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Abstract 

Background:  Automatic and accurate estimation of disease severity is critical for disease management and yield loss 
prediction. Conventional disease severity estimation is performed using images with simple backgrounds, which is 
limited in practical applications. Thus, there is an urgent need to develop a method for estimating the disease severity 
of plants based on leaf images captured in field conditions, which is very challenging since the intensity of sunlight is 
constantly changing, and the image background is complicated.

Results:  This study developed a simple and accurate image-based disease severity estimation method using an 
optimized neural network. A hybrid attention and transfer learning optimized semantic segmentation model was 
proposed to obtain the disease segmentation map. The severity was calculated by the ratio of lesion pixels to leaf 
pixels. The proposed method was validated using cucumber downy mildew, and powdery mildew leaves collected 
under natural conditions. The results showed that hybrid attention with the interaction of spatial attention and chan-
nel attention can extract fine lesion and leaf features, and transfer learning can further improve the segmentation 
accuracy of the model. The proposed method can accurately segment healthy leaves and lesions (MIoU = 81.23%, 
FWIoU = 91.89%). In addition, the severity of cucumber leaf disease was accurately estimated (R2 = 0.9578, 
RMSE = 1.1385). Moreover, the proposed model was compared with six different backbones and four semantic 
segmentation models. The results show that the proposed model outperforms the compared models under complex 
conditions, and can refine lesion segmentation and accurately estimate the disease severity.

Conclusions:  The proposed method was an efficient tool for disease severity estimation in field conditions. This 
study can facilitate the implementation of artificial intelligence for rapid disease severity estimation and control in 
agriculture.
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Background
Cucumber (Cucumis sativus L.) is the world’s third most 
consumed vegetable crop, with an annual production 
of over 83 million metric tons [1]. Disease is one of the 
leading causes that decrease cucumber quality and cause 
economic losses to farmers, especially when cucumber 
is highly susceptible to downy mildew and powdery mil-
dew. The disease severity is crucial in defining treatment 
plans and predicting crop loss. Accurate quantification 
of disease severity helps evaluate the efficiency of disease 
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control measures [2]. Therefore, it is essential to conduct 
disease severity estimation.

Visual estimation is the conventional approach to 
quantify the disease severity, which assign a severity 
value to the symptoms perceived by the human eye in 
the visible light range. Disease severity based on ratio 
scales is usually performed by manual estimation of the 
visual score according to the number and the area of the 
plants’ lesions [3]. It has been proved the most accurate 
tool for estimating the disease severity [4]. However, the 
visual estimation is not robust due to the heterogeneity 
of different disease symptoms and the subjective nature. 
Severity assessment based on digital image analysis can 
be accurate and repeatable, which is therefore widely 
used for disease severity assessment and consists of a 
similar process. First, background noises are eliminated 
using image preprocessing or through a manual opera-
tion [5]. Many researchers have combined color trans-
formation with mathematical morphology operations [6], 
thresholding [7], and filtering [8] to achieve lesion seg-
mentation. These algorithms are quick, easy to develop, 
and simple to implement under controlled conditions. 
However, disease images collected in field conditions 
contain a lot of noise, such as illumination and cluttered 
backgrounds, and the features are diverse and complex. 
Therefore, these methods tend to be limited in segment-
ing lesions in field conditions since they mainly rely on 
the manually-designed image features.

Deep Learning (DL) has emerged as the state-of-the-
art image processing technology, which can perform 
automatically-feature learning. The DL technology is 
widely used in medical segmentation [9], road detection 
[10], and disease diagnosis [2, 11–13], and has achieved 
satisfactory results. For the DL-based disease severity 
estimation, the methods can be roughly classified into 
three categories: classification-based, regression-based, 
and semantic segmentation-based.

The classification-based methods adopt convolutional 
neural networks (CNNs) and transform it into a clas-
sification problem by defining the severity categories 
or intervals. Wang et  al. classified the black rot severity 
into four categories: healthy, early stage, middle stage, 
and late stage [14]. The authors trained the VGG16 net-
work by transfer learning and achieved an accuracy of 
over 90%. Liang et al. proposed a deep learning method 
using ResNet50 as the base model and shuffle units as 
the auxiliary structure [15]. The method classified the 
disease severity into three categories (healthy, general, 
and severe type), achieving an overall accuracy of 91%. 
Esgario et al. used a similar classification-based method 
for severity estimation [16]. The accuracy for the five 
severity categories that were defined in this method was 
86.51%. Although accurate results were reported in the 

above studies, dividing severity percentages into multiple 
categories in field trials did not make it easy to assess the 
effectiveness of treatments, such as fungicides [3].

