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Abstract 

Soybeans play a key role in global food security. U.S. soybean yields, which comprise 32% of the total soybeans 
planted in the world, continue to experience unprecedented grain loss due to the soybean cyst nematode (SCN) 
plant pathogen. SCN remains one of the primary disruptive pests despite the existence of advanced management 
techniques such as crop rotation and SCN-resistant varieties. SCN detection is a key step in managing this disease; 
however, early detection is challenging because soybeans do not show any above ground symptoms unless they  
are significantly damaged. Direct soil sampling remains the most common method for SCN detection, however, this 
method has several problems. For example, the threshold damage methods—adopted by most of the laboratories 
to make recommendations—is not reliable as it does not consider soil pH, N, P, and K values and relies solely on the 
egg count instead of assessment of the root infection. To overcome the challenges of manual soil sampling meth-
ods, deep learning and hyperspectral imaging are important current topics in precision agriculture for plant disease 
detection and have been proposed as cost-effective and efficient detection methods that can work at scale. We have 
reviewed more than 150 research papers focusing on soybean cyst nematodes with an emphasis on deep learning 
techniques for detection and management. First: we describe soybean vegetation and reproduction stages, SCN life 
cycles, and factors influencing this disease. Second: we highlight the impact of SCN on soybean yield loss and the 
challenges associated with its detection. Third: we describe direct sampling methods in which the soil samples are 
procured and analyzed to evaluate SCN egg counts. Fourth: we highlight the advantages and limitations of these 
direct methods, then review computer vision- and remote sensing-based detection methods: data collection using 
ground, aerial, and satellite approaches followed by a review of machine learning methods for image analysis-based 
soybean cyst nematode detection. We highlight the evaluation approaches and the advantages of overall detection 
workflow in high-performance and big data environments. Lastly, we discuss various management approaches, such 
as crop rotation, fertilization, SCN resistant varieties such as PI 88788, and SCN’s increasing resistance to these strate-
gies. We review machine learning approaches for soybean crop yield forecasting as well as the influence of pesticides, 
herbicides, and fertilizers on SCN infestation reduction. We provide recommendations for soybean research using 
deep learning and hyperspectral imaging to accommodate the lack of the ground truth data and training and testing 
methodologies, such as data augmentation and transfer learning, to achieve a high level of detection accuracy while 
keeping costs as low as possible.
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Introduction
The soybean is one of the most important legume crops 
produced globally and is particularly vital in the United 
States of America (Fig.  1). This crop is an important 
agricultural commodity and source of revenue since it is 
one of the world’s largest animal protein feed sources of 
and is the second largest vegetable oil source. The U.S. is 
the world’s leading soybean producer and second major 
exporter: soybeans encompass 32% of the total planted 
crop area according to a 2021 USDA report. Soybeans 
produced in the Midwestern Corn Belt region strength-
ened the 2017 U.S. economy by US $33 billion with more 
than 98 million Mg of soybeans (USDA NASS 2018). The 
total soybean sector contribution to the US economy 
averaged $115.8 billion per year.

Figure  2 indicates U.S. Soybean 1989–2020 total 
planted area. This figure indicates that in 2020 more than 
32 million hectares of the soybean crop were planted. For 
the same year, the yield is 50 bushels/acre (Fig.  2b) and 
the production is about 108 million bushels (Fig.  2c). 
Given that the price to farmers is about $280 per metric 
ton (Fig. 2d), the resulting total crop value is $30 million.

Heterodera glycines, also known as soybean cyst nem-
atode (SCN), is one of the most disruptive plant patho-
gens known to soybean crops and drastically reduces 
the harvested soybean yield. Once a soybean field is 
infected with SCN to a high degree, it is challenging 
to eliminate it from the field completely. The infec-
tions growth and subsequent spread can be controlled 

through the planting and rotation of non-host crops, 
planting resistant soybean seed varieties, and the 
proper cleaning and maintenance of the equipment and 
gear used within SCN infested fields. Non-host crops, 
such as alfalfa, oats, corn, sorghum, or wheat, are most 
commonly rotated with the soybean crop. Figures 3, 4, 
and 5 compare the soybean and corn crops with regards 
to historical yield and price, and contrast the harvest 
areas for 7 major crops for the census years between 
2007 and 2017. The most common resistant soybean 
crop varieties planted include P188788, Hartwig, and 
CystX. Soybean seed variety resistance does not simply 
mean that the plant is immune to SCN, it implies that 
the plant has enhanced capabilities that reduce SCN 
formation at its roots. If the same SCN resistant variety 
is used for several years, it becomes less effective since 
SCN mutates to enable it to infect the resistant variety. 
Figure  6 shows the yield loss caused to soybean crops 
due to various pathogens or plant defects between 1996 
and 2014. Losses due to SCN holds the largest share at 
36%. 

SCN was first found in North Carolina in 1954. The 
disease was subsequently identified throughout the 
northwestern and southeastern states of the US. Fig-
ure  7 presents the 2020 North American SCN distri-
bution. Figures  7 and 8 together illustrate that most 
of the states in the US are infested with SCN. SCN 
spreads by anything that moves soil, including wind, 
water, machines, and living creatures, especially birds. 
SCN can multiply rapidly in the presence of a host 
plant even though movement occurs slowly. SCN can 
live for many years in the soil without the support of a 
host plant. It is relatively difficult to recognize an SCN 
infested field visually, especially when damage is low. 
Understanding SCN biology and plant behavior is key 
to recognizing early infection and managing negative 
economic impact. SCN is the main sources of yield loss: 
it accounts for up to 30% of all US soybean yield lost 
to disease, amounting to a little over 2.7 million met-
ric tons a year. The most recent estimates indicate that 
SCN infestations resulted in $1.5 billion in annual yield 
losses . The estimated reduction of US soybean yields 
due to SCN in 2005 was 1,935,493 tons [3]. The average 
economic loss due to soybean disease was estimated 
at $60.66 USD per acre between 2010 and 2014 in the 
Unites States and Ontario [4].

Figure  7 also indicates that SCN was detected for 
the first time in more than 50 counties in the US and 
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Fig. 1  Crop areas in 2021
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Canada (Fig.  7, red) before spreading to more states 
and counties (Fig.  7, blue). Figure  8 depicts crop type 
distribution in the USA, indicating that most soybean 
farms are located in mid-eastern regions.

Infection begins when a juvenile nemotode enters 
the soybean root and feeds on the cells in the root’s 
vascular system. A male juvenile will move into the 
soil once it has finished feeding; therefore, it does not 
cause as much infection as a female since females do 

not migrate  but rather, mature in place. The young 
adult female is white in color and is often visible to the 
naked eye in the soybean field when the plant begins 
to flower. As the adult female ages, its color changes 
to yellow and then brown. The brown stage of the cyst 
can contain up to 500 eggs and can persist for years in 
a dormant state. The white and yellow female stages are 
the only visible sign of SCN infection on the roots and 
may not be present at the time of sampling [5] (please 

(a) Area Planted (b) Yield

(c) Production (d) Price to farmers

(e) Crop values
Fig. 2  US soybean statistics 1988–2020
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see Figs. 9 and 10)as the brown cysts are too small and 
are not visible in oil. The typical SCN life cycle begins 
in the spring, which is the planting season for the soy-
bean crop (Fig.  11). Temperatures and moisture levels 
during this season are suitable conditions for the hatch-
ing of the eggs released by the cysts, or the dead female 
nematodes. It takes 24–30 days for the eggs to hatch 
and release juvenile nematodes. These juvenile nema-
todes infect the soybean plant’s vascular tissue. Female 
nematodes can be observed at the plant’s roots approxi-
mately 6 weeks after soybean seeds are planted. Some 
of the symptoms of this disease include severe growth 
retardation, stunting, and a yellowish appearance. Spe-
cific questions relevant to soil sampling, such as grid 
spacing and sampling frequency, cannot be definitively 
addressed since there many factors that need to be con-
sidered, such as topography, soil type, and fertilizer use; 
however, a general framework can be used as an initial 
step.  

Soybean vegetative and growth stages are depicted 
in Table  1. There are five vegetation stages and eight 
reproduction stages. The vegetation stage last 43 days 
on average while reproduction stage last 73 days. There 
are 7 sub-stages in the vegetation stage: VE, VC, V1, 
and through V5, while there are eight sub-stages for 
the  reproduction  stage: R1 through R8. Researchers 
have defined the beginning of the vegetative stages as 
when the soybean plant emerges from the soil. These 
stages are identified based on how many nodes are uni-
foliolated. The unifoliolate nodes are counted as one 
node even though there are two separate nodes that 
occur at the same position and time. V1 corresponds 
to one trifoliolate, V2 corresponds to 2 triofoliolates, 
and so on. The reproduction stages are identified by the 
beginning of flowering stages where R1 corresponds to 

(a) Soybean historical yield and price.

(b) Corn historical yield and price.
Fig. 3  US soybean and corn prices and yields till 2020

(a) Soybean yield and price correlation.

(b) Corn yield and price correlation.

Fig. 4  US soybean and corn yield and price linear regression analyses
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flowering onset and R8 corresponds to full maturity. 
The diseased plant’s foliage also falls off early and only 
bears a few flowers and seeds, which results in reduced 
size and quality. The affected plant’s root carries several 
lateral rootlets, which bear fewer bacterial nodules in 
contrast to those of uninfected plants. The disease first 
appears in circular patches on the field before it spreads 
continuously throughout the season. It takes approxi-
mately two to three years to cover the whole field if the 
soybeans are planted on infested land. These symp-
toms are often caused by other reasons; however, with 
some expertise, it is not hard to recognize SCN’s pres-
ence occurrence in the field.

Some clear above-ground SCN infestation symptoms 
are lower yields, stunting, and crop cover yellowing [8] 
either circular or oval shaped. Another minor but impor-
tant detail that can be overlooked is that SCN infested 
crop height is lower than healthier plants [9]; however, 
the most effective way to diagnose SCN infection is 
through soil tests [10]. It is nearly impossible to detect 
SCN affected plants or soils with the naked eye. The 

above ground symptoms are often misleading and the 
level of infection is difficult to estimate by simply observ-
ing the white female attached to the soybean root.

