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METHODOLOGY

Protocol: a simple method for biosensor 
visualization of bacterial quorum sensing 
and quorum quenching interaction 
on Medicago roots
Amanda Rosier* and Harsh P. Bais 

Abstract 

Background:  Defining interactions of bacteria in the rhizosphere (encompassing the area near and on the plant 
root) is important to understand how they affect plant health. Some rhizosphere bacteria, including plant growth 
promoting rhizobacteria (PGPR) engage in the intraspecies communication known as quorum sensing (QS). Many 
species of Gram-negative bacteria use extracellular autoinducer signal molecules called N-acyl homoserine lactones 
(AHLs) for QS. Other rhizobacteria species, including PGPRs, can interfere with or disrupt QS through quorum quench-
ing (QQ). Current AHL biosensor assays used for screening and identifying QS and QQ bacteria interactions fail to 
account for the role of the plant root.

Methods:  Medicago spp. seedlings germinated on Lullien agar were transferred to soft-agar plates containing the 
broad-range AHL biosensor Agrobacterium tumefaciens KYC55 and X-gal substrate. Cultures of QS and QQ bacteria as 
well as pure AHLs and a QQ enzyme were applied to the plant roots and incubated for 3 days.

Results:  We show that this expanded use of an AHL biosensor successfully allowed for visualization of QS/QQ 
interactions localized at the plant root. KYC55 detected pure AHLs as well as AHLs from live bacteria cultures grown 
directly on the media. We also showed clear detection of QQ interactions occurring in the presence of the plant root.

Conclusions:  Our novel tri-trophic system using an AHL biosensor is useful to study QS interspecies interactions in 
the rhizosphere.
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mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Dissecting the interactions within the rhizo-microbi-
ome is a major focus for defining the activities of plant 
beneficial bacteria. Plant growth promoting rhizobac-
teria (PGPR) have long been studied individually and 
described by their specific plant growth promoting traits 
(e.g., antibiotic, siderophore or secondary metabolite pro-
duction) [1, 2]. One feature of interest is the widespread 

bacterial intraspecies communication utilizing extracel-
lular signal molecules known as quorum sensing (QS). 
Populations of bacterial cells coordinate community 
level activities in a conditionally responsive manner to 
produce extracellular autoinducer (AI) molecules. These 
AIs modulate transcription of genes (via transcriptional 
regulators) for behaviors ranging from motility, biofilm 
formation and virulence [3].

The most comprehensively studied family of QS AI 
signals are the N-acyl homoserine lactones (AHLs) pro-
duced by a variety of different Gram-negative bacteria 
[4]. AHL signal molecules are uniquely recognizable 
due to their differing N-acyl chain lengths, degrees of 
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saturation, and various substitutions on the 3rd carbon 
[5]. AHL-based QS is recognized as having an influence 
on other species, families and kingdoms of organisms 
occupying the rhizosphere [6–9]. As such, QS is a valua-
ble target for research on interactions in the rhizosphere.

In the rhizosphere, AHLs are ubiquitous, but generally 
short-lived [10]; genera of known AHL producing bacte-
ria include Pseudomonas, Rhizobium and Sinorhizobium 
[11]. The transient nature of AHLs is likely attributable 
to enzymatic degradation mechanisms found in both 
AHL and non-AHL producing bacteria [12]. Quorum 
quenching (QQ) of AHL signal molecules was first iden-
tified in a Bacillus sp. through the lactonase enzyme AiiA 
[13] which cleaves the lactone ring. QQ has been shown 
to inhibit both the virulence of plant pathogens [14–16] 
and the QS controlled nodulation efficiency of symbiotic 
Sinorhizobium meliloti [17, 18]. The AHLs of plant path-
ogens have been proposed as specific targets through QQ 
as a biocontrol mechanism either through PGPR applica-
tion or transgenic plant expression of lactonases [6, 19, 
20].