On the contrary, the regression-based and seman-
tic segmentation-based methods can yield the sever-
ity percentage, which is more informative. Zhang et  al. 
constructed a CNN model taking background-removed 
cucumber leaf images as input and the severity of cucum-
ber downy mildew as output, achieving an R2 of 0.9190 
[17]. However, we tested this model on a dataset of 
cucumber leaves with complex backgrounds, finding that 
it failed to accurately estimate severity. Semantic segmen-
tation has achieved remarkable results in crop segmen-
tation [2, 18] and disease lesion segmentation [19, 20]. 
Lin et al. achieved pixel-level segmentation of cucumber 
powdery mildew using the Unet with an average pixel 
accuracy of 96.08% [20]. After removing the backgrounds 
from the tomato disease images, Wspanialy et  al. also 
used the Unet for disease lesion segmentation [19]. The 
error of the severity estimation was 11.8%. These stud-
ies provide support for disease severity by semantic seg-
mentation. Gonçalves et  al. applied multiple semantic 
segmentation methods to laboratory-acquired images 
to assess severity [21]. The results showed that DeepLab 
V3 + performs better in severity estimation. However, 
images taken in field conditions will inevitably have clut-
tered backgrounds, thus reducing the severity estimation 
accuracy [22]. In light of these publications and results, 
Wang et al. designed a disease segmentation model with 
a two-stage architecture [22]. In this model, the cucum-
ber leaves and disease lesions are sequentially segmented. 
The severity of downy mildew is then classified based on 
the segmentation results, reducing the influence of com-
plex backgrounds. However, this two-stage segmentation 
approach costs more computing resources and increases 
the complexity of the severity estimation task. Therefore, 
exploring a straightforward, suitable, and efficient sever-
ity estimation method for cucumber disease images in 
field conditions is necessary.

In this study, an optimized DeepLab V3 + [23] seg-
mentation model is proposed to automatically estimate 
the severity of cucumber leaf diseases in field conditions, 
i.e., cucumber downy mildew, and powdery mildew. The 
residual network is used for feature extraction and the 
hybrid attention is incorporated to suppress background 
information and improve the ability to express lesion fea-
tures. Transfer learning is adopted to improve segmenta-
tion accuracy. Compared with the existing methods, the 
proposed method has three significant contributions that 
are summarized as follows:

•	 A pixel-level classification-based method is pro-
posed for direct and automatic severity estimation of 
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cucumber downy mildew and powdery mildew using 
images with complex backgrounds. By calculating the 
ratio of the lesion area over the leaf area, this method 
can accurately estimate the cucumber disease sever-
ity.

•	 A segmentation model based on a fine-tuned Dee-
pLab V3 + and a hybrid attention mechanism is 
proposed to improve the model’s ability to express 
lesions features. The model reduces the influence 
of complex backgrounds on the recognition perfor-
mance of lesions and healthy leaves and achieves 
accurate lesion segmentation.

•	 Comparison between the proposed method and the 
widely used attention mechanisms, backbones, and 
semantic segmentation models are performed. The 
relationship between the severity estimated by mod-
els and manual visual scoring is then quantified.

Materials and methods
Image acquisition and preprocessing
We collected the image data in the No. 5 daylight green-
house at the Agricultural Innovation Base of Tianjin 
Academy of Agricultural Sciences. A total of 153 images 
were collected from 8:00 to 17:00 on April 20, 2016, 
using a Nikon Coolpix S3100 digital camera in auto-
matic mode. We did not use optical zoom or flash dur-
ing the image acquisition. Image preprocessing was used 
to reduce computational costs and improve comput-
ing efficiency. Specifically, the image size was uniformly 
adjusted to 224 × 224 pixels.

The pixel-wise annotation of the diseased images is 
performed using MATLAB Image Labeler App (Math-
Works Inc., USA). The annotation process is shown in 
Fig.  1. During the image labeling, there might be more 
than one leaf in an image. Therefore, image labeling is 

Fig. 1  Image annotation process. Blue and yellow pixels indicate the leaf and the lesion, respectively. The rest of the image is the background
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performed only on the leaf at the center. The background, 
leaf, and disease lesion categories are marked as 0, 1, and 
2, respectively. The severity of the disease is computed as:

where, Plesion is the number of pixels of the lesions, and 
Pleaf is the number of pixels of the healthy leaves in the 
image.

