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Abstract 

Background:  Eucommia ulmoides leaf (EUL), as a medicine and food homology plant, is a high-quality industrial 
raw material with great development potential for a valuable economic crop. There are many factors affecting the 
quality of EULs, such as different drying methods and regions. Therefore, quality and safety have received worldwide 
attention, and there is a trend to identify medicinal plants with artificial intelligence technology. In this study, we 
attempted to evaluate the comparison and differentiation for different drying methods and geographical traceability 
of EULs. As a superior strategy, the two-dimensional correlation spectroscopy (2DCOS) was used to directly combined 
with residual neural network (ResNet) based on Fourier transform near-infrared spectroscopy.

Results:  (1) Each category samples from different regions could be clustered together better than different drying 
methods through exploratory analysis and hierarchical clustering analysis; (2) A total of 3204 2DCOS images were 
obtained, synchronous 2DCOS was more suitable for the identification and analysis of EULs compared with asynchro-
nous 2DCOS and integrated 2DCOS; (3) The superior ResNet model about synchronous 2DCOS used to identify dif-
ferent drying method and regions of EULs than the partial least squares discriminant model that the accuracy of train 
set, test set, and external verification was 100%; (4) The Xinjiang samples was significant differences than others with 
correlation analysis of 19 climate data and different regions.

Conclusions:  This study verifies the superiority of the ResNet model to identify through this example, which provides 
a practical reference for related research on other medicinal plants or fungus.

Keywords:  Eucommia ulmoides leaf, Two-dimensional correlation spectroscopy, Residual neural network, Drying 
methods, Geographical traceability
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Background
Eucommia ulmoides Oliver is a unique tree species in 
China and belonging to Eucommia (Eucommiaceae), 
which is named as and Tuchong in Japanese and Du-
Zhong in Chinese [1]. At present, it is widely planted in 
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27 provinces across the country, with a total cultivated 
area of 358,000 hectares, which accounts for more than 
95% of the total resources of E. ulmoides in the world. The 
traditional uses of E. ulmoides peel are used as medicine 
with a history of more than 2000 years. It mainly contains 
chemical composition, including flavonoids, terpenoids, 
steroids, lignans, iridoid terpenoids, etc., which pos-
sesses pharmacological activity, such as blood pressure-
lowering, blood sugar-lowering, blood lipids-regulating, 
anti-inflammation, liver protection, anti-cancer, preven-
tion of osteoporosis and others [2–4]. This medicinal 
plant has a wide range of applications in chemical lines, 
national defense materials, aerospace sectors, transpor-
tations, communications, water conservancy, electric 
power, medical treatment, and so on [5]. However, the 
tree is dead due to the bark is peeled off, which is easy 
to cause a shortage of resources. With the rapid develop-
ment of Eucommia-related industries, the demand for 
Eucommia ulmoides leaves (EULs) is also increasing as 
an important part of Eucommia resources. The EULs are 
rich in chemical components and can be harvested every 
year with great potential for development. Recent studies 
have shown that the chemical components and medici-
nal activity of its leaves are similar to those of bark [6, 7]. 
With the development of healthy food and raw materi-
als for medicinal herbs, the production scale of EULs tea 
is the largest, currently accounting for more than 60% 
of the domestic output of Eucommia functional food 
(http://​www.​leadi​ngir.​com/​trend/​view/​1525.​html).

However, the quality of E. ulmoides medicinal materi-
als is affected by many complex factors, such as genotype, 
cultivation technologies, growth conditions (sunlight, 
terrain, and climate), harvest time, processing, and stor-
age conditions (humidity, time, temperature, etc.), cul-
tivation environments, etc. These variable factors may 
cause changes in the chemical composition of E. ulmoide, 
leading to significant differences in their quality. Geo-
graphical variation is the main factor leading to differ-
ences in the chemical composition of EULs. And most 
authentic traditional herbal medicines contain enough 
active chemical components. Herbs grown in different 
environments can produce various secondary metabo-
lite components, leading to differences in their intrin-
sic qualities. In addition, since EULs are mostly picked 
when the branches and leaves are lush in summer (June, 
July, and August) and autumn (September, October, and 
November), the volume is fluffy. After being placed, fresh 
leaves easily change color and taste, so they need to be 
processed in time. Different drying methods have their 
advantages in terms of drying cost, time, convenience, 
efficiency, and environmental impact. Three methods 
were commonly applied to plant drying, including natu-
ral, artificial, and comprehensive methods. Traditional 

drying methods are conducted in the shade, air, or sun. 
The drying method of EULs is dried at low temperature 
or drying, while there is no specific temperature limit, 
which has been listed in “China Pharmacopoeia” [8]. The 
traditional methods of drying EULs are the shade and 
sun. The advantages of drying in the shade and sun are 
simple operation, low cost, and no need for a dryer. The 
weather does not restrict the drying methods at differ-
ent temperatures (40 ℃ and 60 ℃), and the equipment is 
simple and can be used for large-scale production. There-
fore, we compared different gradients of natural drying 
methods including shade drying, sun drying, 40  °C and 
60 °C, providing a theoretical basis and others to choose 
methods for drying EULs. It is urgent to find a fast and 
effective identification method to evaluate different dry-
ing methods and regions of EULs. This is of great sig-
nificance for ensuring the quality of traditional Chinese 
medicine (TCM) to ensure the efficacy of proprietary 
Chinese medicines and the healthy development of the 
Chinese medicine market. Therefore, the different dry-
ing methods and regions of EULs were compared and 
evaluated in this study, which provides a theoretical basis 
for finding a scientific drying method and the most suit-
able regions. It is necessary to use modern technology to 
achieve this.