The current method used to determine the level of 
infection is through soil testing done via professional 
diagnostic laboratories. Soil can be sampled at any time 
to check for the presence of SCN in a field. Ideally, soil 
samples should be analyzed in the fall before the soybean 
harvest to detect the level of SCN infection since this is 
when most of the SCN females mature. Atleast one sam-
ple for each 10-acre field should be analyzed [11]. Typi-
cally, multiple steps of sieving, rinsing, grinding, and 
cleaning the soil samples are repeated to extract SCN 
cysts and count the number of eggs. This is laborious and 
requires the expertise of trained professionals to carefully 
handle the samples for cyst extraction. However, a recent 
work by Legner and colleagues [12] automate this process 
of extraction and soil analysis by using a “robotic agricul-
tural instrument” equipped with elutriators and robotic 
handlers. This instrument takes 4 min to process 100 cc 
of soil as compared to the typical extraction style which 
takes about 10 min for extraction. Plants located in the 
center of the SCN affected region have several stunted 
root systems that are severely distorted, swollen, and have 
lumps known as root knots. The below ground symptoms 
include increased susceptibility to other soil borne plant 
pathogens. The above ground symptoms include stunted 
plants, mid-season yellowing, and premature senescence, 
or aging; however, SCN infection symptoms are not 
always visible above-ground. Yellowing can be caused by 
other diseases, but the timing of the yellowing caused by 
the cyst nematodes often start to appear one month after 
planting in July and August. There are several factors 
that contribute to SCN development and its subsequent 
growth, including soil dispersing agents, the presence of 
host crops, adaptability to SCN-resistance, management 
practices, and soil properties.

Figure 12 depicts the eight factors affecting SCN devel-
opment: host crop usage, soil dispersers, seed treat-
ments, nematicides, seed replanting from infected soils, 
environmental factors (temperature, moisture, pH), SCN 
herbicide resistance, and adaptability to SCN-resistant 
varieties. The factors marked in yellow are ambient fac-
tors such as temperature and humidity, SCN adaptability 
to the planted seed variety, and SCN resistance to applied 
herbicides. These factors are beyond human control. The 
factors marked in green, such as soil dispersing agents 
like farm machinery, seed treatment measures taken to 
prevent SCN adaptability, nematicide usage to slow SCN 
growth, seed replanting from infested fields, and host 
crop rotation with crops such as oat, alfalfa, and wheat 
are within human control. Any visible SCN development 
signs can only be identified in vegetation stage V4 when 

(a) Crops by percent area harvested - Line plot.

(b) Crops by percent area harvested - Box plot.

Fig. 5  Crops harvested based on area for census years (2007–2017)
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the fourth trifoliolate occurs [13]. The soils used to grow 
soybeans have a bearing on SCN growth [14]. This factor 
was not included in Fig. 12 since further research needs 
to be conducted to verify the effects of different soil types 
on SCN growth or decline. Commonly used soil types 
and their respective characteristics are: 

1	 Sand: Larger particles size, low nutrients, acidic, and 
easy moisture drainage.

2	 Silt: Small particle size, more nutrient dense than 
sand, less acidic than sand, more moisture content 
than sand.

3	 Clay: Smaller particle sizes, nutrient dense, alkaline, 
and poor moisture drainage.

4	 Loam: A combination of sand, silt, and clay textures. 
Nutrient rich, drought resistant, alkaline, and ideal 
for agriculture.

Fig. 6  Diseases causing soybean yield reduction in USA between 1996 and 2014
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These soil types, along with ambient factors such as tem-
perature, pH, and humidity, promote or inhibit SCN 
growth. Irrigated soils, or soils with higher moisture 
content, have larger SCN populations than non-irrigated 
soils [15]. Experimental work that highlights the influ-
ence of abiotic factors such as temperature, pH, soil type, 
and soil moisture and their influence on soybean egg 
count (EC) is not common in the literature, but two  key 
findings have been identified: at temperatures above 98.6 
◦ F in a wet or dry clay contributed to a lower EC [14, 16], 
while an increased EC was identified in a wet loam envi-
ronment at a lower temperature of 77 ◦ F [14, 15, 17].

Researchers have been analyzing different method-
ologies to improve soybean yield and reduce the loss 
associated with soybean diseases such as SCN. Differ-
ent SCN detection methods and management mecha-
nisms, as well as the use of SCN resistant varieties 
have been developed. Most SCN detection techniques 
can be sorted into two groups: soil sampling methods 
and computer vision methods. Soil sampling methods 
consist of taking soil samples from areas where the soy-
bean plants are experiencing yield loss and counting 
egg density. Computer vision uses remote sensing to 
detect infested fields. Remote sensing consists of using 

Fig. 7  Map showing the known distribution of SCN in US-East Central, US-Southeast, US-Midwest, parts of US-Heartland and US-Southwest and 
Canada [1]
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imaging combined with earth surface reflectance spec-
tra to detect anomalies. These images can be acquired 
acquired using satellites, aircraft, or drones. For more 
information, the authors of [18] proposed a review of 
hyperspectral image classification using deep learn-
ing. These collection methods can work at scale but an 
equally important step is to consider SCN management 
methods to control (not eliminate) SCN growth.

Several management techniques are considered when 
taking action against SCN. A recent survey indicated 
that 49% of soybean farmers now rotate genetic SCN 
resistance sources, of which 25% are using Peking as 
an alternative SCN resistance source. An identical sur-
vey conducted in 2015 indicated that 39% of soybean 
farmers were rotating genetic SCN resistance sources, 
and of those farmers, 95% are using the SCN resistant 

Fig. 8  Global agro-ecological zones and crop type distribution in USA [2]

Fig. 9  Cream-colored cysts and one nodule on soybean roots. (Sam 
Markell, NDSU)

Fig. 10  Cream-colored live female cysts and brown cysts of dead 
females. (Photo courtesy of Terri Niblack, University of Illinois)
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PI 88788. Over 95% of these plants are sourced from 
PI  88788 [19]. Figure  13 indicates that PI  88788 was 
the most used SCN resistant crop from 1991 to 2016. 
SCN resistant varieties overuse have created a new 
problem where several soybean field showed that SCN 
developed resistance against SCN resistant sources. 
Midwestern states and the respective percentages of 
virulent phenotypes in are Missouri at 78%, Kansas 
at 64%, Indiana at 56%, and Wisconsin at 78%. Rotat-
ing SCN with some other non-host crop is a practice 
applied by soybean farmers to mitigate SCN. At least 
77% of soybean farmers were rotating non-host crops 
such as corn and wheat in 2020, up from 71% in 2015. 
More than 60% of soybean farmers were planting SCN-
resistant soybean varieties; therefore, the authors of 

[19] investigated novel resistance sources to soybean 
cyst nematodes (SCN) in wild soybeans. 

The price of soybean in 2020 according to the chart 
shown in Fig. 14 is about $16 per bushel, a 5.1-bushel-
per-acre yield loss represents leaving $81.6 per acre in 
the field. In addition, if the price remain high, farmers 
tend to grow soybean and this can make SCN manage-
ment more difficult.

Related work
The state-of-the-art recent review papers review remote 
sensing, machine learning  (ML), and deep learning; 
however, other papers reviewed SCN for plant diseases 
or precision agriculture are shown in Table  2. Few to 
no review papers exist that provide in-depth studies of 

Fig. 11  SCN life cycle [6]
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SCN detection and management strategies with a focus 
on computer vision. The authors of [1] reviewed the 
states and the counties where the SCN is distributed. 
The authors of [22] provide a survey of SCN popula-
tion densities and virulence phenotypes during 2015–
2016 in Missouri. The authors of [23] provide a survey 

of SCN distribution in North Carolina in 2017. The 
authors of [24, 25] reviewed the role of remote sensing 
in precision agriculture. The authors of [26] surveyed 
the  use of unmanned aerial vehicle (UAV) sensing in 
precision agriculture. A brief survey of hyperspectral 
sensing application in remote sensing is provided in 

Table 1  Soybean vegetation stages and duration [7]

 Vegetation stage Description Range and average

  
Planning Emergence: the cotyledon (VE) stage 5–10 days (Average 10 days)

  
VC: Unrolled unifoliolate leaves 3–10 days (5 days on average)

  
V1: 1st trifoliolate 3–10 days (5 days on average)

  

V2: 2nd trifoliolate 3–10 days (5 days on average)

  

VN Nth trifoliolate 3–10 days (5 days on average) V3 3–8 days (5 days on 
average) for V5 3–5 days (3 days on average) for beyond 
V5

  

R1: Beginning flower 2–5 days (3 days)

  

R2: Full flowering 0–7 days (7 days)

  

R3: Beginning pod 5–15 days

  

R4: Full pod 4–26 days

  

R5: Beginning seed 11–20 days

  

R6: Full seed 9 to 30 days

  

R7: Beginning maturity 7–18days

  

R8:Full maturity –
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[27]. The authors of [28] proposed a survey of public 
datasets that can be used for precision agriculture. The 
authors of [29] proposed a survey of unsupervised ML   
techniques for precision agriculture. The authors of 
[30] proposed a survey of supervised ML  classifiers for 
plant disease detection. The authors of [31] provided a 
survey on ongoing research related to computer vision, 
IoT, and data fusion for crop disease detection using 
ML  techniques. The authors of [32] proposed a review 
of image-based plant disease detection, focusing on 
ML  and deep learning. The authors of [33] provided a 
survey on the recent findings on the genes that control 
SCN resistance in soybeans. There are few papers that 
focus on recent advances in soybean cyst nematodes 
detection using remote sensing, computer vision, and 
ML  . We will provide a comprehensive survey of SCN 
detection techniques that focus on direct and indirect 
methods, such as ML   and computer vision combined 
with imaging, to detect SCN, classify different seeds, 
determine irrigation levels, and forecast soybean yield 
loss.

Motivation and contributions
SCN detection and management is challenging with 
some of these challenges being:

•	 Lack of early SCN detection because above ground 
foliage damage does not appear until infection levels 
reach highly damaging levels. The infection becomes 
very difficult to manage because of the steady 
increase in egg density.

•	 Once a soybean field is infested with SCN, it takes 
several years to disappear completely as SCN eggs 
stay intact for about several years as the cyst protects 
them even with consecutive non-host crop rotations 
[35].

•	 It is challenging to draw conclusions regarding the 
correlation between SCN egg densities and soybean 
yield loss.

•	 SCN persists and spreads in fields with diverse envi-
ronments.

•	 Reproduction capacity of SCN is high [36].
•	 Corn and soybean rotations are ubiquitous in the US.
•	 High level of diversity among virulent phenotypes.
•	 A shift in soybean cyst nematode virulence is associ-

ated with the use of soybean resistant PI 88788 [37]. 
A survey conducted in 2005 indicated that 83% of the 
soybean hectarage in Illinois is infested with SCN, 
with average population densities high enough to 
cause significant yield suppression (2700 eggs/100 
cm3 soil) [37], while 70% have SCN in these fields 
that have adapted to PI 88788 to some extent.