The dataset used in this study consists of 76 downy 
mildew images and 77 powdery mildew images, which 
is then divided into training, validation, and test sub-
datasets by following the ratio of 6:2:2 based on stratified 
sampling. Since there are only 93 images in the training 
dataset, data augmentation is performed for each disease 
category to prevent overfitting and improve the generali-
zation ability. The augmentation strategies consist of hor-
izontal and vertical flip, random scaling, clockwise and 
counterclockwise rotation of the original images by 90°. 
Consequently, the number of images in the training, vali-
dation, and test datasets is 2976, 30, and 30, respectively.

(1)DiseaseSeverity =
Plesion

Plesion + Pleaf

The proposed severity estimation model
This study aims to automatically calculate the disease 
severity using semantic segmentation to assign category 
labels to each image pixel. The pipeline of the proposed 
severity estimation model is shown in Fig. 2. The train-
ing dataset is used to train the proposed segmentation 
model, and the validation dataset is applied to tune the 
hyperparameters of the model and perform an initial 
assessment of the model accuracy. The performance of 
the proposed segmentation model is evaluated and com-
pared over the test dataset. Finally, the numbers of the 
healthy leaf pixels and the lesion pixels are separately 
counted in the segmentation results, achieving the dis-
ease severity according to Eq. (1).

Segmentation network
Previous studies have shown that DeepLab V3 + can 
achieve remarkable segmentation results for lesions [21] 
and plants [18]. Consequently, it is optimized in this 
study as the benchmark model for severity estimation. 
The block diagram of the proposed segmentation model 

Fig. 2  Overall flowchart of severity estimation
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Fig. 3  Block diagram of proposed model for disease image segmentation. The orange block indicates the improved backbone, the blue block 
indicates operations of convolution, pooling, concatenation and upsampling

Fig. 4  Block diagram of the improved backbone network for disease image segmentation a represents the improved backbone blocks and b 
shows the three branches of hybrid attention



Page 6 of 16Li et al. Plant Methods          (2022) 18:109 

is shown in Fig.  3. It consists of two main blocks: an 
Encoder and a Decoder.

In order to efficiently extract disease features in a com-
plex context, the Encoder consists of improved the back-
bone network (Fig. 4) and the Atrous Space Pyramid Pool 
(ASPP). The improved backbone network uses a hybrid 
attention optimized ResNet50. ASPP performs parallel 
operations of Atrous convolution with multiple dilation 
rates and pooling. Three 3× 3 convolutions are per-
formed with dilation rates of 6, 12 and 18, respectively. 
Different dilation rates can expand the receptive field 
and improve the localization detection accuracy without 
losing resolution. This operation condenses the features 
extracted by the improved backbone network into multi-
scale contextual semantic information.

The following operations are performed in the 
Decoder: the output features of the Encoder are first 
bilinearly upsampled by a factor of 4, followed by con-
catenation with the low-level features from the improved 
backbone in the channel dimension. In order to reduce 
the number of channels of low-level features, a 1× 1 con-
volution is performed on the low-level features before 
applying the concatenation, followed by a 3× 3 convo-
lution operation to refine the features. Finally, a simple 
bilinear upsampling by a factor of 4 is applied to produce 
the final semantic segmentation results.

Attention mechanism
Disease images collected in field conditions have complex 
backgrounds. At the same time, the severity estimation 
requires neglecting the influence of background informa-
tion and focusing on the segmentation of healthy leaves 
and lesions. The attention mechanism can select the key 
features of the current task from a large amount of avail-
able information. Introducing the attention mechanism 
into the network structure can help the model to facili-
tate feature selection and reduce recognition errors, thus 
improving the segmentation performance [24, 25].

In order to improve the performance of proposed 
model, a backbone based on residual blocks and a hybrid 
attention mechanism is proposed in this study. Fig-
ure  4 illustrates the architecture of the improved back-
bone network. It is a feature extractor optimized by 
the Hybrid Attention (HA) mechanism. The ResNet50 
is adopted as the benchmark block [26] as the issues 
caused by the gradients vanishing/exploding are to be 
considered when training a deeper neural network. The 
hybrid attention mechanism [27] is added after each of 
the four residual blocks, as shown in Fig.  4(a). It helps 
the network to capture key internal representations of 
the image. In Fig.  4(b), the hybrid attention introduces 

cross-dimension interaction by dedicating three branches 
to capture dependencies between the (C ,H), (C ,W ) and 
(H ,W ) dimensions of the input tensor. The first two 
branches can extract channel attention, while the last 
branch extracts spatial attention. In addition, hybrid 
attention is formed by summing and averaging both 
channel and spatial attention of the three branches. This 
hybrid attention can emphasize the importance of each 
dimensional feature in the tensor and extract richer fea-
ture information related to the target, which improves 
the segmentation accuracy [27].