Traditional methods of identification technology 
such as nuclear magnetic resonance (NMR), high-per-
formance liquid chromatography (HPLC), and mass 
spectroscopy (GC-MS, LC-MS) are generally applied to 
distinguish in foods, medicine, etc. Although these tech-
niques are sensitive and accurate, they require costly 
instrumentation and maintenance, trained personnel to 
operate the instruments, and are time-consuming. From 
an economic point of view, this makes them less attrac-
tive as a technique for determining identification. As 
an alternative technology, spectroscopic technologies 
have the characteristics of sample pretreatment is sim-
ple, routine analysis is fast, operation is simple and easy, 
no reagents are required, and economical technique, 
which allows simultaneous multi-component analysis. 
It has been widely used in the fields of textile, environ-
ment, petroleum, agriculture, medicine, and so on [9, 
10]. Although some spectroscopic technology (Raman 
spectra, etc.) are applied to identify herbs or medicines, 
portable Fourier transform near infrared spectroscopy 
(FT-NIR) has benefits over the already investigated tech-
nology that was applied to the metabolic fingerprinting 
analysis, and a great advantage of which is rapid and 
non-destructive analysis. Spectroscopy technology is 
used in conjunction with chemometrics. Chemometrics 
is crucial for mining the most valuable data and build-
ing high-performance models. Traditional chemometrics 
contains support vector machines, partial least squares 

http://www.leadingir.com/trend/view/1525.html
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discriminant analysis (PLS-DA), etc. [11–13]. In addi-
tion, with the development of the era of big data, artificial 
intelligence has an irreplaceable role in data analysis and 
its visualization. Scholars is used artificial intelligence 
algorithms in the prediction of sugar content, which was 
only a pioneering example in the food field [14]. In recent 
years, deep learning technology have widely used in 
remote sensing research, including the field of the regions 
and species of speech recognition, TCM, and food [15]. 
The convolutional neural network (CNN) is a deep learn-
ing algorithm that is mainly used for image recognition 
and is widely used in the field of medical image analysis 
[16]. Residual Neural Network (ResNet), as an excel-
lent CNN network, has good convergence and accuracy, 
which applies the stochastic gradient descent method to 
update the weights [17]. It can optimize gradient vanish-
ing and exploding in ResNet, which has been successfully 
applied to TCM and fungus based on two dimensional 
correlation spectroscopy (2DCOS) images, including the 
species, storage period, geographical traceability, etc. [12, 
18, 19]. 2DCOS can effectively solve the spectral over-
lap and improve the apparent spectral resolution. These 
spectral types include not only IR, but also expanded to 
Raman spectroscopy, ultraviolet spectroscopy, etc. Yue 
et al. proved that a superior method verification of deep 
learning combined with 2DCOS in the identification of 
different regions and parts of Paris polyphylla var. yun-
nanensis than the traditional model, such as support 
vector machines, PLS-DA [20]. A study showed that 20 
Dendrobium species have successfully identified by two-
dimensional correlation spectroscopy combined with 
ResNet based on feature bands extracted by spectrum 
standard deviation [21]. In previous studies, although the 
performance of ResNet models is superior to traditional 
models, complex operations such as spectral preproc-
essing and feature band extraction are required. In addi-
tion, there are few reports on EULs. This work directly 
uses two-dimensional spectral images for ResNet mod-
eling and compares traditional models (PLS-DA) without 
preprocessing and feature extraction, which reduces the 
complexity of data processing.

In this study, the FT-NIR technology combined with 
ResNet and chemometrics to identify the different drying 
methods and geographical traceability of EULs, and the 
specific components of this study were: (1) to collect the 
FT-NIR spectral data of 534 EULs samples; (2) to explore 
the distribution trends of various samples with explora-
tory analysis of principal component analysis (PCA) and 
hierarchical cluster analysis (HCA); (3) to obtain three 
two-dimensional correlation spectroscopy (2DCOS) of 
Synchronous, asynchronous, and integrated images. (4) 

to establish and compare two models of PLS-DA and 
ResNet for identifying with different drying methods and 
regions of EULs samples; (5) Correlation analyses of 16 
different region s and 19 climate data were performed 
and analyzed. Therefore, image processing of ResNet is 
extended to different research directions of medicinal 
plants or fungus, which may provide more concise meth-
ods without less loss of classification ability.

Materials and methods
Sample information
A total 534 samples of EULs were collected in the second 
quarter of summer from seven provinces in China. The 
details sample information was displayed in Fig.  1 and 
Table 1. All 534 samples were identified by Professor Ke-
Gang Li (Jishou University, Hubei, China). To avoid the 
influence of individual differences in samples due to col-
lection in different areas (upper, middle, and lower of the 
canopy), all samples were collected from the middle layer 
of the treetop, including both sunny and shady sides. All 
the samples were divided into four parts and processed 
according to different drying methods. Some EULs were 
dried in an oven at 40  °C (136 samples) and 60  °C (133 
samples) to constant weight, while the remaining samples 
were dried in the shade drying (132 samples) and natural 
sun drying (133 samples). The dried EULs were passed 
through high-speed grinders and sieved with 80-mesh 
stainless steel (to avoid flocculent E. ulmoides gum inter-
fering with component detection). The sieved powders 
were placed in ziplock bags and stored at room tempera-
ture in the dark for subsequent experiments.

FT‑NIR spectra acquisition
The sample powder was scanned using a NIR spectrom-
eter (PerkinElmer, USA) equipped with a diffuse reflec-
tance accessory. Each sample was weighed (1.0 ± 0.05 g) 
with an electronic balance (Sartorius, Germany) and 
placed in a clean glass for scanning to avoid errors in 
anthropic factors. The scan range was 10,000-4000 cm−1, 
the resolution was 4  cm−1, and 32 scans were accumu-
lated for each spectrum. The ordinate of the spectrum is 
the log (1/reflectance) of the reciprocal reflectance. Each 
sample was measured three times in parallel and the 
final average spectrum was obtained using the OMICA 
software that the ordinate was set as the absorbance. 
To eliminate the interference of air information, before 
each scan, the laboratory air (H2O and CO2) spectrum 
was recorded as the background and automatically sub-
tracted. In addition, it is necessary to control experi-
ment’s room temperature and humidity (25 °C/30% RH) 
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to maintain the consistency of the experimental operat-
ing environment. Finally, the data processing was used by 
SIMCA-P+14.1 software to analyze the acquired spectral 
data for subsequent modeling.