•	 One observation may not be enough: SCN does not 
necessarily cause symptoms that can be detected vis-
ually unless the damage has reached high levels [17].

With these challenges comes the need for robust solu-
tions that leverage artificial intelligence for efficient SCN 
detection. Deep learning-based hyperspectral image 
analysis is gaining popularity because of the advantages 
this methodology presents over direct soil methods. 
The use of direct soil methods requires large amount 
of time to count the eggs and sampling fields, and may 
not yield information about the existence of soybean 
cyst nematodes at an early stage. The lab tests indicate 
that the number of eggs sampled from the field is only 
an approximate. It is often challenging to determine the 
best area to obtain samples from  since SCN densities 
will vary between areas of an infested field. Some recom-
mendations suggest sampling from places where visible 
symptoms are present; however, in most of the cases the 
symptoms are not visible at early stages. Deep learning 
provides an alternative to these testing methods: hyper-
spectral images from the whole field are obtained  and 
then the   AI model can use segmentation techniques to 
indicate the presence of cyst nematodes and which parts 
of the field are infested. Deep learning, combined with 
UAVs equipped with hyperspectral imaging capabili-
ties, can present an opportunity to obtain hyperspectral 
images on a regular basis and provide more details about 
soybean plant health.

Current soybean cyst nematode detection 
approaches
Soybean cyst nematode detection techniques may be 
mainly grouped into: soil sampling, remote sensing, and 
hybrid methods (see Fig. 15). Direct soil sampling meth-
ods are based on collecting soil samples from the fields 
and taking that to specific labs for further analyses. This 
category includes sub-categories such as cell sampling, 
grid sampling, and point sampling. The second category 
is called remote sensing and consists of ground-based, 
aerial-based, and satellite-based methods for data acqui-
sition. This category uses imaging techniques or wire-
less sensor networks (WSNs) deployed on the ground 
without taking soil samples. Lastly, the hybrid category 
combines techniques from direct and indirect detection 
methods.

Soil sampling methods
Soil tests were performed in the past to primarily clas-
sify nutrient availability within a sample. Typical soil 
nutrients obtained from a soil test are nitrogen, phos-
phorus, potassium, calcium, magnesium, and sodium 
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[38]. Out of these, nitrogen, potassium (both of which 
contribute to increased soybean crop yield [39, 40]), 

and phosphorus are the significant macro-nutrients for 
soybeans. Soil tests can also indicate if a soybean crop 
is suffering from iron deficiency chlorosis (IDC), which 
causes leaf-yellowing and plant stunting. Vegetable 
crops differ in their ability to absorb micro-nutrients 
such as iron from the soil. Legumes, such as soybeans, 
are more likely to be iron deficient [41]. There are six-
teen elements that are essential in supporting optimal 
growth for soybean crops, according to the Mississippi 
Soybean Promotion Board [42]. Seven of these sixteen 
elements are are boron, chlorine, copper, iron, manga-
nese, molybdenum, and zinc. These elements usually 
meet sufficiency levels [43] in most soils, but soil alka-
linity or acidity is an equally important factor as soil pH 
determines nutrient absorption. As an example, phos-
phorus is most plant-available when soil pH is between 
6 and 7 [44].

Soil sampling can be done through two ways: grid sam-
pling or directed sampling [45, 46]. Grid sampling is the 
process of soil sampling every few acres, typically where 
multiple small fields with different crop histories have 
been combined into a single grid. Grid sampling creates 
a general but potentially less accurate nutrient map for a 
given area since fewer samples are collected. The alterna-
tive method, direct sampling, collects multiple samples 
from a specific field if the grid has different soil series, 
crops, or eroded areas [47]. This sampling method cre-
ates a variability map that can be verified using preci-
sion agriculture technologies such as hyperspectral or 
multispectral imaging. Aerial images for a given field 
can be used to delineate areas that are different from one 
another and can demarcate different subareas for direct 
sampling. Soil sampling involves three systematic steps: 

1	 Most organic matter, such as phosphorus and potas-
sium, can be quantified using samples taken at depths 
as low as 0–6 inches, depending on the nutrient tests 
needed. Soil tests for nitrogen require samples taken 
at depths of 6–24 inches [47]. 6–8 inches of sampling 
would be ideal for most tests. Soil can be extracted 
using a shovel or a soil recovery probe.

2	 Approximately 15–20 samples should be obtained 
during the spring, planting season, or in Fall, har-
vest, using a zig-zag or “M” pattern once the field is 
divided into sections [8]. Sampling soil in the fall is 
the most common method. Soil sampling should be 
avoided in wet or frozen soils.

3	 Soil samples collected during step two should be 
combined in a bucket to obtain a composite. Bags 
specifically designed for soil samples should be used 
since sample moisture can cause cavities in regular 
bags.

Fig. 12  Factors directly affecting SCN development

Fig. 13  The use of PI 88788 vs other types [20]

Fig. 14  Soybean prices—Historical macrotrends (2021-06-19) [21]
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Soil sampling was actively performed during the summer 
planting season (May) of 2021 jointly by the University of 
North Dakota (UND) and North Dakota State University 
(NDSU) to further identify key insights for SCN research. 
Two different fields, in terms of planting time and SCN 
population, were identified in the state of North Dakota 
for this research study. The first field, called Prosper, had 
an area of 6572 sq. m, planted with soybean seeds during 
the first week of May. This field had lower SCN popula-
tions based on previous field usage and crop yields. The 
second field, called Casselton, had an area of 3500 sq. m 
planted with soybean seeds approximately a week after 
Prosper. This field had higher SCN counts. Soil sampling 

was completed at certain stages of crop growth to iden-
tify SCN egg counts, pH, and micro-nutrient profiles 
(Tables  3 and 4). The nitrogen/phosphorus/potassium 
(N/P/K) levels were measured in lbs per acre and parts 
per million (ppm). Though the typical soil requirement 
(in terms of cc) is 250 cc i.e. about 1 cup, analyses for this 
study was done using 30 cc of soil.

It can be observed that there is a significant increase in 
egg counts for both the fields when comparing the meas-
urements for July 19th and June 12th. The micro-nutrient 
profiles for nitrogen, phosphorus, and potassium have 
also seen a decrease, more substantially in the case for 
nitrogen and potassium. This is consistent with findings 

Table 2  Recent review papers

References Paper type Topics covered Field Year

[31] Review CV, IoT, data fusion, ML Crop disease 2021

[30] Review ML Plant disease detection 2019

[29] Review Unsupervised ML Precision agriculture 2015

[28] Review Public dataset Precision agriculture 2020

[26] Review UAVs sensing Agriculture precision 2019

[24] Review Remote sensing Precision agriculture 2010

[25] Review Remote sensing Precision agriculture 2017

[1] Review SCN distribution Soybean disease 2021

[22] Review Population densities and virulence phenotypes Soybean disease 2018

[32] Review ML, DL, Imaging Plant diseases 2021

[33] Review SCN resistant varieties SCN 2018

[34] Review Breeding, genetics, and genomics Soybean nematode species 2016

Fig. 15  Simple taxonomy of SCN detection and management
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from other studies [48, 49]- which state that one of the 
above ground symptoms of SCN is nutrient deficiency. 
However, further testing may be required to conclude 
whether this lowered concentration of micro-nutrients is 
due to impaired root growth or due to the direct involve-
ment of SCN [50] in changing the physiological charac-
teristics of the crop.

Remote sensing methods
Remote sensing
Remote sensing is the science of recording images of 
the earth’s surface using satellite, aircraft, and drones 
for analysis and interpretation. Remote sensing consists 
of four processes: (1) energy detection from reflected 
sunlight, (2) energy conversion into an electrical signal, 
(3) signal transmission into the ground then saved to 
memory, and (4) correcting and error compensation for 
distortions that occur during the process. Image analy-
sis and interpretation must be completed to understand 
the characteristics the earth’s surface. Figure  16 shows 
different imaging sensors that can be used for precision 
agriculture.

Wavelengths used in remote sensing
The process of acquiring reflected sunlight energy is 
often performed using sensors. The required wavebands 
that are used for this process must be defined; therefore, 
atmospheric absorptions between the sunlight and the 
earth’s surface, and between the earth surface and the 
sensor mounted on the space or aircraft, must be under-
stood. The electromagnetic spectrum primarily consists 
of the visible spectrum, ultraviolet, infrared  (IR), radio 
spectrum, mmWave, and terahertz bands. The visible and 
near-infrared spectrum reveals some transmittance win-
dows where the transmission is high; therefore, these are 
the spectra used for remote sensing. Other portions of 
the spectrum, such as where the waveband is higher, may 
also be used. Water vapor, oxygen, and other absorption 
features are essential to avoid low transmittance rates, all 
of which must be considered when designing the sensor.

Satellite‑based remote sensing
The process of image acquisition is often completed 
using different platforms, such as when satellites are used 
to image earth’s surface. Satellites create global images, 
but it is hard to achieve high spatial resolution. Sensor 
configurations cannot be changed once the satellite is 
launched. Satellites travel through the complete atmos-
pheric column, which introduces radiometric errors that 
must fixed once images are obtained; however, if the sat-
ellite is not moving through the atmospheric zone, these 

images are more stable than those obtained with aircrafts 
and drones.

Satellite images such as Landsat 7 were considered for 
SCN detection. Landsat 7 provides eight spectral bands, 
including a optical and thermal band (Table 5).

Earth surface images are subject to several geomet-
ric distortions. Several sources cause geometric distor-
tion in satellite remote sensing: the rotation of the earth 
during imaging, curvature of the earth when seen from 
space, panoramic distortion, instrumentation effect, and 
variations in platform altitude, attitude, and velocity. 
These instrumentation effects can result in under-sam-
pling, the presence of gaps, oversampling, and overlap 
between  instantaneous fields of view. These distortions 
result in image compression or expansion. Panoramic 
distortion is exaggerated due to earth’s curvature. These 
distortions must be corrected. Two approaches are used 
for this correction: model-based and mapping based. The 
first approach mathematically models distortion effects 
to reverse them. This approach requires knowledge of 
the platform position, velocity, altitude, and time. This 
approach can be complex since several sources can con-
tribute to the distortions. The second approach uses map-
ping to avoid modeling distortions, via an available map 
assumed to be correct and to which the distorted image 
is registered. Image-map registration develops polyno-
mial functions. To determine the unknown coefficient 
of these polynomials, well-distributed control points 
are used. Once the polynomial functions are found, grid 
location and pixel center mapping is performed; however, 
grid position is rarely located at the pixel centers requir-
ing the application of resampling techniques. Resampling 
methods used to estimate the brightness of these pixels 
can be bi-linear interpolation, cubic convolution, or near-
est neighbor. This process is often called geocoding or 

Table 3  Micro-nutrient, egg count, and pH analysis for a field in 
Prosper, North Dakota

N/P/K Egg count pH Date Soil type

266.5/37.5/342.5 465 7.65 June 12th 2021 Heavy clay

51.4/21/185 1471 8.21 July 19th 2021

Table 4  Micro-nutrient, egg count, and pH analysis for a field in 
Casselton, North Dakota

N/P/K Egg count pH Date Soil type

260.3/42.8/400 562 7.68 June 12th 2021 Heavy Clay

87.1/40.3/273.3 5558 7.92 July 19th 2021
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georeferencing. Image to image registration follows the 
same steps as map-image registration.

