveness of the model.

In life, the network designed in this article is benefi-
cial for fruit farmers to accurately control the disease 
situation of citrus orchards. For example, some diseases 

are not easily detected by human beings. Through 
machine identification, the spread of diseases can 
be strangled at the onset in time to reduce economic 
losses as much as possible. In addition, the model can 
also play an important role in foreign trade exports and 
economic growth. In the follow-up, the model will be 
tested in real life, improved and applied to society as 
soon as possible to contribute to the economic produc-
tion of citrus.
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