Exploratory analysis and hierarchical cluster analysis
Exploratory analysis is an initial approach to study 
raw clustering results with a subset of variables or the 
entire dataset. The data is transformed into a new coor-
dinate system and the correlation between the sample 
and the variable, can be seen through the extracted 
principal components. Thus, the classification trend 
of the sample can be visually analyzed by selecting 
the first two principal components in PCA to explain 
most of the spectral variable information. Unlike PCA, 
HCA determines the difference between the data point 
of each category according to all the data points’ dis-
tances to determine the similarity between them. The 
two closest data or categories are combined to generate 
a clustering tree. They were clustered into one group 
for samples with similar chemical information, while 
samples with larger differences were divided into dif-
ferent groups based on the theory of phylogenetic clus-
tering algorithm [22]. In this work, using the average 

original spectral information of each classified sample 
for different drying methods and regions. PCA is done 
by SIMCA14 software, and HCA is analyzed by Origin 
2021 software. Different from the past, the HCA in the 
form of a circle was executed.

Two‑dimensional correlation spectroscopy spectra image 
acquisition
Traditional Chinese medicines have the characteristics 
of “multi-component, multi-target and multi-channel”. 
Since the signals of different chemical components 
overlap each other, it is difficult to extract the infor-
mation of interest and its overall quality evaluation is 
difficult. Therefore, we still need to resort to chemo-
metric tools to find useful spectral features. The one-
dimensional spectrum has the disadvantages of peak 
overlap and inconspicuous characteristic peaks. In con-
trast, generalized 2DCOS is an effective technology to 
improve spectral resolution and resolve peak overlap 
issues, which is widely used in physics, chemistry, med-
icine, and other fields [23, 24].

According to the theory of Noda, when measuring 
the equally spaced external perturbation t at n steps, 
the dynamic spectrum intensities are represented by 

Fig. 1  A Distribution of samples of E. ulmoides leaves in China; B The shape of E. ulmoides leaves; C The processed products of Eucommia 
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the column vector Y at variable v [25]. The expression 
is as follows.

Then, the synchronous ( � ) and asynchronous ( � ) two-
dimensional correlation intensities between the different 
frequencies of v1 and v2 can be expressed as [26–28]:

Then, the D in the above represents the j-th row and 
k-th column of the Hilbert-Noda transformation matrix, 
which is defined as follow:

What’s more, W is the integrated two dimensional cor-
relation intensity, and the integrated 2DCOS intensity 
between the different frequencies v1 and v2 is obtained by 
multiply ( �(v1, v2) and �(v1, v2) according to the above 
description, the formula is shown as:

In this work, matrix Y (m × n) contains two spectral 
data (m = 2): the first is the average FT-NIR spectrum and 
the second is the i-th FT-NIR spectrum about each drying 
methods or regions of EULs. The synchronous 2DCOS, 
asynchronous 2DCOS, and i2DCOS spectra of the i-th 
sample of each drying method or region can be obtained 
through formulas (2), (3), and (5), respectively. All sam-
ples respectively converted into spectral data by SIMCA 
14.1. Before building the deep learning model, each type 
of 2DCOS image was divided into three parts. 60% sam-
ples of each drying methods or regions were selected for 
modeling as train set. Then, 30% samples were chosen by 
the Kennard-stone algorithm as test set. The remaining 
10% samples were used for the external verification set.

Establishment of PLS‑DA model
PLS-DA is a linear supervised classification method estab-
lished based on the standard PLS regression algorithm. 

(1)Y (v) =













y(v, t1)
y(v, t2)
y(v, t3)

.

.

.

y(v, tn)













(2)�(v1, v2) =
1

m− 1
Y (v1)

T · Y (v2)

(3)�(v1, v2) =
1

m− 1
Y (v1)

T · D · Y (v2)

(4)Djk =







0, j = k

1

π
�

k − j
� , j �= k

(5)W(v1, v2) = �(v1, v2) ·�(v1, v2)

Finding the variable with the largest covariance with the 
classification matrix (Y) from the variable matrix (X), 
where Y is divided into two categories, Y = 1 represents 
that sample belongs to a specific classification, Y = 0 repre-
sents that the sample does not belong to a specific classifi-
cation. Finally, the probability is obtained that each sample 
is classified into each category. The algorithm could explain 
the small number of sample observations and reduce the 
effect of multicollinearity between the samples. Stability 
evaluation of the PLS-DA model based on two parameters 
are cross-validation root mean squared error (RMSECV) 
and root mean square error of estimation (RMSEE). The 
smaller the value indicates that the stability of this model 
is better, and the predictive ability is better. In addition, 
the performance of the classification model is evaluated by 
combining specificity, sensitivity, and accuracy. The closer 
the value is to 1, the better the performance of the classifi-
cation model. The detailed expression of sensitivity, speci-
ficity, and accuracy is calculated using true positive (TP), 
false positive (FP), true negative (TN), and false negative 
(FN), which are as follows:

Besides, receiver operating characteristic (ROC), is 
graphically represented by using group probabilities 
obtained from PLS-DA analysis. The area under the 
curve (AUC) of ROC, as an indicator of predictive per-
formance, the value close to 1 demonstrates high pre-
dictive power of the classification model [29]. 200 times 
of iterations were performed by SIMCA 14.1 software 
to test the robustness and fitting degree of the PLS-
DA model based on the parameters of R2-intercept and 
Q2-intercept. In this study, we tried to establish the PLS-
DA model based on FT-NIR spectral data of EULs with 
different drying methods and regions. Using the Ken-
nard-stone algorithm to divide the data set to improve 
the model recognition ability and avoid the irreproduc-
ibility of random selection. Data sets of different drying 
methods include 70% training set (374) and 30% test set 
(160), and the datasets of different regions are divided 
into 70% training set (372) and 30% test set (162) for the 
PLS-DA model.