Specifically, an input tensor X ∈ RC×H×W  is delivered 
to each of the three branches in the hybrid attention mod-
ule. In the first branch, the input X is rotated by 90˚ anti-
clockwise along the H axis, i.e., the permute operation 
in Fig. 4(b). When this rotated tensor passes through the 
Z-pool, it continues through the 7 × 7 standard convolu-
tional layer and passes through the batch normalization 
layer in turn. The attention weight is generated by the sig-
moid activation layer (σ) and is applied to the rotated ten-
sor. Finally, it is rotated 90˚ clockwise along the H axis to 
retain the original input shape of X. Similarly, in the sec-
ond branch, X is rotated by 90° anticlockwise along the 
W axis. The remaining operations are similar to the first 
branch. The final branch is similar to the Convolutional 
Block Attention Module (CBAM) [28], used to build spa-
tial attention. The Z-pool layer is responsible for reducing 
the zeroth dimension of the tensor to two by concatenat-
ing the average pooled and max pooled features across 
that dimension, as it is calculated according to Eq. (2). This 
operation allows the layer to preserve a rich representa-
tion of the actual tensor while simultaneously shrinking its 
depth to make further computation lightweight.

where 0d is the 0th-dimension across which the max and 
average pooling operations take place. For instance, the 
Z-Pool of a tensor of shape (C ×H ×W ) results in a ten-
sor of shape (2×H ×W ).

Transfer learning
Manual image labeling is often time-consuming and 
labor-intensive, especially when dealing with applica-
tions such as lesion segmentation. In general, the number 
of images is not large enough for training a model from 
scratch. Transfer Learning (TL), which uses millions of 
labeled images for pre-training [22], provides a solution 
for the issue. TL can adapt well to the task by retraining 
on a relatively small dataset. Therefore, the TL strategy 
can reduce human efforts on image labeling. In the appli-
cation of severity estimation, the proposed backbone is 

(2)Z - pool(X) = [MaxPool0d(X), AvgPool0d (X)]
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pre-trained on the ImageNet. It is then retrained on the 
disease dataset built in this study (Fig. 5).

Loss function
In this study, the disease dataset has a much smaller 
number of pixels in the background and the lesion cat-
egory than in the healthy leaf category. The frequency 
difference between the three categories can lead to an 
unbalanced effect on the training while ignoring the 
importance of diseased pixels. Therefore, the weighted 
cross-entropy loss function is used in the experiments to 
reduce this unbalanced effect. The weights of each cat-
egory are calculated according to the median frequency 
balance of [29], as shown in Eq.  (3). The final weights 
used for the dataset are 1.0000, 0.2286, and 3.4532 for the 
background, healthy leaf, and lesion.

where frem represents the frequency of occurrences of 
pixels of class m divided by the total number of pixels in 
any image containing this class, and median_fre repre-
sents the median of these frequencies for all the classes.

The weights of the three categories are applied to the 
pixel-wise cross-entropy loss function:

(3)Wm =
median_fre

frem
,

where N is the number of observations, M is the number 
of target categories excluding the background, Wm is the 
weight for class m, y is an indicator if a class label is cor-
rectly classified for observation n, and p is the predicted 
probability of observation n being of class m.

Experimental operation environment
The proposed model is implemented based on the 
Python deep learning libraries of PyTorch and trained 
with an NVIDIA Quadro P2000 GPU (5  GB). Transfer 
learning is used to accelerate convergence. The encoder 
parameters are initialized with the pre-trained weights 
on the ImageNet, while the other parameters are initial-
ized from a Gaussian distribution [26]. The Stochastic 
Gradient Descent (SGD), having a momentum of 0.9, is 
used in the training process. The parameters are tuned as 
many times as the device allows. The initial learning rate 
is 0.007, which varies in a Poly manner [23]. The maxi-
mum number of epochs used for training is 300, while 
the batch size is 8. The L2 regularization with a weight 
decay of 0.0001 is applied to the parameters to prevent 
overfitting.

(4)L = −
1

N

∑N

n=1

∑M

m=0
Wm ∗ yn,mlogpn,m

Fig. 5  Transfer learning for optimizing the learning process
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Performance evaluation
Since this study involved disease segmentation and sever-
ity estimation, the assessment was divided into segmen-
tation and estimation. The segmentation results obtained 
by the proposed model are evaluated using the Inter-
section over Union (IoU) [30], Precision, Recall and F-1 
score, which can be calculated from the confusion matrix 
[2].