Aerial‑based remote sensing
Aircrafts, on the other hand, do not produce global 
images; however, images with high spatial resolu-
tion can be obtained. Aircrafts is considered unstable 
since it moves through the atmospheric zone. The sen-
sors mounted on the aircraft can be reconfigured from 
a flight-to-flight and the images are captured through a 
small atmospheric column, unlike their satellite coun-
terparts. Drones are similar to aircraft, but they can fly 
at low altitudes, which produces images with ultra-high 
spatial resolution. Drone sensors can also be reconfig-
ured from flight to flight and can capture images through 
small atmospheric columns. The geometric distortions 
present in satellite-based remote sensing are most likely 
present in aerial based remote sensing. UAV-based 
remote sensing faces several challenges such as the pres-
ence of additional sources of image distortions, such as 
high sensitivity to the wind and jitters due to its light-
weight and small volume. Small cameras can cause image 
distortion because of focal length changes.

Automatic geometric distortion correction must be 
created for these platforms. The authors of [51] pro-
posed geometric distortion rectification in images cap-
tured using UAV, which eliminated rotational error and 
overlapping regions. The authors of [52, 53] proposed a 
genetic and neural network to fix the geometric distor-
tion in UAV-based remote sensing. There is also a need 
to determine optimal flight parameters, such as altitude, 

speed, number of flights needed to cover the field, and 
UAV battery life. For instance, if one  chooses to fly at 
10m or 20m of altitude, how much difference this makes 
in terms of SCN detection accuracy is one question that 
can be investigated.

We have gathered some data related to Prosper and 
Casselton fields to determine optimal flight parameters. 
We used a multirotor UAV (DJI Matrice M600 Pro with 
a MicaSense Rededge Mx multispectral sensor) and 
P-mode flight modes which are GPS position holds. 
The sensor has a stand-alone GPS antenna that directly 
geotags the obtained images. We can control the inputs 
for altitude, sensor overlaps; however, we are limited to 
a slider bar that adjusts speed from slow to fast with 4 
points in between: generally from 1 m/s to 3 m/s based 
on desired altitude. This application allows us to have 
full control of the drone, including the ability to stop the 
mission at any time, order return to land (RTL), or have 
the drone descend to avoid any conflict with manned air-
craft. Table 6 indicates that the total time needed to fly 
over Prosper field, which has an area of 62 m × 106 m, 
was approximately 29 min at an altitude of 10 m, 15 min 
at an altitude of 15 m, approximately 9 min for an altitude 
of 20 m, and 4 min when flying at an altitude of 50 m. 
For Casselton, flying over a field with a total area of 53 
m × 66 m takes approximately 27 min at an altitude of 
10 m and 3 min at an altitude of 50 m. The altitude influ-
ences the time required to capture images and the total 
time required to pre-process the collected images. At an 
altitude of 10 m, 6800 images were collected, and at an 
altitude of 15 m, 3500 images were collected. More time 
is needed to stitch these images together and generate 
vegetation indices at low altitudes, which will allow   us 
to obtain images with high spatial resolution. The impact 
of the altitude on detection accuracy and the relevance 
of certain multispectral bands in determining diseased 
or healthy crop covers remains unknown and must be 
studied.

Fig. 16  Different sensors for imaging plants

Table 5  Landsat 7 spectral bands

Band# Visible Range Altitude

Band 1 Visible (0.45–0.52 µm) 30 m

Band 2 Visible (0.52–0.60 µm) 30 m

Band 3 Visible (0.63–0.69 µm) 30 m

Band 4 Near-infrared (0.77–0.90 µm) 30 m

Band 5 Short-wave infrared (1.55–1.75 µm) 30 m

Band 6 Thermal (10.40–12.50 µm) 60 m Low 
gain/High 
gain

Band 7 Mid-infrared (2.08–2.35 µm) 30 m

Band 8 Panchromatic (PAN) (0.52–0.90 µm) 15 m
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Ground‑based remote sensing
Ground-based remote sensing can be used with fixed, 
hand-held, vehicle mount, and overhead irrigation 
mount platforms. The use of vehicle and overhead irri-
gation mounts enable low-cost and high resolution field 
imagery. Different sensors can be used with these plat-
forms, such as from crioCircle and LIDAR, which are 
regarded as active sensors since they provide their own 
light source. Other passive sensors that can be used are 
visible and near infrared and thermal sensors. Ground-
based remote sensing is used for SCN detection. The 
authors of [54] conducted ground-remote sensing for 
SCN detection. They used two hand-held and multi-
spectral radiometers (CROPSCAN). The reflected sun-
light was measured in the near-infrared region from a 
high of 3 m above the soil. A variety of sensors are used 
for remote sensing: data and media. Data sensors cap-
ture analog environmental values and convert them to 
a digital format with the help of deployed sensor nodes 
in the field. The data captured are collected in the form 
of multi-hop communications or via a data MULE [55]. 
Example of data sensors includes NPK, soil moisture, pH, 
temperature, and humidity sensors. Media sensors col-
lect data in the form of images or video. Most systems 
use manned or unmanned mobile vehicles for media sen-
sors. The captured media data are transferred to a base 
station for processing and include hyperspectral, multi-
spectral, and IR cameras. Data sensors are deployed and 
active at all times to capture PA anomalies occurring in 
the field. Media sensors, such as hyperspectral cameras, 
are attached to UAV platforms or aircraft to capture 
field data while flying. A hyperspectral image is made 
up of reflections from hundreds of different bands in the 
electromagnetic spectrum, where each object exhibits a 
unique reflection characteristic; therefore, similar look-
ing objects with different characteristics can be sepa-
rated. Multispectral and hyperspectral sensors with high 
spatial resolution have small footprints. The spatial res-
olution of the data may not enough to estimate some of 
the vegetation indexes even though the sensors used in 
the satellite are capable of sensing a wide area while mov-
ing along its trajectory. Temporal resolution defines the 
frequency at which sensing is completed depending on 
the platform where the sensor is integrated. The tempo-
ral resolution varies and depends on a multitude of fac-
tors for different levels of sensing ranging from ground, 
air, and space.

Table 7 summarizes the three methods of remote sens-
ing in terms of their advantages and disadvantages.

Spectral vegetation indices
Vegetation indices (VI) [68] are the variables used to 
enhance vegetation properties to measure spatial and 

temporal performance based on the spectral transforma-
tion of more than one electromagnetic spectrum band. 
VI uses spectral wavelengths ranging from 300 nm to 
1700 nm, and from ultraviolet, visible light, and near to 
far infrared spectra for calculations. VIs are mathemati-
cal expressions used to measure the reflectance to assist 
in evaluating crop growth, water index, carbon emis-
sion. and similar vegetation properties. Commonly used 
vegetation indices are listed in Tables 8 and 9. The most 
popular VIs are NDVI, RDVI, and SAVI. The resultant 
reflectance map is analyzed to examine the blue and red 
regions and identify low plant reflectance. The values 
corresponding to low reflectance indicate abnormal spa-
tial and temporal indications in-terms of plant growth. 
‘Type’ specifies the mode of data acquisition in order 
to calculate the respective VI (please see Fig. 18). It has 
to be noted that satellites such as Moderate Resolution 
Imaging Spectroradiometer (MODIS), AVHRR, and Sen-
tinel-2 are simply viable examples for satellites used pre-
viously in precision agriculture but may not necessarily 
be the only options. VI accuracy can be affected by solar 
position, viewing geometry, land surface, and atmos-
pheric effects [69]. VI applications include:

•	 Water stress VIs have been very useful when calculat-
ing water stress in plants. Researchers tested 10 dif-
ferent VIs to express canopy water content (CWC), 
leaf equivalent water thickness (EWT), and live fuel 
moisture content (LFMC) [92]. green chlorophyll, 
red-edge normalized ratio (NR), and red edge chlo-
rophyll index were found to be the most sensitive for 
the 3 parameters [93].

•	 Evapotranspiration Evapotranspiration is an impor-
tant aspect of the plant life cycle.

•	 Soil moisture Researchers in [94] used remote sensing 
data from optical and FTIR to compare results from 
actual field measured data. NDVI and land surface 
temperature permutations produce temperature veg-
etation dryness index (TVDI) to assess soil moisture 
content. Regression analysis and correlation between 
TVDI and measured soil moisture content indicated 
a negative coefficient of r = 0.79 . TVDI was accurate 
at the experimental settings, reinforcing that hyper-

Table 6  Altitudes, flight times, and average number dataset size 
for Prosper and Casselton

Altitude Time (Prosper field) Time (Casselton 
field)

No. of images

10 m @1.7 m/s = 29 min @1 m/s = 27 min ∼ 6800

15 m @2.5 m/s = 25 min @2 m/s = 8 min ∼ 3500

20 m @3.3 m/s = 9 min @2.5 m/s = 7 min ∼ 2900

50 m @8 m/s = 4 min @8 m/s = 3 min –



Page 17 of 39Arjoune et al. Plant Methods          (2022) 18:110 	

spectral image analysis can be used with different VIs 
to model soil moisture content.

•	 Photosynthesis Multispectral and hyperspectral sens-
ing has provided us with VI methods such as NVDI 
and SR. The authors of [95] confirm that NDVI is a 
sensitive indicator of canopy structure and photosyn-
thesis. Researchers selected optimum wavelengths 
using partial least square, regression and second 
derivative  methods to predict the chlorophyll and 
carotenoid content in tea leaves from hyperspectral 
images in [96]. Researchers in [97] used photochemi-
cal reflectance index (PRI) with hyperspectral imag-
ing systems from surface optics to detect dynamic 
photosynthesis correlated changes in reflectance and 
PRI.