(6)Sensitivity(SEN ) =
TP

(TP + FN )

(7)Specificity(SPE) =
TN

(TN + FP)

(8)Accuracy(ACC) =
TN + TP

TN + TP + FP + FN



Page 7 of 17Li et al. Plant Methods          (2022) 18:102 	

ResNet model establishment
ResNet is understood as performing “feature learning” 
or “representation learning”. The Anaconda and Python 
were installed as the data processing hardware platform 
and we selected Amazon’s MXNet as the ResNet frame-
work. In addition, the MxBoard was installed for training 
process visualization. ResNet, as an excellent CNN, could 
overcome the problem of network degradation with 
increasing depth by residual block as displayed in Addi-
tional file 1: Figure S1. The residual block superimposing 
y = x layers (shortcut connections, also called as identity 
mappings).

The ResNet network ensures the integrity of informa-
tion. Therefore, the learning objective is F(x) = H(x) −x, 
which is simplified for the entire data processing. Accord-
ing to the dimensions of input and output whether were 
the same, it’s used the identity residual block (Identity 

block) and the convolution residual block (Conv block) 
to build the model. If the dimensions of output F(x) are 
consistent with that of input, the model was established 
depending on the identity block, which is displayed in 
Fig. 2A. if the dimensions of output F(x) are in conform-
ity with the input x, the shortcut path of a convolutional 
layer with a convolution kernel size (1 × 1) is added, 
this structure is called conv block which is displayed in 
Fig. 2B.

In this study, we established a 12-layer ResNet model 
with the two types of residual blocks above whose input 
data are synchronous 2DCOS, asynchronous 2DCOS, 
and i2DCOS spectral images. Furthermore, the input 
data is passed through a layer of convolution operation, 
followed by BatchNorm normalization and Relu nonlin-
ear activation. Then, four identity blocks and two conv 
blocks were used to extract features. Finally, the global 

Fig. 2  A Schematic diagram of identity block; B Schematic diagram of conv block
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average pooling, the flatten layer, and the full connection 
layer were executed that each layer functions differently 
in processed data.

Results and discussion
Analysis of FT‑NIR spectra
In order to reflect the originality of the data, the FT-NIR 
spectral data was obtained by MATLAB 14.1 only per-
formed “automatic baseline correction” on it through 
OMICA software. All FT-NIR averaged spectra were 
shown in Fig.  3, including Figs.  3A, B, representing the 
average spectrum of different drying methods and seven 
regions. Figures  3C–F showed the average spectrum 
of seven regions for each processing method as follow: 
40 °C, 60 °C, sun drying, and shade drying. From a com-
prehensive perspective, each FT-NIR spectrogram had 
wavenumbers at 8300  cm−1, which connected with the 
second overtone of C-H stretching vibrations of the CH3 
and CH2 groups. The wideband at 6881  cm−1 was the 
first overtone of O–H stretching. The weak absorbance at 
5775  cm−1 was related to C-H stretching of R-OHCH3, 
whereas an obvious peak at 5172 cm−1 was stretching of 
O-H and OH deformation of H2O. Moreover, the com-
plex absorption peaks in the 5000-4000 cm−1 range, were 
C-H stretching and deformation group frequencies of 

polysaccharides and the C = O group frequencies and 
C-H stretching of carbohydrates.

The averaged spectra of four drying methods were 
exhibited in Fig. 3A. Taking 7000  cm−1 as the limit, the 
wave number was in the range of 10,000-7000 cm−1, the 
absorption peaks of the four drying methods have similar 
trends, but the absorption intensities were not consist-
ent and the absorption peak intensity of the sample from 
high to low was 40℃ > sun drying > shade drying > 60℃. 
On the other hand, when the wave number was in the 
range of 6000-4000  cm−1, the absorption peak intensity 
was the largest at 60℃, followed by the spectrum of shade 
drying, sun drying, and 40℃. Among them, the changing 
trend and absorption intensity of the absorption peaks 
of sun drying and 40℃ were the same, which indicated 
that the chemical composition content in these two dry-
ing methods was similar. The averaged spectra of seven 
geographical regions were also exhibited in Fig. 3B. In the 
range of 10,000-7000  cm−1, the absorption peaks of dif-
ferent regions were Guizhou, Xinjiang, Jiangxi, Hunan, 
Hubei, and Shaanxi in descending order. However, in 
the range of 5350–4000  cm−1, the absorption intensity 
of Shaanxi is the highest, which indicated that the sam-
ples from Shaanxi have strong absorption signals in this 
wavenumber range. From Fig. 3C–F, spectral changes of 

Fig. 3  Original spectrum of different drying methods A and regions B for E. ulmoides leaves based on FT-NIR. C, D, E, F: different regions of 40℃, 
60℃, sun drying, and shade drying, respectively
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samples from different regions based on different dry-
ing methods were different. The wavenumber was in the 
range of 5000-4000 cm−1, and the absorption peak inten-
sity of the Shaanxi sample based on drying was signifi-
cantly higher than that of other regions.

In all results, the spectra of EULs in different drying 
methods and different regions had the same trend and 
the peaks appear in similar positions. It meant that the 
chemical components contained in EULs from different 
regions were similar, but the absorbance difference was 
obvious, which represented the content of chemical com-
ponents was different between different drying methods 
and different regions. Besides, the differences in absorp-
tion intensity and peak shape in different drying meth-
ods (Fig.  3A) were much lower than those in different 
regions, which demonstrated that the differences within 
individuals may be greater than the differences between 
drying methods, and it’s easier to identify regions than 
drying methods. Nevertheless, this conclusion needs fur-
ther research and modeling analysis to support it.