The overall model performance is evaluated using 
the Accuracy (Acc), the Mean Intersection over Union 
(MIoU), and the Frequency Weighted Intersection over 
Union (FWIoU) [24]. Acc (Eq.  (5)) represents the ratio 
of correctly segmented pixels over the total pixels. MIoU 
(Eq.  (6)) is the mean IoU value of the background, leaf 
and lesion categories. FWIoU (Eq.  (7)) sets the weights 
according to the frequency of each class, and FWIoU is a 
more objective representation of the model’s overall per-
formance. The overall performance is computed as:

(5)Acc =

∑M
i=0pii∑M

i=0

∑M
j=0pij

(6)MIoU =
1

M + 1

M∑

i=0

pii∑M
j=0pij +

∑M
j=0pji − p

ii

(7)

FWIoU =
1

∑M
i=0

∑M
j=0pij

M∑

i=0

pii∑M
j=0pij +

∑M
j=0pji − p

ii

where pii denotes the number of pixels of class i that are 
predicted as class i, and pij denotes the number of pixels 
of class i that are predicted as class j.

The accuracy of the severity estimation is evaluated 
using the coefficient of determination (R2) and the Root 
Mean Square Error (RMSE) [17].

Results and discussion
This section presents the results of the disease severity 
estimation, including the quantitative evaluation results 
of the pixel-wise segmentation and the severity calcula-
tion. The methods are trained and evaluated using the 
“Experimental operation environment” settings. The con-
tributions of TL and HA on the proposed model are first 
investigated. Different backbones and attention mecha-
nisms are then evaluated. Finally, the proposed model is 
compared with the state-of-the-art models.

Comparison of estimation results of hybrid attention 
and transfer learning
An ablation study is performed to evaluate the contribu-
tions of the significant components to the model. Deep-
Lab V3 + with ResNet50 as the backbone network is the 
baseline model. A comparison between the improved 
models is performed. The obtained results are shown in 
Tables 1 and 2.

The results show that the baseline model achieves an 
Acc of 88.24% (Table  1). When TL is used, the perfor-
mance of the Baseline + TL is further improved. More 
precisely, the Acc value increases to 92.75%. Similarly, the 
MIoU and FWIoU values are improved by 6.91–7.66%, 

Table 1   Results of the proposed method on the test dataset

Methods Baseline TL HA Acc (%) MIoU (%) FWIoU (%) R2 RMSE

Baseline √ 88.24 67.22 79.16 0.7754 3.0093

Baseline + TL √ √ 92.75 74.13 86.82 0.8477 2.7365

Baseline + HA √ √ 94.24 78.16 89.52 0.9042 2.8739

Baseline + TL + HA 
(Proposed)

√ √ √ 95.64 81.23 91.89 0.9578 1.1385

Table 2  Results of the proposed method for each category on the disease dataset

Methods IoU (%) F-1 (%)

Background Leaf Lesion Background Leaf Lesion

Baseline 69.67 85.96 47.35 82.12 91.67 64.27

Baseline + TL 83.13 89.77 49.50 90.79 94.61 66.23

Baseline + HA 86.97 91.81 55.70 93.03 95.73 71.55

Baseline + TL + HA (Pro-
posed)

89.01 94.14 60.55 94.18 96.98 75.43
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respectively. The IoU of leaf category and lesion category 
increases by 3.81–2.15% after using TL, respectively. It 
can be clearly seen from Table 1 that TL can significantly 
improve the results of severity estimation, with R2 reach-
ing 0.8477.

Baseline + HA achieves the most significant improve-
ment of 10.94% in MIoU, followed by 10.36% in FWIoU 
and 6% in Acc (Table  1). Simultaneously, the cor-
responding improvement in IoU and F-1 for all the 
three categories is obtained, with the most significant 
improvement of 8.35% in IoU for the lesions (Table 2). 
The R2 value of the Baseline + HA increases from 
0.7754 to 0.9042, achieving an improvement of 0.1288 
(Table 1). It can also be seen from Table 1 that the HA 
reaches an improvement of 7.1% for MIoU based on 
the use of transfer learning methods. It is important 
to mention that HA significantly effects on lesion cat-
egory, with an improvement of almost 11.05% in IoU 
(Table  2). The results show that HA significantly pro-
motes disease segmentation, especially for the lesion 
category. In other words, HA extracts detailed disease 
features through the cross-dimensional interactions 
of space and channels, enhancing the disease segmen-
tation profile, and improving the severity estimates 
(R2 = 0.9042).