QS and the critical role of AHL signaling in control-
ling bacterial activities is of great interest across the 
spectrum of health and environmental sciences. As 
such, constructs of bacteria which can sense and report 
the presence of AHLs (without producing endogenous 
AHLs) have been developed. AHL biosensors are useful 
for detection, localization, and relative quantification of 
AHLs in situ and in vivo. Markers implemented in these 
biosensors include naturally occurring products of QS 
as in the case for Chromobaterium violaceum CV026 
(pigment violacein) and introduction of luxCDABE into 
Escherichia coli from Vibrio fisheri [21, 22]. Other AHL 
biosensors are constructed in hosts such as E. coli, S. 
melilotii and Agrobacterium tumefaciens through fusions 
of uidA (ß-glucuronidase), lacZ (β-galactosidase) and gfp 
to AHL response elements from a variety of different QS 
bacteria [23–28].

Biosensors have proved to be particularly useful in 
querying QS and QQ in the rhizosphere microbiome. 
Different groups have used biosensors to identify AHL 
producing bacteria in the rhizospheres of Avena (wild 
oats) Arachis hypogaea (peanut), and Populus deltoides 
(Eastern cottonwood tree) [29–31]. Biosensors are also 
used to identify specific AHLs produced by PGPR [32] 
and to screen root isolates for QQ activity [11, 33, 34]. A 
recent protocol from Begum et al. [35] presents a more 
streamlined approach to screening for AHLs by plac-
ing detached rice root samples collected from the field 
directly on agar containing C. violaceum CV026 and A. 
tumefaciens NTL1 AHL biosensors [35].

Using biosensors has several advantages in screen-
ing rhizosphere isolates for AHL production and 

degradation. As noted by Shaw et al. [36], AHL biosen-
sors allow for rapid, sensitive detection of AHL mole-
cules without the need for specialized equipment such 
as a mass spectrometer, spectrophotometer, or fluores-
cent microscope [36]. One disadvantage has been the 
requirement for multiple different biosensor strains to 
adequately encompass detection of the large range of 
different AHL molecules produced by rhizobacteria. 
Researchers have used combinations such as C. vio-
laceum CV026 for short chain detection and either C. 
violaceum VIR07 [33] or A. tumefaciens NTLR4 for 
long chain detection [30, 32]. This approach increases 
the time and complexity of AHL biosensor protocols.

AHL biosensors are clearly a powerful tool for iden-
tification of QS bacteria and characterizing the types 
of AHLs produced. However, the full potential of this 
technique could be expanding by using AHL biosensors 
to observe interspecies interactions between different 
bacteria (e.g., QQ) and between QS bacteria and live 
plant roots. Recent work by [18] demonstrated QQ of S. 
meliloti AHLs by B. subtilis UD1022, likely through the 
lactonase enzyme YtnP [18]. Using the same bacterial 
interactions, we present a protocol using a single bio-
sensor strain suitable for visually assessing the presence 
of QS and QQ bacteria on Medicago truncatula A17 
plant roots. This technique represents a potentially val-
uable tool for observing QS and QQ bacterial interac-
tions in the rhizosphere as it incorporates the presence 
of live plant roots.

Methods
Preparation of seeds and seedling growth
Seeds of M. truncatula A17 ‘Jemalong’ were scarified 
in sulfuric acid for 6 min and sterilized in 70% ethanol 
for 1 min and 3% bleach for 10 min, rinsing thoroughly 
between each solution. Seeds were resuspended in ster-
ile water and placed on shaker at room temperature 
for 4  h, rinsing and replacing water every hour. After 
the final rinse seeds were resuspended in sterile water 
and placed in 4 °C for 48 h. Seeds were again rinsed and 
placed on sterile, empty 120 × 120 mm2 plates, sealed 
with Parafilm® (Bemis Company, Inc.) and germi-
nated vertically in dark conditions for 24  h. Seedlings 
were transferred onto Lullien medium [37] agar (25 ml 
of 1.3% agar) 120 × 120 mm2 plates and sealed with 
micropore tape. The ‘root’ portion of the plates were 
wrapped in foil and placed vertically in a growth cham-
ber (22  °C, 16:8 light/dark cycle) for 24  h. To reduce 
contamination, seed coats were gently removed with 
sterile tweezers; plates were resealed with micropore 
tape and grown for 2 more days.
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Preparation of bacteria for inoculation
QS strain
All strains used in this study are listed in Table 1. Rm8530 
carrying a plasmid resistant to spectinomycin was grown 
on TYC agar (5 g of tryptone, 3 g yeast extract, and 0.4 g 
of CaCl2/liter) with 50 µg ml−1 spectinomycin for 4 days 
at 28 °C. Colonies were re-suspended in 5 mL TYC with 
spectinomycin to OD600 ~ 0.5 and grown shaking for 3 h. 
Cells were washed once, resuspended in sterile water and 
diluted to OD600 = 0.2 in preparation for inoculation onto 
plant roots.