Exploratory analysis and hierarchical cluster analysis
The result of the PCA score plot based on the FT-NIR 
spectra data for different drying methods was shown 
in Fig.  4A. Analysis from a general point of view, these 
samples of different drying methods were difficult to 
distinguish with FT-NIR spectral characteristics. Some 

samples of 60  °C drying were separated from the other 
processed methods, some 60  °C samples also were cov-
ered by other sample points, and the rest of the samples 
were gathered together. It indicated that the chemical 
information of EULs samples between different drying 
methods was similar. The first two components of princi-
pal component 1 (PC1) and principal component 2 (PC2) 
accounted for 95.7% of the total variance (73.3% and 
22.4%), revealing that most information of original data 
was preserved. The result of the PCA score plot based on 
the FT-NIR data for different regions was displayed in 
Fig. 4D. Seven regions were separated according to differ-
ent categories, which was significant differences in chem-
ical information between different regions.

According to the loading plot of the two principal 
components for different drying methods and regions 
as shown in Fig.  4B, E, respectively. PC1 and PC2 
stressed almost all spectral signals, showing a profile 
close to those of the original FT-NIR spectra. The vari-
ables positively influencing the samples’ distribution at 
10,000-5800  cm−1 for PC1 and the variables negatively 
influencing samples distribution were the 5800-4000 and 
10,000-4600  cm−1 for PC1 and PC2 in Fig.  4B, respec-
tively. Considering the consistency of loading values and 
PCs in Fig. 4E, the loading score of spectral variables at 
10,000-5700  cm−1 and 10,000-4000  cm−1 drop to nega-
tive values for PC1 and PC2, respectively. However, 

Fig. 4  Score plots (A and D), loading plots (B and E) of PCA and HCA (C and F) for different drying methods and regions
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spectral variables and PC1 had a positive effect in the 
range 5700-4000 cm−1.

In order to evaluate the similarity between different 
classified samples, HCA was established. This technol-
ogy is designed to create groups that maximize internal 
cohesion and maximize external separation. The results 
of HCA for different drying methods and regions were 
shown in Fig. 4C, F. It is unsatisfactory that the cluster-
ing effect of different drying methods is chaotic, yet all 
samples were successfully clustered into seven parts 
according to category of regions. It shows that the EULs 
samples from different regions have obvious differences. 
This result is consistent with analysis of FT-NIR spectra 
and PCA.

Analysis of 2DCOS images
Synchronous, asynchronous, and integrated 2DCOS 
images were shown in Fig.  5. 2DCOS (synchronous, 
asynchronous, or integrated) were obtained by MAT-
LAB 14.1 software based on the full spectrum of 
10,001–4000  cm−1. It contained more important infor-
mation on molecular structure, improving the resolu-
tion of 1D spectroscopy, which could be used to identify 
and study the interactions between substances or groups 
[25]. The peaks located on the main diagonal in the 

synchronous 2DCOS and were called auto-peaks, which 
reflected the sensitivity of the changes of the related 
spectra in different regions for each chemical group in 
the sample to perturbation variables. The auto-peaks 
are more sensitive to perturbing variables, the auto-
peaks intensity will be stronger. The non-main diagonal 
peaks were called cross peaks, and reflected the rela-
tivity in the intensity vibrations corresponding to their 
frequencies [29]. Automatic peaks were always positive, 
but cross peaks could be positive or negative. A cross 
peak on a 2DCOS was positive if two peaks of different 
wavenumbers decrease or increase at the same time, 
and it was negative otherwise. Asynchronous 2DCOS, 
used to characterize the degree of difference between 
two spectral signals. Their value reaches a maximum or 
minimum value when two spectral signals are orthog-
onal to each other. Its value was zero when the two 
dynamic signals are in phase or out of phase. The asyn-
chronous 2DCOS was antisymmetric on both sides of 
the diagonal that consisted with entirely of cross peaks 
and had no automatic peaks. In general, if v1 changes 
strongly before v2, a positive peak appears; if v1 changes 
strongly after v2, a negative peak appears. In this study, 
Figs.  5A–C represented the synchronous, asynchro-
nous, and integrated 2DCOS images of different drying 

Fig. 5  Synchronous, asynchronous, and integrated 2DCOS of different drying methods (A, B, C) and regions (D, E, F) for E. ulmoides leaves
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methods of EULs, respectively. Figures  5D–F repre-
sented the synchronous, asynchronous, and integrated 
2DCOS images of different regions of EULs. Compared 
asynchronous and integrated 2D correlation spectros-
copy, the peaks value of the synchronous 2DCOS were 
clear. The feature information was relatively obvious, 
revealing that synchronized 2DCOS was suitable for 
intuitive analysis of characteristic peaks. The auto-peaks 
of synchronous 2DCOS in Figs. 5A, D were mainly con-
centrated in the wavenumber range of 7250-4000 cm−1. 
It was related to substances such as water and carbohy-
drate that this result was consistent to “analysis of    FT-
NIR spectra”. The information of asynchronous and 
integrated 2DCOS images was fragmented with less 
spectral information, it was not suitable for identifica-
tion. In addition, the 2DCOS images of different drying 
methods and regions were shown in Additional file  1: 
Figures S2 and S3. The traditional Chinese medicine of 
EULs is a complex mixed system, which contains a vari-
ety of chemical components and is affected by various 
factors of the natural environment. Therefore, the dif-
ference and intensity variation of automatic peak and 
cross peaks in EULs’ samples of different drying meth-
ods and regions to achieve the purpose of identification. 
It is necessary to further use the discriminative model 
for identification and evaluation.