Figure  6 shows some segmentation errors. The first 
error type is caused by the other cucumber leaves 
with similar colors and unclear borders in the images 
obtained under the field conditions (red box in Fig. 6). 
The second error type is related to the misclassification 

of the lesion pixels (blue box in Fig. 6). Some of the tar-
get lesions are small and similar to the leaf pixels under 
strong illumination. The third error type is the over-
segmentation of the lesions (yellow box in Fig. 6). The 
edges of the lesion area are unclear, such as the downy 
mildew having irregular faded greenish-yellow lesions 
on the leaves. The boundaries of the non-greenish yel-
low halo part are challenging, leading to similar errors 
in the model [5]. However, the overall described seg-
mented images closely follow the artificial segmentation 
criteria [19]. Finally, for cucumber leaf disease images 
collected in real scenarios, the proposed method is able 
to accurately achieve automatic estimation of disease 
severity by segmenting lesions and leaves.

Comparison of estimation results of different backbones
In order to further validate the efficiency of the pro-
posed backbone for disease segmentation, several back-
bone networks based on the DeepLab V3 + segmentation 
framework are compared: Xception [23], MobileNet V2 
[31], MobileNet V3 [32], ResNet101 [26], SE-ResNet50 
(Squeeze and Expansion attention-optimized ResNet50) 
[33] and CBAM-ResNet50 (CBAM attention-optimized 
ResNet50)[28]. The segmentation results of the models 
based on different backbones are shown in Fig.  7 and 
Table 3.

The results show that the ResNet101 achieves a very 
close performance to the proposed backbone, where 
both are better than the CBAM-ResNet50, MobileNet 
V2, ResNet50, MobileNet V3 and SE-ResNet50 (Fig.  7). 

Fig. 6  Samples of segmentation errors. Different colored boxes indicate different types of errors
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Xception is the worst performing backbone on the dis-
ease dataset. Table 3 shows the same results as the ones 
presented in [21]. Specifically, all the backbone networks 

have higher performance for the background category 
than for the leaf and lesion categories. Since this study 
aims at calculating the disease severity, the segmentation 

Fig. 7  Segmentation performance of the different backbone networks

Table 3  Segmentation results of the different backbones

Backbone networks Class Precision (%) Recall (%) F-1 (%) IoU (%)

ResNet101 Background 95.63 95.1 95.36 91.14

Leaf 97.27 96.62 96.94 94.07

Lesion 65.72 84.32 73.87 58.56

Xception Background 90.97 76.54 83.13 71.13

Leaf 89.87 93.79 91.79 84.82

Lesion 43.61 83.82 57.37 40.23

MobilenetV2 Background 95.36 91.1 93.18 87.23

Leaf 95.69 96.57 96.13 92.55

Lesion 62.45 84.62 71.86 56.08

MobilenetV3 Background 92.28 89.16 90.70 82.98

Leaf 94.46 94.68 94.57 89.69

Lesion 55.74 78.55 65.21 48.37

SE-ResNet50 Background 89.52 89.00 89.26 80.6

Leaf 94.38 93.98 94.18 89.01

Lesion 62.82 76.14 68.84 52.48

CBAM-ResNet50 Background 95.72 90.49 93.03 86.97

Leaf 95.18 97.00 96.08 92.45

Lesion 68.72 82.1 74.82 59.76

Proposed Background 94.71 93.66 94.18 89.01

Leaf 97.01 96.96 96.98 94.14

Lesion 71.03 80.41 75.43 60.55
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accuracy for both the leaf and the lesion should be 
guaranteed. According to the evaluation metrics of the 
pixel-wise classification, the proposed backbone has the 
highest performance for segmenting leaf and lesion cat-
egories (Table  3). The proposed backbone leads to sig-
nificant improvements in the leaf and lesion categories 
compared with other backbones, especially in the lesion 
category, with F-1 improving by 0.61–18.06% and IoU 
improving by 0.79–20.32% (Table 3).

The impacts of several attentional mechanisms on 
the disease segmentation are also studied. An interest-
ing finding is that the performance of SE-ResNet50 is 
slightly decreased. However, SE attention has a specific 
effect on the lesion’s segmentation, resulting in a cor-
responding improvement in both F-1 and IoU (Table 3). 
Both CBAM-ResNet50 and the proposed model out-
perform the Baseline + TL (Tables 1 and 2) in terms of 
overall performance. Their performance is improved 
by 5.6–7.1% on MIoU, respectively. It can also be seen 
from Table 3 that the inclusion of the attention mech-
anism endorses the model to focus on the lesion fea-
tures, which results in improving the segmentation 
performance on the category lesion.