QQ strain
Spectinomycin resistance was introduced into the PGPR 
B. subtilis UD1022 (‘UD1022 ycbU’) through SPP1 phage 
transduction [38]. UD1022 ycbU was streaked onto LB 
agar plates with 100  µg  ml−1 spectinomycin and grown 
24  h at 37  °C. Colonies were re-suspended in 5  ml LB 
with 100 µg  ml−1 spectinomycin and grown shaking for 
3 h. Cells were washed once, resuspended in sterile water 
and diluted to OD600 = 1.0 in preparation to inoculate 
onto plant roots.

Biosensor strain
A. tumefaciens ‘KYC55’ pre-induced cells [39] were inoc-
ulated into minimal glutamate mannitol (MGM) [40] 
broth and grown shaking at 28 °C for 24 h. KYC55 cells 
were used to make X-gal soft agar following the protocol 
of Joelsson and Zhu  [41] with the following modifica-
tions: addition of final concentration 0.5  µM AVG (2- 
aminoethoxyvinyl glycine, ethylene inhibitor, Sigma) and 
50 µg ml−1 spectinomycin to MGM-based agar medium. 
AVG is a common additive to M. truncatula growth 
medium to prevent inhibition of nodule development by 
plant produced ethylene [42, 43]. Twenty-five ml KYC55 
soft agar was aliquoted per 120 × 120 mm2 plate and 
allowed to dry 30 min.

Assembly of the biosensor growth plates
Three-day old M. truncatula seedlings were transferred 
from Lullien medium plates to freshly poured KYC55 
with 50  µg  ml−1 spectinomycin and 0.5  µM AVG soft 
agar plates (5 seedlings per plate). Ten microliter drops 
of UD1022 ycbU were pipetted 1 cm below the root tips 
(‘UD1022 and Rm8530’ treatments) and allowed to dry. 

Ten microliter drops of Rm8530-spec were pipetted 
onto appropriate treatments (‘Rm8530’ or ‘UD1022 and 
Rm8530’ treatments). Sterile water was used for ‘control’ 
treatments.

Lactonase and oxo‑C16 AHL experiments
Purified UD1022 YtnP lactonase protein (UNC School 
of Medicine) was diluted in sterile phosphate buff-
ered saline (PBS) (8.0  g of NaCl, 0.2  g of KCl, 1.44  g of 
Na2HPO4, and 0.24  g of KH2PO4/liter) to 100  µg  ml−1. 
Aliquots were split with one set subjected to ‘heat treat-
ment’ at 100 °C for 15 min to inactivate the enzyme activ-
ity. Ten microliters of ‘YtnP’ and ‘YtnP heat killed (HK)’ 
were pipetted 1 cm below the root tip. N-3-oxo-hexade-
canoyl-L-Homoserine lactone (‘oxo-C16 AHL), Cayman 
Chemical, was selected as it is identified as one of a suite 
of AHLs produced by S. meliloti [44]. Oxo-C16 AHL was 
resuspended in methanol and diluted in sterile PBS to 
10  µM. Ten microliter drops were pipetted 1  cm below 
the root tip on top of the dried drop of ‘YtnP’ or ‘YtnP 
HK’. All treatments included one plate with bacteria or 
‘YtnP’ treatments only (without plants). Three replicate 
plates were included per treatment and experiments 
were repeated three times. Biosensor-plant treatment 
plates were incubated for 3 days in the growth chamber 
vertically as described in seedling growth. Six day after 
germination (DAG) seedlings on biosensor plates were 
documented through photography.