Discrimination of E. ulmoides leaves with the different 
drying methods
PLS‑DA model
Identifying individuals of different groups based on 
their spectral characteristics is one of the main tasks of 
chemometrics research. It’s best to use a fixed method 
and see how that method handles it to get a head start 
when analyzing two spectral data sources. In this study, 
the PLSDA model was firstly used to evaluate the differ-
ences of different drying methods and regions of EULs, 
and the variable characteristics of spectral sets were com-
prehensively studied. Based on the spectral data of dif-
ferent dry methods, the PLS-DA model was established 
that the best number of latent variables was 7 as dis-
played in Additional file 1: Figure S4 A. Besides, a slightly 
higher RMSEE (0.35066) and RMSECV (0.35962) were 
obtained, but within the allowable value of the model 
parameters. The ROC curve reaches the upper left cor-
ner, indicating that the specificity can be good without 
reducing the sensitivity. For a good model, the AUC, sen-
sitivity, and specificity values are all between 0 and 1 and 
should be close to 1. More information on the sensitivity 
and specificity of the model can be found from references 
[30]. Figure  6A displayed ROC curves, and each graph 
expressed the sensitivity and specificity of the model 
as a function of the selected threshold. The confusion 

Fig. 6  Receiver operating characteristic (ROC) curves with the area under curve (AUC) of different drying methods (A and a) and different regions 
(B and b)
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matrix for different dry methods of EULs based on PLS-
DA was shown in Additional file 1: Table S1. The param-
eters result in sensitivity, specificity, accuracy, and AUC 
value for different drying methods as shown in Table 2. 
The results displayed that a sensitivity (0.9677, 0.9750), 
specificity (0.9609, 0.9664), accuracy (0.9677, 0.9625), 
and AUC value (0.9934, 0.9967) of train and test set 
based on 60℃ data were higher than other samples of 
other categories. It implied that samples processed by 
this drying method could lead to significant differences 
in chemical composition or content between samples. At 
the same time, only three out of 93 samples and one out 
of 40 samples for train set and test set with 60℃ drying 
methods were misclassified, respectively, and the correct 
classification rates reached 97.5%. The least ideal param-
eter values were the sun drying samples. Although the 
specificity values were both above 0.9300, the sensitivity 
of the train set and test set were only 0.2796 and 0.6667, 
respectively. The accuracy and AUC values were lower 
than 0.9000, and indicated that the sample separation 
effect is not good. Additionally, the response permutation 
test of 200 times (Y scrambling) was shown in Additional 
file 1: Figure S4 a, which revealed no overfitting with R2 
of R2Y-intercept of −0.0034, Q2-intercept of -0.0834, 
showing that the method has a good identify ability and 
no over-overlap phenomenon.

ResNet model
Results of synchronous, asynchronous, and integrated 
2DCOS images based on “Analysis of 2DCOS images”, 
ResNet models were established as displayed in Fig. 7. The 
cross-entropy cost function curves and accuracy curves 
are the parameters to evaluate the model. Among them, 
the cross-entropy loss function is applied to account for 

the convergence effect of the model that the closer its 
value is to zero, the better the convergence of this model. 
The recognition ability of the model is evaluated by the 
accuracy curves of the training set and the test set. The 
value is closer to 1, representing that the identify ability of 
the model is stronger.

In this work, when the number of epochs is 37, the 
accuracy of both the training set and the test set reached 
100%, and the loss value was 0.0214 and tended to be flat 
from Fig. 7A. It showed that this model has strong gener-
alization and stability ability and could be used to identify 
the different drying methods. Compared with the model 
of the synchronous 2DCOS, the results of asynchronous 
and integrated 2DCOS model were poor that were not 
suitable for identifying the different drying methods of 
these EULs. The color information of the synchronous 
2DCOS images may be rich than the asynchronous spec-
trum, and the line information of auto-peak and cross-
peak is clear. Even though the number of epochs was 42, 
the performance of the training set reached 100%. How-
ever, when the number of epochs was 60, the accuracy 
of the test set did not reach 100% and fluctuates widely 
as shown in Fig. 7B, C, indicating that the accuracy and 
generalization ability of the model were all poor. The rea-
son for this phenomenon may be caused by the similar 
spectral information or less characteristic spectral infor-
mation obtained by asynchronous 2DCOS images of 
samples with different drying methods. In addition, the 
model established above was used to classify the exter-
nal validation set, and the classification results of the 
external validation set for different parts are shown in the 
confusion matrix of the synchronous, asynchronous, and 
integrated 2DCOS in Fig. 8A–C, respectively. Figure 8A 
showed that all 52 samples of the drying methods were 

Table 2  The classification parameters of PLS-DA established for different regions and drying methods

SEN Sensitivity, SPE specificity, ACC​ Accuracy, ROC Receiver Operating Characteristic

Styles Classes Train set Test set

SEN SPE ACC​ ROC SEN SPE ACC​ ROC

different regions Guizhou 0.8117 0.7124 0.8978 0.9444 0.9722 0.8880 0.9012 0.9335

Henan 0.9405 0.7446 0.9570 0.9805 0.8857 0.9685 0.9506 0.9852

Hubei 0.7556 0.8844 0.9489 0.9018 0.7368 0.9720 0.9444 0.9653

Hunan 0.7885 0.8414 0.9516 0.9202 0.6296 0.1000 0.9383 0.9358

Jiangxi 0.8519 0.9167 0.9785 0.9794 0.5000 0.1000 0.9630 09,978

Shaanxi 0.7458 0.8118 0.9301 0.9907 0.1000 0.9648 0.1000 0.9527

Xinjiang 0.9500 0.8925 0.9167 0.1000 0.8750 0.1000 0.9938 0.1000

Different processing 40°C 0.8000 0.9315 0.8279 0.8991 0.8537 0.9160 0.9000 0.9418

60°C 0.9677 0.9609 0.9677 0.9934 0.9750 0.9664 0.9625 0.9967

Sun drying 0.2796 0.9395 0.7754 0.7175 0.6667 0.9308 0.8563 0.7404

Shade drying 0.6667 0.8398 0.8011 0.8257 0.7949 0.8678 0.8500 0.8873
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Fig. 7  The accuracy curves and cross-entropy cost function of synchronous, asynchronous, integrated 2DCOS spectra model for different drying 
methods (A, B, C) and regions (D, E, F)