•	 Biomass Researchers are creating methods for using 
hyperspectral imaging and VIs to calculate biomass, 
which is an important indicator for monitoring vege-
tation degradation and productivity. Zhang et al. [98] 
use hyperspectral imaging for high precision estima-
tion of Khoorchin grassland biomass in China. This 
research determined a correlation of 0.636 between 
the normalized difference vegetation index (NDVI) 
calculated with an NIR hyperspectral spectrome-
ter and a thermatic mapper from a satellite. In [99], 
researchers indicated that UAV based hyperspectral 
imaging can be used for the biomass estimation of 
Pyropia (a type of alga) and serves as a cost effective 
solution for offshore algae monitoring.

•	 Disease management Manual or autonomous field 
scouting is a convenient method of disease detection. 
manual scouting is costly due to analysis time, human 
error, and labor intensity. Diseases that affect soy-
beans, such as SDS and nematodes, can be detected 
using remote sensing [100]. Applying ML with com-
puter vision to a hyper spectral image can detect 
certain diseases in their early stages of development 
[101]. The use of spectral disease indices (SDIs) to 
increase disease detection accuracy is common in 
certain crops [102] and   needs to be investigated 

since it gives more accurate results for disease detec-
tion than NDVI.

•	 Weed management The use of herbicides in weed 
affected areas is a conventional method of weed 
management. Remote sensing is used to map the 
weed spread in the field and report it to farmers for 
counter action. Spectral images can be used to map 
the weeds from the crops based on its phenological 
or morphological attributes. Use of unsupervised 
ML classification approaches are more accurate than 
supervised weed detection and mapping [103, 104].

•	 Crop Monitoring and yield There is still a need to 
investigate remote sensing and ML approaches to 
improve spatial and temporal issues despite efforts to 
improve the soybean yield. Biomass, vegetation cov-
erage, plant height, and LAI are essential crop health 
and development indicators. Remote sensing can 
obtain information on soil, topography, water man-
agement, and various biotic and abiotic stresses.

Figures  17 and 19 indicate examples of vegetation indi-
ces of Prosper field from multispectral images captured 
at 20m generated from a software called Pix4DMapper.

Machine learning methods for soybean detection
Techniques of machine learning based SCN detection 
can be grouped into two sub-categories: supervised ML 
and unsupervised ML. Supervised ML can be grouped 
into machine learning based and deep learning based (see 
Fig. 20). ML based SCN detection includes linear regres-
sion, support vector machine, neural network, decision 
trees, and ensemble methods such as random forest.

Deep learning based SCN detection techniques include 
deep neural and convolutional neural networks. Machine 
learning techniques require feature selection, and several 
models can be used based on the desired output. Features 
such as weather data, soil properties, and locations can 
be used as inputs for a machine learning classifier.

Machine learning and deep learning algorithms can 
be categorized into supervised and unsupervised. 

Table 7  Precision agriculture sensing types—advantages and limitations

Types Concept Advantages Disadvantages

Satellite-based
[56–59]

• Leo-satellite orbit
• Sensors configuration fixed

• Earth’s surface image
• Low cost
• Stable

• Low spacial resolution
• Geometric distortions
• Complete atmospheric column

Ground-based
[60–63]

• fixed,hand-held,vehicle, overhead irrigation 
Mount sensors
• Reconfigurable sensors

• High spatial resolution
• Low cost
• Narrow atmospheric columns

• Partial/regional earth’s surface
• Unstable
• Moves through the atmospheric zone

Aerial-based
[64–67]

• Sensors mounted on drones/aircraft
• Re-configurable sensors

• High resolution
• High control
• Low cost

• Several flights needed to cover the field
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Supervised algorithms require a labeled dataset. The 
dataset consists of hundreds of images with labels: 
healthy soybean or infested soybean. The algorithms 
learns the correlations and patterns between the input 
features extracted from the image and the output. 
Labeling datasets for SCN detection is challenging 
since it requires obtaining soil samples and associat-
ing them with the images of earth’s surface. Hyperspec-
tral features extracted from hyperspectral images can 
be labeled as “healthy soybean” or “infested soybean” 
classes using soybean samples. This dataset is then used 
to train supervised learning techniques such as ran-
dom forest, linear and logistic regression, and decision 
trees. Unsupervised algorithms do not require labeled 
datasets, they attempt to map each sample to one class. 
Examples of unsupervised algorithms include kNN, 
K-means, neural networks, and principal component 
analysis (PCA).

Logistic regression
Logistic regression is a simple classifier technique that 
has been used for SCN detection [54] and remote sens-
ing in general. This technique uses sigmoid functions to 
determine the classifier outputs. The output of the clas-
sification is either 0 (no-SCN detected) and 1 (SCN pre-
sent) in binary classification. Linear regression uses an 
input, which can be a vector of features, and computes 
the output using a sigmoid function. If the output is 
higher than a certain threshold, linear regression outputs 
0, or otherwise outputs 1.

Decision trees and ensemble methods
Decision trees are supervised ML techniques that pro-
vide simplicity and a high level of interpretability [105]. 
We can distinguish between several decision tree algo-
rithms, such as CART, C4.5, ID3, and CHAID. ID3, pro-
posed in 1986, builds the decision tree using information 
gain (IG) and entropy with nominal features. The root is 
the nominal attributes whose gain is the highest. ID3-
based decision tree models are simple and fast but are 
prone to over-fitting, which was overcome using the gain 
ratio in 1993, when C4.5 was proposed. C4.5 splits attrib-
utes based on a threshold, which is selected to maximize 
attribute gain. CART is based on a GINI index and works 
with nominal features. CHAID performs the Chi-square 
test to determine the significant attribute.

The authors of [106] proposed a decision tree using 
entropy and Gini-index to classify soybean crop dis-
eases. The authors used a UCI machine learning dataset 
consisting of 307 samples, 35 attributes, and 19 classes 
including soybean cyst nematodes. The dataset was split 
into 80% training and 20% testing. The reported results 
indicated that entropy decision tree was 80.6% accurate, 

and the gini-index decision tree was 82% accurate. Bha-
tia and colleagues [107] proposed an enhanced Deci-
sion Tree Classifier (DTC) trained on the SoyBean Large 
(SBL) dataset from the UC Irvine Machine Learning 
Repository to predict 19 soybean diseases, or labels. This 
model was introduced to improve upon variations of the 
existing Classification and Regression Tree (CART) algo-
rithms using a DT algorithm, a feature selection tech-
nique, and Random Over (RO) sampling. The SBL dataset 
contained 35 features that were used to identify the best 
feature subsets by applying three feature selection tech-
niques: Correlation-based Feature Selection (CFS), Ran-
dom Forest Importance (RFI), and the cons filter. Eight 
common features that were deemed relevant were cho-
sen by these three techniques: precipitation, temperature, 
leaf spot size, incidence time, leaf mildew growth, area 
damage, canker lesion color, and fruits spot. Results indi-
cated that the enhanced DTC fitted with RFI, CFS, and 
cons filter achieved performance greater than 93% when 
using accuracy  and AUC metrics. The highest perform-
ing model using the enhanced DTC was a C4.5 DT algo-
rithm with an RFI filter, producing an accuracy  of 98.1%.

However, the decision tree method has various disad-
vantages, such as high variance; therefore, ensemble tech-
niques have been proposed to reduce the high variance 
of this method. Ensemble methods are defined as tech-
niques that uses multiple decision trees to enhance the 
performance of the model. The way these trees are com-
bined varies based on the task (classification or regres-
sion) and the type of the ensemble methods (bagging, 
random forest, and boosting techniques). For instance, if 
we deal with classification problem such as (SCN detec-
tion), then the majority vote is considered. If we deal with 
regression problem, such as predictig soybean yield or 
price, then the average of the outputs is considered.

Fig. 17  Prosper field June 25th 2021 Alt 20 meters LCI generated 
using PIX4Dmapper software
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Bagging classifiers use each subset of the original data-
set and aggregate the individual predictions to derive the 
final prediction [108]. Bagging techniques enhances the 
performance of the classifier. For instance, the authors of 
[106] indicated that bagging decision trees can improve 
the soybean cyst nematodes classification accuracy by 8% 
compared to entropy decision trees. However, bagging 
often creates correlated trees, which does not result in a 

reduction of high variance. To overcome this issue, ran-
dom forest  has been proposed.

Random forest   is a popular ensemble machine learn-
ing algorithm used for classification and regression [109] 
especially in  situations where the datasets have high-
dimensionality [110]. Random Forest attempts to fix 
one of the fundamental decision tree problems: overfit-
ting. Random forest is built by grouping several decision 
trees, similar to bagging ensemble methods. The features 
selected in the first subset are exclusively used with this 
current subset and are not selected in the next subset; 
therefore, random forest is considered as bagging gen-
eralization. The algorithm attempts to solve this issue by 
creating a forest, or several decision trees, using a meta-
algorithm called Bootstrap Aggregation, or Bagging. This 
algorithm utilizes a subset of features and records to train 
each tree within the forest in parallel. Random forest is 
robust enough to achieve high accuracy with very little 
feature engineering due to the special implementation of 
bagging. A higher number of trees utilized to create the 
model dictates the accuracy of the results in real time. 
The input data is fed to each tree in parallel and each 
tree makes its prediction based on the subset of features 
and records it was trained on. A voting scheme is used 
to determine the prediction with the greatest number 

Fig. 18  Scenario of UAV based VI calculation [70]

Fig. 19  Prosper field June 25th 2021 Alt 20 meters NDVI generated 
using PIX4Dmapper software
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of votes. The authors of [111] proposed a random forest 
for distinguishing soybean varieties from weeds, Palmer 
amaranth and redroot pigweed, that cause yield reduc-
tions in the US. Random forest was used with leaf multi-
spectral reflectance data for this classification.

Boosting is another form of ensemble method where 
the trees grow sequentially [112]. This approach begins 
with a weak classifier and gradually uses it to create a 
stronger classifier. It starts with node tree, which con-
tains all the observations [113]. The residuals calcu-
lated from the predictions obtained from the previous 
tree are then used to fit the next tree, which adjusts 
the residuals by multiplying the tree with a shrinking 
parameter before it can be added to the original tree. 
This process is repeated until it converges with the 
optimal decision tree. Gradient boosting learns slowly 
as it builds the stronger model from a small tree. This 
method uses the number of trees, the shrinkage param-
eter, and the boosting tree depth as inputs. Gradient 
boosting is prone to over-fitting if many trees are used. 
XG boost augments gradient boosting using a regulari-
zation parameter to control the over-fitting. This model 
is also known as regularized gradient boosting. Adap-
tive boosting [114], like gradient boosting, also begins 
with one tree. This method weighs the mis-classified 

observations and retrains the model after account-
ing for these weights to build a new decision tree. This 
process is repeated until convergence. This method is 
a form of boosting because the tree at each iteration is 
built based on the tree of the previous iteration. A per-
formance comparison between random forest, gradient 
boosting machine, XGBoost, SVR, MLP, and KNN for 
agribusiness forecasting is proposed [115]. Accord-
ing to this study, random forest outperforms the other 
algorithms.