Results and discussion
This protocol presents a significant advancement in the 
application of an AHL biosensor due to its effectiveness 
in visualizing interspecies QS and QQ interactions on the 
plant root. QS is important in interspecies communica-
tion between plant and bacteria and QQ is a potential 
mechanism for plant pathogen biocontrol [6]. The goal 
of this protocol was to incorporate the antibiotic spec-
tinomycin to control for the influence of contaminating 
bacteria as well as enabling the visualization of QS/QQ 
interactions on plant roots. The biosensor A. tumefaciens 
KYC55 has multiple AHL response elements, allowing 
for the detection of a broad range of AHLs. The plasmids 
of KYC55 encoding the multiple AHL response elements 
also confer antibiotic resistance for spectinomycin, gen-
tamycin and tetracycline [39]. Though spectinomycin 

Table 1  Bacterial strains used in this study

Strain Description Reference

Rm8530-spec S. meliloti Rm8530 with PLS1 (spec resistance) This work

UD1022 ycbU B. subtilis UD1022 ycbU-spc-ImrB (intergenic resistance) Dr. Pascale Beauregard

KYC55 A. tumefaciens KYC55 (pJZ372)(pJZ384) (pJZ410) [39]
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has been reported to bleach M. sativa cultured cells [45], 
in this protocol, plants were initially grown without the 
antibiotic to ensure vigor. We observed no deleterious 
effects of 50 µg ml−1 spectinomycin to Medicago spp. for 
the short length of time required to carry out the experi-
ment. The addition of spectinomycin to the medium 
was tested without the presence of plants to validate the 
ability of the biosensor to respond similarly to QS signal 
molecules as without antibiotics (Additional file 1: Figure 
S1). Modifications of this method could include intro-
ducing gentamycin or tetracycline resistance to bacteria 
of interest due to the multi-antibiotic resistance of the 
KYC55 strain.

Application of the PGPR UD1022 and the symbiont 
Rm8530 to Medicago root zones on a substrate contain-
ing the biosensor KYC55 successfully visually reflected 
the presence of QS signals and QQ activity (Fig. 1). Fur-
ther, this technique allowed for the visualization of YtnP 
lactonase activity in the presence of live M. truncatula 
roots (Fig. 2). Recent work by [46] describes differences 
in M. truncatula root nodulation in response to AHLs 
depending on whether the field-sourced seeds were ster-
ilized with a suite of antibiotics [46]. The potential QQ 
of seed-borne bacteria in their system could be visual-
ized through replicating such experiments on KYC55 as 
described in this protocol.

Our protocol would be easily adapted to elucidate the 
QS and QQ interactions of rhizosphere bacteria on plant 
roots and for evaluating direct plant or root influence 
on QS bacteria. By omitting the antibiotic this proto-
col could be used to evaluate natural plant microbiomes 
from field grown plants. The advantage of using KYC55 
is its ability to detect a broad range of AHLs with both 
short and long chain lengths as well as 3-oxo derivatives 
[39]. Previous works would often implement two differ-
ent biosensor strains to fully profile the AHLs produced 

[30, 32, 33], whereas here, a larger spectrum of naturally 
occurring QS bacteria may be detected. This technique 
could also be used in to observe QS/QQ interactions of 
synthetic rhizo-microbiome consortia from mesocosm 
studies by designing the bacterial strains to have spectin-
omycin resistance.