Fig. 8  The confusion matrix of synchronous (A and D), asynchronous (B and E), integrated (C and F) 2DCOS spectra model for different drying 
methods (A, B, C) and regions (D, E, F)
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correctly identified. 12 samples out of 52 were misclassi-
fied as shown in Fig. 8B. Among them, the samples based 
on 60  °C were completely classified correctly, while the 
samples of other categories were all wrongly classified. 
four samples were misclassified based on shade drying 
samples, six samples were misclassified for both 40  °C 
and sun drying samples, and only one sample at 40  °C 
was misclassified in the 60 °C category of all misclassified 
samples. Figure 8C also had the same trend that 13 sam-
ples based on 60 °C were completely classified correctly. 
This result is consistent with spectral feature information 
and PCA conclusion. This may be the significant change 
in the content of chemical components in the samples 
after drying at 60 °C, and there is a similarity in the con-
tent of chemical components between samples after 
other drying methods.

Discrimination of E. ulmoides leaves with different 
collection regions
PLS‑DA model
The identify significant differences between groups of 
surveyed samples was executed by the PLS-DA model 
when studying differences between internal partial sam-
ples in different regions, which represented the total 
variance in the spectral information (R2 = 0.536 and 
Q2 = 0.387). The best number of latent variables (LVs: 22) 
and permutation test of 200 times also showed that the 
model was rigorously set up with no overlap as displayed 
in Additional file 1: Figures S4 B and b. The two param-
eters of RMSEE and RMSECV were 0.23794 and 0.26984, 
respectively, indicating that the classification model per-
forms was good and could be used for identification of 
different regions. The seven groups of Henan, Hubei, 
Hunan, Jiangxi, Shaanxi, and Xinjiang had good discrimi-
nation results that the accuracy of the train and test set 
were 0.8978 and 0.9012 as shown in Table 2, respectively. 
The same trend of AUC values, AUC values for all differ-
ent regions were above 0.9018 in Figs. 6B, b. These results 
showed that the comprehensive spectral information 
could distinguish EULs from different regions, revealing 
that the it’s different from chemical properties of different 
regions samples. This model exhibited relatively slightly 
high sensitivity and specificity for the train set, especially 
for Jiangxi and Xinjiang, both values were above 0.8519. 
Regrettably, the sensitivity values in Hubei, Hunan, and 
Jiangxi were from 0.5000 to 0.7368. The sensitivity and 
specificity of the test sets from other regions were both 
above 0.875. At the same time, the confusion matrix of 
different regions was shown in Additional file 1: Table S2. 
The classification results of the test set from Guizhou, 
Shaanxi, and Xinjiang provinces were good, with only 
one misclassified or completely correctly classified. Over-
all, the results for all parameter values of PLS-DA model 

in Xinjiang were excellent. These results indicated that 
there are significant differences in chemical information 
between samples from three regions and samples from 
other regions, this result was consistent with “Analysis of 
FT-NIR spectra”.

ResNet model
The ResNet models were established that weight 
attenuation coefficient λ was 0.0001, the learning rate 
was 0.01, and batch_size was 16. The accuracy curve 
and the cross-entropy cost function curve were gen-
erated by Mxboard, where the smoothing parameter 
of the curve was 0.6. The regions and drying meth-
ods discrimination strategy of EULs based on ResNet 
as shown in Additional file  1: Figure S5. The accuracy 
curves and the cross-entropy cost function of synchro-
nous, asynchronous, and integrated 2DCOS were dis-
played in Fig.  7. Figure  7D was the cross-entropy cost 
function of the precision curve of the synchronous 
2DCOS spectrum. We could see that the epoch was 27, 
the accuracy of the training set and test set was 100%, 
and the loss value was close to zero. The results demon-
strated that the synchronous 2DCOS model had a good 
ability to discriminate the regions. The accuracy curve 
and cross-entropy cost function of the asynchronous 
2DCOS model was given as shown in Fig. 7E. It could 
be seen that the epoch was 34, the accuracy of the train 
set was 100% and the test set was 74.6%. Although the 
value of the test set fluctuates as the number of epochs 
increases, it never reaches 100%. Similarly, when the 
number of epochs was 39, the accuracy of the train 
set and test set was 100% and 84%, respectively, and 
the loss value was 0.059. Even with the increase in the 
number of epochs, the accuracy of the training set does 
not increase in Fig.  7F. It showed that there were no 
good models of asynchronous and integrated 2DCOS 
for geographical identification of EULs.

Moreover, the 54 external validation of 2DCOS images 
(synchronous 2DCOS asynchronous 2DCOS, and inte-
grated 2DCOS) were established. The confusion matrix 
of synchronous 2DCOS asynchronous 2DCOS, and inte-
grated 2DCOS models were shown in Fig. 8D–F, respec-
tively. Figure 8D showed that all samples were correctly 
classified with 100% accuracy for geographical identifi-
cation. For Fig.  8E, a total of 35 samples were correctly 
classified, accounting for 64.8% of the total samples. 
Even if the generalization ability of the model was not 
very good, the regions of Henan and Shaanxi were clas-
sified correctly, accounting for 81.8% and 87.5%, respec-
tively. Surprisingly, 36 samples were correctly classified 
in the confusion matrix of integrated 2DCOS, and the 13 
samples from Henan and 3 samples from Xinjiang were 
completely correctly classified in Fig.  8F. Therefore, the 
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synchronous 2DCOS images model of EULs for geo-
graphical identification had the strongest generalization 
ability. However, three models had good identification 
ability for the samples of EULs from Henan in the three 
models of synchronous 2DCOS asynchronous 2DCOS, 
and integrated 2DCOS. To sum up, the spectral infor-
mation in the 2DCOS images of the samples in Henan, 
Shaanxi, and Xinjiang provinces might be very different 
from other provinces, so that samples could be classi-
fied correctly even when the generalization ability of the 
model was not very good. However, this requires more 
sample size to obtain the qualitative and quantitative 
experimental data to support this conclusion.