Support vector machine (SVM)
Support vector machine (SVM) is a machine learning 
method that attempts to segment data points by creat-
ing one or more hyperplanes in high-dimensional space 
[116]. Data that are separated by the hyperplane(s) can be 
considered clusters, the detection of nutrition. SVM has 
historically been utilized to analyze plant nutrient defi-
ciency, and crop and weed classification with high levels 
of accuracy, using detection of nutrition and machine 
learning approaches. Kernels can be applied to improve 
performance and achieve good separation on non-linear 
or high-dimensional space. Kernel functions include lin-
ear, radial, sigmoid, and polynomial [116]. Training SVM 
models consists of finding the hyper-parameters of the 

Table 8  Vegetation indices for plant yield

Vegetation Index Equation Applications Range (nm)/Type

Atmospheric Resistant Vegetation Index 
(ARVI) [71, 72]

RNIR−RRedBlue
RNIR+RRedBlue

Disease, Weed Mapping 500-900/Satellite (MODIS)

Normalized Difference Vegetation Index 
(NDVI) [73]

RNIR−Rred
RNIR+Rred

Biomass, Crop Yield 630-900/ Satellite, UAV

Ratio Vegetation Index (RVI) RNIR
Rred

Crop Yield, Biomass 630-900/N.A.

Enhanced Vegetation Index (EVI) [72] 2.5(RNIR−RRed )
RNIR=6RRed−7.5RBlue+1

Disease, Biomass 500-900/Ground-based, UAV

Re-normalized Difference Vegetation 
Index (RDVI) [74]

RNIR−Rred
√

RNIR+Rred
Crop Yield, Nitrogen Uptake, Soil Mois-
ture, Biomass

630-900/Ground-based

Atmospherically Effect Resistant Vegeta-
tion Index (IAVI) [71]

RNIR−(Rred−�(Rblue−Rred ))
RNIR+(Rred−�(Rblue−Rred ))

Crop Yield 500-900/Satellite (MODIS)

Green NDVI (GNDVI) RNIR−Rgreen
RNIR+Rgreen

Water Stress, Crop Yield, Biomass, Disease 520-900/ N.A.

Normalized Difference Red Edge (NDRE) RNIR−Rrededge
RNIR+Rrededge

Crop Yield, Nitrogen Uptake, disease 700-900/N.A.

Red Edge Difference Vegetation Index 
(REDVI)

RNIR − RRedEdge Crop Yield, Biomass, Nitrogen Manage-
ment

700-900/Ground-based (Sprayer)

Red Edge Normalized Difference Vegeta-
tion Index (RENDVI) [75]

R750−R705
R750+R705

Crop Yield, Irrigation Management, Dis-
ease and Nitrogen Management

705-750/Satellite (Sentinel-2)

Wide Dynamic Range VegetationIndex 
(WDRVI) [76]

aRNIR−Rred
aRNIR+Rred

Nitrogen Application, Crop Yield 630-900/Satellite (AVHRR)

Plant Senescence Reflectance Index (PSRI) 
[77]

R680−R550
R750

Crop Yield, Disease, Biomass 550-750/Satellite (MODIS)

Triangular Vegetation Index (TVI) [78] 0.5× (120× (R750 − R550)− Disease 550–750/Mount-based,

200× (R670 − R550)) UAV

Red Edge Inflection Point (REIP) [79]
700+ 40×

R667+R782
2

−R702
R738−R702

Yield and Biomass 667-782/Satellite (MODIS)
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kernel that maximize the separation between the two 
classes [112] by minimizing the cost function. SVM was 
originally developed for classification and modified for 
regression tasks(called Support Vector Regressor (SVR)) 
for short term soil analysis.

The authors of [45] proposed soybean variety classifi-
cation based on hyperspectral features extracted from 
hyperspectral images then fed them to a linear support 
vector machine (LSTM). This model was trained to dis-
tinguish between 35 different soybean varieties. The 
authors of [117] proposed the use of a support vector 
machine with different kernels for plant discrimination 
based on NDVIs. The authors of [118] developed the use 
of a deep support vector machine (DSVM) for hyper-
spectral image classification. The authors classified indian 
pines including soybean-mintill, soybean-clean, and soy-
bean-notill, using hyperspectral images with an accuracy 
of 100% for soybean-mintill, soybean-clean, and soybean-
notill. The authors of [112] proposed machine learning 
methods including SVM for charcoal rot prediction in 
soybean. The authors of [2] proposed the use of a support 
vector machine for US crop type classification: corn, cot-
ton, rice, soybean, and winter wheat. The authors of [119] 

highlighted the need for a fully automated framework 
to process big data that resulted in the high-throughput 
phenotyping. The authors identified several research gaps 
that exist when using HTP. Most of research related to 
phenotyping is limited to a set of machine learning tools, 
such as support vector machine and artificial neural net-
works, while there are several recent advances in the field 
of machine learning and deep learning that are far more 
efficient.

Principal components transformation 
Principal components transformation is a transforma-
tion applied on original hyperspectral bands, which are 
correlated to define new bands where no correlation 
exists in the spectral space. This transformation is one of 
many techniques, such as wavelet transform and Fourier 
transform, and is used for dimensionality reduction. This 
method uses a vector of bands and multiplies them with 
a transformation matrix to obtain new bands. The trans-
formation matrix is derived from the covariance matrix. 
When the singular-value decomposition is performed, 
the transformation matrix is the transposed matrix of the 
eigenvectors from the diagonal form of the covariance 

Table 9  Vegetation indices for nutrients and chlorophyll

Vegetation Index Equation Applications Range (nm)/Type

Nutrient Management Indexes
Soil Adjusted Vegetation Index (SAVI) 
[80]

(RNIR−RRed )(1+L)
RNIR+RRed+L

Nitrogen Application, Crop Yield, 
Disease, Biomass, Water Stress

630-900/UAV

Water Balance Index (WABI) [81] R1500−R531
R1500+R531

Irrigation Scheduling 531 -1500/
Manual Mount-based

Transformed Soil Adjusted Vegetation 
Index (TSAVI) [82]

a(RNIR−aRRed−b)
RRed+aRNIR−ab

Water Stress, Crop Yield 630-900/Manual Mount-based, UAV

Optimized Soil Adjusted Vegetation 
Index (OSAVI)

1.16(RNIR−RRed )
RNIR+RRed+0.16

Crop Yield, Biomass, Nitrogen Man-
agement, Soil Moisture, Water Stress

630-900/N.A.

Photochemical Reflectance Index 
(PRI) [83]

R531−R570
R531+R570

Disease, Crop Yield, Leaf Water Stress, 
Canopy Temperature, Water Stress

531-570/Manual Ground-based

Shortwave Infrared Water Stress Index 
(SIWSI) [84]

R858.5−R1640
R858.5+R1640

Leaf Water Content 858.5-1640/Satellite (MODIS)

Degrees Above Non-stressed Canopy 
(DANS) [85]

min(0, Tstressed − Tnon−stressed) Water Stress 700-1000/ (IR Radiation)/Ground-based

Degrees Above Canopy Threshold 
(DACT) [86]

max(0, Tmeasured − Tref ) Water Stress 700-1000/ (IR Radiation)/Ground-based

Normalized Difference Water Index 
(NDWI) [87]

RGreen−RNIR
RGreen+RNIR

Soil Moisture and Yield 550-900/Satellite (ETM+, SPOT, ASTER, 
MODIS)

Chlorophyll Related Indexes
Green Chlorophyll Index (GCI) [88] RNIR

RGreen
− 1 Chlorophyll Content 550-900/Manual Mount-based

Normalized Pigment Chlorophyll 
Index (NPCI) [89]

R680−R430
R680+R430

Water Stress through Chlorophyll 
Content

430-680/Satellite (AVHRR)

Chlorophyll Absorption Ratio Index 
(CARI) [90]

R700
R670

×
aR670+bR670

√

a2+1

Chlorophyll Content 670-700/Satellite (Hyperion/EO-1)

Chlorophyll Vegetation Index (CVI) [90] RNIR
RGreen

×
RRed
RGreen

Crop Yield, Crop Growth through 
Chlorophyll Content

550-900/Ground-based

Chlorophyll Index (CI) [91] RNIR
(RRedEdge)

− 1 Chlorophyll and Nitrogen Content 700-900/Satellite (MERIS)
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matrix. Once we determine the eigenvalues, we can form 
the transformation matrix which transforms the hyper-
spectral bands’ vector into new bands.

k‑Nearest neighbor (kNN)
k-Nearest neighbor (kNN) is one of the oldest, most 
popular machine learning algorithms used today [120, 
121]. This algorithm is a special type of machine learn-
ing called an unsupervised model, often used for classi-
fication problems [120]. The algorithm attempts to label 

unlabeled data points by selecting the majority label 
based on k neighboring points in the training data [121]. 
Points are considered neighbors based on euclidean dis-
tance. The kNN algorithm is simple, easy to understand, 
and implement due to its relatively simple algorithm. 
kNN has been used for soybean disease classification. For 
instance, the authors of [122] proposed kNN for disease 
classification and compared its performance to SVM, 
neural network, Naive Bayes, and decision tree.

Fig. 20  ML research in agriculture
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Deep learning and convolutional neural networks
The neural network is one of the main innovations in 
machine learning, which is an algorithm based on the 
fundamental understanding of biological neural network 
(BNN) structures. This network is built using logistic 
regression bricks that consist of neurons with one acti-
vation function, such as sigmoid function or softmax. 
Neural networks rely on two concepts: the input is fed-
forward to calculate the target and the error is back-
propagated between the computed target and the actual 
target. Training neural network consists of finding the 
optimal weights wl

ij . The intensity of change is scaled 
using the learning rate. A higher learning rate makes 
more dramatic changes during the adjustment process 
while a small learning rate has the inverse effect. This 
backpropagation method ultimately attempts to mini-
mize the loss and maximize predictive power and accu-
racy. Neural network is a powerful classifier; therefore, 
it has been proposed for soybean crop disease classifica-
tion. The authors of [106] proposed a neural network to 
classify soybean cyst nematodes from other diseases in 
the crop. Neural networks have been applied to soybean 
yield predictions. The authors of [123] proposed a neu-
ral network to correlate soybean yield to topography, soil 
fertility, weather conditions, and evaluate the artificial 
neural network’s (ANN) ability to attribute yield loss due 
to SCN.