Figure  8 shows the segmentation results of differ-
ent backbones. Considering the segmentation results 
of leaves and lesions, the segmentation of CBAM-
ResNet50 is the second after the proposed backbone. It 
incorporates attention mapping in two separate dimen-
sions [28], and achieves accurate segmentation of the 
lesions. However, CBAM-ResNet50 does not perform 
well in segmenting the background boundaries close 
to the target leaves (Fig. 8h). Due to the deeper level of 
ResNet101, many high level features can be extracted, 

resulting in better disease segmentation performances. 
Nevertheless, there also exists the same misclassifica-
tions for lesions (Fig.  8c). In addition, the segmenta-
tion models based on MobileNet V2 and MobileNet 
V3 show different degrees of leaf over-segmentation 
(Fig.  8e and Fig.  8f ). SE-ResNet50 learns the correla-
tion between channels [33]. Therefore, there is some 
improvement in lesion segmentation (Fig.  8g). Finally, 
the segmentation model of Xception has difficulties in 
segmenting the whole leaf (Fig. 8d). The segmentation 
ability for complex backgrounds is poor. The proposed 
backbone accurately extracts lesion and leaf features by 
capturing cross-dimensional interactions [27], inhibit-
ing the effects of backgrounds noise and efficiently seg-
menting leaves and lesions.

Similarly, this study aims to evaluate the backbone 
efficiency for disease severity estimation. Thus, a linear 
fit of the severity, based on the comparison of differ-
ent backbone segmentation models to the actual sever-
ity, is drawn on the test dataset (Fig.  9). The results 
show that the proposed method achieves the highest R2 
and the lowest RMSE in the severity estimation (Fig. 9a 
and Fig. 9b). The R2 of different backbones are generally 
higher than 0.87, and the RMSE values are lower than 2.7, 
except for Xception. The results show that the severity 
estimation models based on pixel-wise classification can 
reasonably estimate the disease severity [3]. Moreover, 
most disease severity is overestimated when estimating 
the disease severity by the segmentation results of the 
semantic segmentation models (Fig. 9) [3, 19]. This result 
may be explained by the fact that the models misclassify 
the leaf pixels as category lesion.

Fig. 8  Segmentation results from different backbones
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Comparison of estimation results of the state‑of‑the‑art 
models
Many studies have shown that deep learning-based 
methods are able to achieve better performance than the 
shallow machine learning-based methods in image clas-
sification tasks [17, 20]. In order to verify the efficiency 
of the proposed model for severity estimation, a com-
parison is performed with the state-of-the-art semantic 

segmentation models: FCN [30], Unet [34], SegNet [29] 
and DeepLab V3 + .

Table 4 presents the Acc, MIoU, and FWIoU for all the 
models on the test dataset. Figure  10 shows the evalu-
ation metrics of the models for both the leaf and the 
lesion. The results confirm that the proposed model 
performs better than the other methods. It outperforms 
FCN by 11.17%, Unet by 8.04%, SegNet by 6.64% and 
DeepLab V3 + by 7.1% on MIoU (Table 4). In particular, 
for the lesion category (Fig. 10), the proposed model out-
performs FCN by 9.92%, Unet by 7.34%, SegNet by 9.21% 
and DeepLab V3 + by 9.2% on F-1. For the leaf category, 
the proposed model leads to an improvement of at least 
3.84%, over these four models on IoU.

Table  4 and Fig.  10 validate the efficiency of the pro-
posed model for leaf and lesion semantic segmentation. 
Nonetheless, the complex lesion boundaries and the 
small targets result in low performance of all the segmen-
tation algorithms for lesion segmentation (Fig. 10 b) [2].

Fig. 9  Severity estimation results based on different backbone networks. a, b R2 and RMSE of different backbone networks. c–i regression results of 
different backbone networks, where the dashed line denotes the 1:1 line

Table 4  Comparison results of the different segmentation 
methods

Methods Acc (%) MIoU (%) FWIoU (%)

FCN 90.05 70.06 82.2

Unet 91.71 73.19 84.98

SegNet 93.09 74.59 87.44

DeepLab V3 +  92.75 74.13 86.82

Proposed 95.64 81.23 91.89
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The segmentation results of all the models are shown 
in Fig.  11. It can be clearly seen that FCN misses many 
details when facing the complex backgrounds and the 
small target [24]. FCN is not sensitive enough to the 
details of the image and misses the semantic informa-
tion between pixels. DeepLab V3 + uses an ASPP mod-
ule to encode the multi-scale contextual information and 
suppress backgrounds interference [35]. The segmenta-
tion results of SegNet are relatively better than those 
of FCN and DeepLab V3 + . This may be explained by 
the fact that SegNet uses the pooling indices from the 
high-resolution features for segmentation, which will 
reserve helpful detailed information. Figure  11e shows 
the detailed information of the Unet segmentation 
results with incorrect lesion border segmentation [36]. 