Combined with climate data analysis
The origin and growth environment of TCM are impor-
tant, which greatly affects the efficacy of TCM. As a 
major factor, ecological environmental factors become a 
research hotspot, affect the quality of Chinese medicinal 
materials and the source of the formation of authentic 
medicinal materials. EULs like a warm and humid cli-
mate and a sunny environment and are resistant to severe 
cold. It can be cultivated in most areas of my country and 
has strong adaptability. There is no strict selection of soil, 
but the soil layer of deep, loose, fertile, moist, and well-
drained loam is best. The growth rate of the E. eucom-
mia tree is relatively slow in the juvenile period, and 
the fast-growing period appears in 7–20  years. It grows 
place more in low mountains, valleys, or low-slope sparse 
forests.

The bioclimatic indicators were selected from the 
world climate-global climate database (WorldClim 1.4, 
http://​world​clim.​org/). In this study, the climate data 
such as average temperature, precipitation, solar radia-
tion, maximum temperature, and minimum temperature 

were analyzed and evaluated. The 19 bioclimatic indica-
tors of environmental indicators were listed in Additional 
file 1: Table S3. The distribution of average climatic data 
of 16 regions were showed in Additional file 1: Figure S6, 
the result displayed that the annual average temperature 
of six provinces was in the range of 9–16 ℃, while Xin-
jiang showed a significant difference from other prov-
inces, and the annual average temperature was around 
7 ℃. The mean diurnal range was a range in 7–12 ℃, 
and the provinces with relatively high values were Xin-
jiang and Henan. This may be related to the high tem-
perature during the day in summer. At night, due to the 
lack of ability to retain heat, the ground cools and dis-
sipates heat very fast and the temperature drops rapidly. 
The result revealed a particularly large temperature dif-
ference between day and night. This result of the tem-
perature difference in Xinjiang was large, which can also 
be confirmed from max temperature of warmest month 
and min temperature of coldest month. In addition, the 
order of annual precipitation from high to low is Jiangxi, 
Hunan, Hubei, Guizhou, Shaanxi, Henan, and Xinjiang. 
In general, the climate of Xinjiang is characterized by 
dryness, which highlighted the decrease in precipita-
tion. Besides, correlation plots using 16 regions’ spec-
tral data and 19 climatic data as variables were discussed 
and displayed in Fig. 9. Figure 9A was a correlation plot 
based on 16 regions. The samples from the 16 regions 
had slight differences, and the correlation coefficients 
were all greater than 0.9 except for Xinjiang, showed a 
highly correlated. The difference between regions of Xin-
jiang and others were relatively obvious, and the correla-
tion coefficient was around 0.5 except for Xinjiang and 
Henan (the correlation coefficient was about 0.8). These 
results were consistent shows that two Xinjiang and the 
other 11 regions have significant differences, which may 

Fig. 9  Correlation plots of 16 regions (a) and 19 climatic data (b) based on the FT-NIR spectra spectrum

http://worldclim.org/
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be related to the topography of Xinjiang that locate in 
high latitudes and is the only mid-temperate region of 
all sample collection areas, the result was consistent as 
this report [31]. But there was a slightly higher similar-
ity between three regions in Henan. Figure 9B was a cor-
relation plot based on 19 climatic data with the p-value 
falling below the 0.05, 0.001, and 0.0001 levels of signifi-
cance. We found that different significance levels were 
set to present similar results as displayed in Additional 
file  1: Figure S7. The correlation y between 19 climate 
data was generally lower than that of different regions 
only a few climate data had a high correlation, while 
there were stronger associations of climate data. For 
example, bio_1 had a significant positive correlation with 
6, 7, 9, etc., but bio_2 had a significant negative correla-
tion with 6, 7, 9, 11, 12, 13, 16, 18, and bio_4 result was 
similar to bio_2 for these several climatic data. Correla-
tion plots more intuitively show high correlations and 
differences between different regions or between the 
two, and there are also differences in climate data.

Conclusion
In this study, different drying methods and regions 
of EULs were successfully discriminated by the origi-
nal dataset of FT-NIR without any preprocessing using 
2DCOS directly incorporating ResNet with chemomet-
rics. Exploratory analysis methods and hierarchical clus-
tering analysis results show that the clustering effect of 
samples from different drying methods is not good, while 
samples from different regions reflect a good separation 
effect according to different categories. Besides, PLS-DA 
and ResNet models were used for certificating the clas-
sification performance. ResNet can be applied as the best 
choice for identifying the different drying methods and 
geographical traceability based on synchronized 2DCOS 
images due to the excellent model demonstrating the 
characteristics of time-saving, high accuracy, and sim-
ple operation. For ordinary people, this model does not 
require artificial feature extraction or complex data pro-
cessing, just knowing the input and output, which greatly 
reduces the computational complexity and operation 
process. Due to the spectral information characteristics 
and the two models, the EULs samples had significant 
differences between 60 ℃ drying and other drying meth-
ods. The EULs samples from Henan, Shaanxi, and Xin-
jiang were also different from other regions and listed 
as a “National Geographical Indication Protected Prod-
uct”, which may be related to the local climatic condi-
tions and geographical advantage as the main regions 
of E. ulmoides cultivation, especially Xinjiang. However, 
these results can provide qualitative explanations and sci-
entific support for the application of EULs. The results 

exhibit that the FT-NIR spectral information combined 
with the chemometric method can be quickly, effectively, 
and non-destructively applied to identification of drying 
method and geographical traceability for EULs. There-
fore, this work not only provides more comprehensive 
evidence of chemical information for the key supple-
ment for quality evaluation of EULs, but also provides a 
novel reference for discrimination of drying methods and 
regions on this medicinal and edible plants.
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