CNN‑based SCN detection
Convolutional neural network, CNN, builds upon con-
volution layers and fully connected layers. Convolutional 
layers aims to reduce the input feature size with succes-
sive convolutions. Hyperspectral images require features 
extraction, which is a tedious process with traditional 
machine learning techniques. CNN provides automatic 
feature extraction and performs better than PCA.

There are three main tasks used to build convolution 
layers: convolution, rectified linear unit and pooling.

Convolution Convolution layers perform automatic fea-
ture extraction and reduce the dimensionality of the input 
image. The input raw images goes through a set of con-
volutional filters. This operation is described in Fig.  21 
where the filter K is of size 3× 3 and the input image is of 
size 7× 7 . The filter is slided through the image and each 
time, it outputs the result of the convolution between the 
filter and the sub-matrix of the input image. At the end of 
the operation, we end up with a matrix of size 5× 5.

Activation allows for faster and more effective training 
by mapping negative values to zero and maintaining only 
the positive values. This method is sometimes referred to 
as activation because only the activated features are car-
ried forward into the next layers.

Pooling simplifies the output of the convolution opera-
tion by performing nonlinear downsampling. Other types 
of pooling can be used such as the minimum and average 
pooling. This operation reduces the number of param-
eters fed to the neural network and solve the issue of the 
curse of dimensionality. This is advantageous because it 
reduces overfitting and training time by reducing the size 
of the neural network.

CNN is often used with a neural network as a classifier; 
however, CNN can be used with other machine learn-
ing classifiers, such as random forest or support vector 
machine. We distinguish between several CNN architec-
tures based on how many convolution layers the archi-
tecture has, the type of the pooling used, and how many 
fully connected layers are used.

The authors of [124] proposed a CNN for soybean nem-
atodes detection using microscopic images. The authors 
investigated several architectures such as Xception, 
VGG16, InceptionV3, ResNet50, ResNet101, Inception-
ResNetV2, DenseNet121, DenseNet196, DenseNet201, 
and EfficientNetBx and achieved an accuracy of 96%. 
Akontaya et al. [125] proposed a “Convolutional Selective 
Autoencoder” (CSAE). This supervised machine learn-
ing paradigm involves a dataset that was composed of 
644 microscopic soil sample images. These images were 
then SCN marked by nematologists using a Matlab-based 
mobile application and pre-processed from a 3-channel 
RGB to a 2-channel grayscale image whose pixel values 
were normalized. Images were classified according to 
“high-cluttered” and “less-cluttered” groups that signifies 
a higher SCN egg density alongside soil debris or a lower 
density of SCN eggs respectively. The machine learning 
model was a trained and tested with a 80/20 split and a 
learning rate CNN of 0.002. This model had an average 
detection of 95%. The authors of [126] proposed a pixel-
wise convolutional neural network trained on datasets 
collected using near infrared hyperspectral imaging 
technology to classify three varieties of soybeans (Zhon-
ghuang37, Zhonghuang41, and Zhonghuang55) with an 
accuracy of 90%. The authors considered pixel-wise spec-
tra, which provides a much larger data volumes than an 
average spectra of samples to address the large amount of 
data required for deep learning techniques. The authors 
of [127] proposed an automatic SCN-eggs count using 
microscopic images and convolutional neural networks. 
The authors generated a dataset by collecting random 
samples from various farms in Iowa with different SCN 
different infestation levels to train this model. A 1-inch-
diameter probe was used to collect soil samples during 
the Fall of 2015. The authors of [128] proposed ML for 
soybean plant breeding. The authors of [129] proposed 
3D CNN for plant disease detection. The authors of [130] 
proposed a 3D CNN model with hyperspectral imaging 
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to detect charcoal rot, which is another important plant 
disease.

LSTM‑based SCN detection
LSTM is a type of recurrent neural network that has 
some advantages over neural networks, since neu-
ral networks have some limitations when it comes to 
sequential data. LSTM consists of a loop that connects 
the input layer to the output layer. The use of this loop 
enables LSTM to pass information on to perform pre-
sent tasks. LSTM networks are designed to avoid long-
term dependency problems, have been applied to solve 
many problems related to soybean agriculture, and   to 
forecast yields in [131–133]. Figure  22 illustrates the 
typical architecture of LSTM with three interacting 
layers.  

Metrics such as mean squared error (MSE), root 
mean square  error (RMSE), root mean square relative 
error (RMSRE),  mean absolute error (MAE), mean 
absolute percentage error (MAPE), and R2 can be used 
to evaluate regression tasks in machine learning. Tabu-
lar visualizations can also done using confusion matri-
ces (see Table 10). Here, the rows represent the actual 
(or ground truth labels) while the columns show the 
predicted labels where true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) scores 
can be used to evaluate metrics such as precision, 
recall, and F-measure but this is beyond the scope of 
this manuscript. Table 11 shows the 4 commonly used 
metrics for SCN classification.

Tuning the neural network or decision tree hyperpa-
rameter often leads to overestimation bias or high vari-
ance; therefore, it is important to evaluate the model. 
Learning curves are used to determine if the model 
over-fits or under-fits the dataset. Dataset addition or 

regularization techniques can be used to control these 
issues.

Other machine learning techniques for SCN detection
The authors of [125] proposed a workflow for determin-
ing egg count using computer vision and microscopic 
imaging to overcome the shortcomings of direct meth-
ods. This workflow consists of data collection, sampling, 
and deep learning-based egg counting. The proposed 
workflow demonstrates the effectiveness of deep learn-
ing; it achieves near-human accuracies of 95% on average, 
with a 93.73% precision score and an F1 score of 0.944.

The authors of [100] proposed a detection methodology 
based on linear discriminant analysis (LDA), logistic dis-
criminant analysis (LgDA), and linear correlation analy-
sis, and applied to data collected from Boulder, Colorado. 
These authors collected data weekly, between 11 am and 
2pm, for a period of 71 days after planting. The authors 
reported a 97% accuracy for detecting healthy plants and 
a 58% accuracy for detecting infested plants. The authors 
also investigated the correlation between disease rating 
and selected vegetation indices. The highest correlation 
reported was greater than 0.8 between the disease rating 
and VI occurred during 112 days after planting (DAP).

The authors of [135] investigated the classification of 
normal from insect-damaged vegetables in soybeans con-
sidering 100 vegetable soybean pods. The authors used 
hyperspectral imaging with spectrum of 400 nm and 
1000 nm, extracting features such as min, max, mean, 
and standard deviation, and feeding them to the SVDD 
classifier with an accuracy of 97.3% for healthy plants and 
87.5% for insect-damaged plants. Sucrose centrifugation 
is the most common technique used to separate debris 
from extracted nematode egg suspensions. The authors 
of [136] proposed a new method,“OptiPrep”, to improve 

Fig. 21  Convolution operation
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separation and recover extracted eggs. They also pro-
posed a machine learning based automatic egg count. 
The authors of [54] investigated the use of remote sensing 
coupled with geographic information system (GIS) tech-
nologies to create new tools for detecting and quantify-
ing SCN population densities and their impact on yields. 
The authors obtained Landsat 7 satellite images of a field 
near AMES, Iowa for five days during the 2000 season. 
Aerial images were obtained for 12 dates and at a high 
ranging from 45 m to 425 m. This image collection was 
accomplished by filtering the reflectance of a near-infra-
red region of 810 nm. GIS software was used to depict 
the SCN population densities. The authors of [137] pro-
posed spectral imaging with ensemble machine learn-
ing to detect soybean seeds. Ensemble classifiers such 
as random subspace linear discriminant (RSLD), linear 
discrimination (LD), and linear support vector machine 
(LSVM) methods were used to classify soybean varieties. 

The authors report that the RSLD algorithm had greater 
stability and reliability compared to LD and LSVM, 
achieving the highest soybean classification accuracy 
in 10, 15, 20, and 25 categories. The authors considered 
155 features and 15 types of soybeans, with accuracies 
of 99.2% for RSLD, 98.6% for LD, and 69.7% for LSVM. 
The authors of [138] review of machine learning spec-
tral imaging for the automatic discernment of crops and 
weeds as shown in Table 12.

Machine learning for crop yield forcasting
Breeding for yield is a highly complex and non-linear 
process due to genetic and environmental factors. Crop 
yield forecasting is important for management as well as 
providing timely information for optimum management 
of growing soybean crops and rapid decision-making, 
better policy making regarding import and export to 
strengthen national food security. Furthermore, machine 
learning and deep learning provide accurate predictions 
and often outperform statistical models. All these factors 
motivated researchers to use learning techniques for pre-
season yield predictions. As a results, several studies have 
considered machine learning using several models, such 
as neural network, LSTM, random forest, and kNN (see 
Table 13) trained on datasets that combine soil properties 

Fig. 22  LSTM contains four interacting layers [134]

Table 10  Confusion matrix

Actual\Predicted Positive (1) Negative (0)

Positive(1) TP TN

Negative(0) FP FN

Table 11  Metrics for SCN classification

Classification 
evaluation metric

Importance

Detection rate Early prediction of nematodes infestation is a key factor to reduce the disease spread in soybean. High detection rate is desired.

False alarm rate Models with low false alarm rate can prevent farmers from spending money on mitigation techniques or cultivate soybean 
especially that its price keeps increasing.