It shows that the lesion and the leaf are incorrectly seg-
mented into the backgrounds. Although the proposed 
model uses the same segmentation framework as Deep-
Lab V3 + , it extracts the hybrid attention of spatial and 
channel interactions, thus capturing more features of 
the disease images [27]. Consequently, the proposed 
method significantly improves the segmentation of leaves 
and lesions, and efficiently reduces the occurrence of 
under-segmentation.

The reliability of the semantic segmentation models 
is evaluated according to the severity estimation results 
(Fig.  12). The results show that the R2 values of all the 
models are generally greater than 0.83 (Fig.  12a), rang-
ing from 0.83 (FCN) to 0.96 (proposed method). FCN 
and SegNet yield relatively poor estimation. DeepLab 

Fig. 10  Performances of the segmentation models on a category leaf, and b category lesion

Fig. 11  Segmentation results of different models
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V3 + and Unet achieve slightly better severity estima-
tions, with R2 values of 0.8477 and 0.8851, respectively. 
The estimated severity by the proposed model has a good 
agreement with the actual severity values, with a high-
est R2 of 0.9578 and a lowest RMSE of 1.1385 (Fig. 12f ). 
This result depends on the accurate segmentation of the 
lesions and leaves by the proposed method. In general, 
most of the models tend to overestimate the severity [19], 
leading to higher estimation errors.

It can be seen from Fig. 9 and Fig. 12 that the seman-
tic segmentation model estimates a higher severity for 
images with high true severity. Figure  8 and Fig.  11 
show that the severity overestimated due to the large 
area of the lesions in the severely diseased leaves. Many 
small lesions also adhere to each other, leading to inac-
curate segmentation of healthy leaves and lesions by 
the segmentation model. This is also consistent with 
the visual judgement of the naked eye [2].

In summary, the proposed method is relatively unaf-
fected by the complex background. It is able to accu-
rately segment lesions and leaves from cucumber disease 
images collected in field conditions. Moreover, this 
method does not require multiple stages to segment 
leaves and lesions, which can save computing resources. 
In addition, the model achieves high estimation accuracy 
in severity estimation. The proposed method can be gen-
eralized to segment other crops in future work.

Conclusion
This study develops an integrated method for cucumber 
downy mildew and powdery mildew severity assessment 
based on the attention-optimized DeepLab V3 + . The 
proposed method achieves accurate disease segmen-
tation in field conditions, by obtaining segmentation 
IoU equal to 94.14% and 60.55% for leaves and lesions, 
respectively. For the disease severity estimation, the 
RMSE and R2 are 1.1385 and 0.9578, respectively. The 
previous problems of time-consumption and low accu-
racy of visual disease severity estimation are solved, help-
ing researchers to quickly study the disease resistance 
phenotype of cucumber.

In addition, the residual network optimized by hybrid 
attention is used as the backbone for DeepLab V3 + . 
The hybrid attention can capture the cross-latitude 
interaction between the space and the channel, signifi-
cantly refining disease segmentation and improving the 
severity estimation accuracy. The common knowledge 
of ResNet50 is transferred from ImageNet. Transfer 
learning allows the use of generic features and segmen-
tation networks to be trained on limited datasets, thus 
improving the accuracy of disease segmentation on small 
datasets.

Furthermore, a comparative analysis of 4 semantic 
segmentation models (FCN, Unet, SegNet and DeepLab 
V3 +) and 6 backbones (ResNet101, Xception, MobileNet 

Fig. 12  Severity estimation results based on semantic segmentation networks. a Summary results. b–e regression results of different segmentation 
models, where the dashed line denotes the 1:1 line
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V2, MobileNet V3 and attention-ResNet50) is performed. 
The experimental results show that the proposed method 
outperforms other models in severity estimation, and the 
R2 is improved by almost 0.318.

For cucumber disease images with one leaf, a relatively 
accurate model for severity estimation is developed. It is 
one of the directions to further enrich the construction 
of multi-crop and multi-leaf severity estimation models 
based on deep learning. In future work, we aim to gener-
alize the model to other vegetables and diseases. In addi-
tion, the disease severity estimation model trained in this 
study should be further developed and settled to mobile 
devices to promote field management of the cucumber 
growth process.
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