Incorporating the whole plant in this assay allows 
for further research on both the response of plants or 
roots to QS bacteria or AHLs and to observe potential 
plant influences. Many studies over the past two dec-
ades have shown plants respond to AHLs, independ-
ent of the presence of bacteria, beneficial or otherwise 
[8]. Roots of Arabidopsis thaliana were elongated in 
the presence of short-chain AHLs [47]. Addition of 
long-chain AHLs significantly increased the number of 
symbiotic root nodules formed by the symbiotic mutu-
alist S. meliloti on its legume host M. truncatula [48]. 
Plant responses to pathogens has also been shown to 
be mediated by AHLs. Plant defense mechanisms such 
as ROS and SA accumulation were found to be primed 
in A. thaliana pre-treated with long-chain and short-
chain AHLs prior to pathogen challenge [8, 49, 50]. 

Fig. 1  Three day after germination (DAG) M. truncatula and bacteria on KYC55 biosensor plates co-incubated with treatment for 3 days. Seedlings 
are 6 DAG in figures. a Control plants without bacteria b Rm8530 applied to root zone and KYC55 response to Rm8530 AHLs c KYC55 response 
indicating quorum quenching of Rm8530 by UD1022

Fig. 2  Six day after germination (DAG) M. truncatula seedlings and 
YtnP lactonase on KYC55 plates. a Rm8530 and 100 µg ml−1 heat 
killed YtnP lactonase b Rm8530 and 100 µg ml−1 YtnP lactonase
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Applying this protocol into the experimental design 
for plant responses to AHLs could enhance the under-
standing of spatial and temporal interactions of AHLs 
with the plant root while also allowing for observations 
of root phenotypes.

Similarly, this protocol would be useful for observing 
potential plant effects such as QQ or quorum interfer-
ence (QI) on QS rhizobacteria and their AHLs. Several 
AHL ‘mimic’ molecules have been described as having 
an influence on bacteria in the rhizosphere. The marine 
algae Delisea pulchra was shown to produce halogen-
ated furones which can occupy the active site of LuxR 
protein AHL receptors and disrupt QS [51]. Calatrava-
Morales et al. [52] reported positive responses of suite 
of AHL bioreporters (not including KYC55) to pea root 
extracts, possibly detecting substances which could 
competitively inhibit AHLs [52]. Substances such as 
L-canavanine found in alfalfa and legume root exudates 
and rosmarinic acid are also reported as AHL mimics 
inhibiting QS [53, 54]. Many other plant natural prod-
ucts and phytochemicals, including phytohormones 
have also been reported to interfere with bacterial QS 
[19, 55–61]. In this system, we observed no detectable 
plant derived quorum signals (Fig.  1a) or quenching 
of S. meliloti AHL signal (Additional file 2: Figure S2). 
Adaptation of other AHL biosensors, AHLs or plants 
could also be incorporated into this assay to evaluate 
plant root influences on QS signals or QS rhizobacte-
ria. This method could also be suitable for evaluating 
transgenic plants expressing QQ enzymes [14, 62, 63], a 
technique proposed for control of QS plant pathogens.

Although the use of various mass spectroscopy and 
HPLC techniques [64–66] for AHL detection and iden-
tification is the gold standard, the relatively simple visual 
assays using AHL biosensors are most useful for screen-
ing and validation [67]. Here we demonstrate an effec-
tive protocol based on the foundations of AHL biosensor 
assays and could be applied toward multiple different 
lines of research. The comprehensive AHL responsive-
ness of the AHL biosensor KYC55 combined with the 
advantages of the low requirement for technical equip-
ment and the ability to broadly observe interspecies 
interactions makes this protocol extremely useful for the 
active field of QS research in the rhizosphere.
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Additional file 1: Figure S1. Spectinomycin resistant bacteria tests of 
the KYC55 biosensor. Left plate: top row is Rm8530-spec, bottom row is 
Rm8530-spec with UD1022 ycbU. Right plate: top row is Rm8530-spec, 
middle row is Rm8530-spec with 100 µg ml-1 YtnP, bottom row is Rm8530-
spec with 100 µg ml-1 heat killed YtnP.

Additional file 2: Figure S2. Six day after germination (DAG) M. truncatula 
seedlings do not QQ oxo-C16 AHL. Left plate: top row is Rm8530 alone, 
bottom row is 10 µM oxo-C16 AHL alone. Right plate: M. truncatula with 
10 µM oxo-C16 AHL.
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