Miss-detection rate Miss detection of nematodes in soybean can be costly as farmers can experience yield loss and will detect nematodes infestation

Accuracy This metric combines the previous metrics and higher values of accuracy is required
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and weather data obtained from MODIS and weather 
station as well as some vegetation indexes such as NDVI, 
and land surface temperature. These models were evalu-
ated using regression metrics such as R2, RMSE, MAE, 
and MAPE. The authors of [132] proposed a satellite-
based machine learning technique with weather data for 
soybean field forecasts. This study presented a model to 
perform in-season soybean yield forecasts using Long-
Short Term Memory (LSTM), neural networks, satellite 
imagery, and weather data. The authors compared the 
performance of three algorithms: LSTM, linear regres-
sion, and random forest for forecasting soybean yield 
using VIs. The model was evaluated using MAE. The 
authors [139] proposed a model for forecasting US corn 
and soybean yields using remote sensing variables. The 
normalized NDVI was derived from MODIS day and 
nighttime land surface temperature (LST), and weather 
data from the crop growing seasons of 2006–2011. The 
authors of [128] investigated several machine learning 
models, such as support vector machine, random for-
est, and multi-layer perception, for predicting soybean 
yields using hyperspectral reflectance, which was col-
lected from two different growth stages on 250 soybean 
genotypes grown in four different environments. The 
hyperspectral reflectance range was (395–1005 nm). 
The R5 growth stage provides more information to pre-
dict soybean seed yields., indicating that the RF algo-
rithm achieves the highest performance, with a 84% yield 
classification accuracy. The authors of [133] proposed a 
pre-season agriculture yield forecast based on machine 
learning. The authors used scalable machine learning 
to perform the forecast using weather and soil proper-
ties. A deep neural network used LSTM recurrent layers 
and four fully connected layers in this model, using soil 
features such as soil ph, point longitude, point latitude, 
soil organic carbon content, bulk density, sand content, 
silt content, and clay content. The authors evaluated the 
model on US and Brazil soybeans using several evalua-
tion methods such as MAE, MAPE, RMSE, RMSRE, and 
R2. The authors of [131] investigated the use of a deep 
convolutional neural network-based LSTM model to pre-
dict soybean yield. This model was trained on weather 
data, MODIS Land Surface Temperature data, and 
MODIS Surface Reflectance (SR) data, labeled using his-
torical data.

The authors of [140] proposed a Glycine max yield pre-
diction based on deep learning and data fusion with dif-
ferent sensors. They collected RGB, multi-spectral, and 
thermal images using UAV from Columbia, Missouri. 
The authors extracted features such as canopy spectral, 
structure, thermal, and texture features to forecast grain 
yield using Partial Least Squares Regression (PLSR), Ran-
dom Forest Regression (RFR), Support Vector Regression 

(SVR), input-level feature fusion based DNN (DNN-
F1), and intermediate-level feature fusion based DNN 
(DNN-F2).

SCN management: influence of fertilizers/
pesticides/herbicides on crop quality
Experimental data are controversial and there is no gen-
eral agreement on the impacts of nitrogen fertilization. 
Fertilizer application, particularly nitrogen, continues 
to be a controversial topic since soybean production is 
responsive to N fertilization. Nitrogen application results 
in a yield increase when applied during the reproductive 
stage but can also decrease production. Field experiments 
were conducted in seven Alabama locations to study the 
response of N fertilization on various growth states [141]. 
The results indicated that five of seven locations had a 
positive response to nitrogen fertilization. The response 
from these five yields were inconsistent with respect to 
rate and timing. The authors explained this by concluding 
that the yield’s response to nitrogen application depends 
on soil nitrate concentration at planting. The authors of 
[141] reported a yield decrease in response to nitrogen 
application while a study by the University of Minnesota 
showed that the application of nitrogen for in-season 
soybean crops does not have any effect on yield [142] 
(please see Table 14).

Fertilizers
The authors of [143] studied the effects of soil tillage 
systems, seeding rate, fertilizer dosage, and time of 
application on soybean yield and quality over a period 
of three years. This work analyzed data using statisti-
cal approaches, such as ANOVA PoliFact Soft and least 
significant difference, indicating that nitrogen-46 ferti-
lization during phases V3–V5 had a significant positive 
quantity effect on soybean production. The authors of 
[21] reported that Iowa soybean yield loss was by SCN 
on resistant, PI 88788, will increase as SCN popula-
tion virulence increases. The authors of [144] proposed 
the use of convolutional neural network to classify dif-
ferent soybean diseases using visual leaf images. This 
approach is sound; however, some soybean fields that 
are infested with SCN do not have any visual symp-
toms. Soybean is often rotated with corn to manage 
SCN infestation for this reason; however, there is a lack 
of knowledge on the mechanisms responsible for SCN 
population reductions, such as the number of rotation 
years necessary for effective SCN management [145].

Determining the optimal soybean variety, herbicide, 
pesticide, and fertilizer combination to maximize yield 
is difficult with so many options available. Soil condi-
tions and SCN genetics can be extremely diverse and 
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localized within small areas, further complicating 
selection. However, it seems that there are several gen-
eral techniques that are likely to improve yield. Soybean 
varieties that are both SCN and glyphosate-resistant 
usually increase yield, and the glyphosate-resistant 
gene does not make the plant more vulnerable to SCN, 
but may have a minor impact on biological nitrogen 
fixation. The use of glyphosate will increase yield by 
eliminating weeds. For pesticides, Clavaria pn should 
be effective in managing SCN and fluopryam will treat 
SDS and may reduce SCN population in a limited 
capacity, but more research is needed. Early application 
of ammonium sulfate using a broadcast method may 
also increase yield, and P fertilizer will likely have the 
same effect.

Herbicides
Glyphosate
Glyphosate is one of the most commonly used agricul-
tural herbicides for soybean and corn fields. This her-
bicide disrupts the shikimic acid pathway through the 
inhibition of the the enzyme 5-enolpyruvylshikimate3-
phosphate (EPSP) synthase. The resultant deficiency 
in EPSP production leads to reductions in the aromatic 
amino acids that are vital for protein synthesis and plant 
growth [146]. Soybeans have been genetically engineered 
to be glyphosate resistant or glyphosate tolerant.

A field crops study [147] analyzed the relationship 
between soybeans and the glyphosate-resistant gene and 
herbicides, where they monitored biological nitrogen 
fixation and yield. The authors determined that the gene 
negatively impacted some aspects of biological nitrogen 
fixation but had no significant impact on yield over a 
period of three years. Glyphosate increased the yield dur-
ing the same period at some locations. These results were 
not consistent; therefore, biological nitrogen fixation and 
yield may depend more on location than weed control 
strategy [147].

Weed technology investigated the relationship between 
glyphosate-resistant soybeans and SCN in controlled 
greenhouse conditions because field observations 
led researchers to believe that there was an interac-
tion between glyphosate and SCN. Completion of this 
research and subsequent findings did not support these 
observations, indicating that glyphosate resistance was 
not compromised by SCN [148].

Dicamba
Dicamba is an herbicide used to kill broadleaf weeds 
by directly eliminating them and to prevent new weed 
growth. Dicamba is effective at most growth stages, mak-
ing it an extremely versatile herbicide. This herbicide is 
absorbed through the roots, leaves, and stems of the 
plant. Dicamba then imitates auxins, or plant hormones, 
and causes a wide variety of problems, leading to plant 
death [149]. Dicamba has the unfortunate side effect 
of damaging crops due to its propensity to drift onto 
unintended targets as vapor. One study indicated that 
this vapor drift can cause as much as a 10% reduction 
in soybean yield due to detrimental plant effects [150]. 
Dicamba-tolerant soybean varieties have been created, 
each with their own problems and benefits [151]. It is dif-
ficult to study the effects of these traits on SCN because 
all dicamba-tolerant strains are also glyphosate-tolerant 
[152]. The relationship between the dicamba-tolerant 
gene and SCN is unclear due to these reasons. Another 

Table 13  Machine learning for crop yield forecasting

References Crop type ML algorithm Features Evaluation parameter

[131] Soybean (Glycine Max) Deep CNN-LSTM MODIS (LS, and SR) Weather datam Avg RMSE

[128] Soybean (Glycine Max) SVM, RF, and MLP Spectral reflectance bands RF (84%)

[132] Soybean (Glycine Max) LSTM, LR, Random forest NDVI, EVI, Land surface temperature Mean absolute error

[139] Soybean yields and corn Regression trees NDVI, precipitation, LST R2 , RMSE

[133] Soybean yields and corn Scalable ML (DNN-LSTM) NDVI, Precipitation, LST R2 , RMSE, MAE, and MAPE

[140] Soybean (Glycine Max) PLSR, SVR, DNN-F1, DNN-F2 Canopy spectral, structure, thermal 
and texture features

R2 of 0.720 and a (RMSE%) of 15.9%

Table 14  Sources of nitrogen in fertilizer and yield output

Nitrogen source Timing Method Yield

None – – 52.4 (bu/acre)

Ammonium sulfate Pre-plant Broadcast 54.2

Ammonium sulfate Early Broadcast 54.3

Ammonium sulfate Eary Knife 52.5

Ammonium sulfate Pod fill Broadcast 53.2

Urea Early Knife 51.5

Urea Pod fill Broadcast 52.4



Page 29 of 39Arjoune et al. Plant Methods          (2022) 18:110 	

consideration is the impact of dicamba on the soil since 
it biodegrades fairly quickly under aerobic conditions; 
therefore, groundwater contamination is improbable 
[153].

Pesticides
Clavaria
Clavaria pn is a seed treatment method that can manage 
SCN by reducing its ability to reproduce. The mechanism 
focuses on the bacteria Pasteuria nishizawae. The bacte-
ria spores protect the roots of the plant by inhabiting the 
surrounding soil and reduce SCN feeding and reproduc-
tion abilities. The spores return to the soil and continue 
protecting the plant after the nematodes die and decom-
pose. Syngenta, the manufacturer of Clavaria pn, claims 
that the treatment is effective under variable environ-
mental conditions [154]. An independent study by Iowa 
State examined the difference in yield between Clavaria 
and a few other pesticides. SCN soil population density 
data was collected while the differences were analyzed. 
The data indicated that Clavaria use correlated with “sig-
nificant reductions in season-long SCN reproduction.” 
A consistent and substantial increase in yield was not 
observed despite a decrease in SCN reproduction [155].

Fluopyram
Fluopyram (commonly called ILeVO) is a chemical fun-
gicide used to treat SDS. Studies have indicated that this 
herbicide also inhibits SCN. Its mode of action is not 
fully understood, but data indicates that it may “disrupt 
the chemoreception and the ability of both nematode 
species to infect a host root system” [156]. Chemorecep-
tion is the process by which organisms respond to chemi-
cal stimuli in their environments that depends primarily 
on the senses of taste and smell.

Michigan State University conducted a study examin-
ing the relationship between fluopryam and SCN. Their 
data indicated that fluopryam decreased the presence of 
eggs and juvenile nematodes, but did not have an effect 
on nematode reproduction success. They concluded that 
fluopryam is better at combatting SCN than no treatment 
at all, but is not effective enough to be the only strategy 
used to treat SCN over multiple years [157].

General requirements
Soybeans remove larger amount of nutrients from the 
soil than many other crops; therefore, a higher soybean 
yield will remove a higher amount of nutrients. The main 
fertilizer requirements are nitrogen, phosphorus, potas-
sium, sulfur, and iron. Soybeans absorb nitrogen through 

biological nitrogen fixation, meaning that the addition of 
nitrogen to the soil will generally have no effect on yield 
[158].

Nutrients and SCN
There has been a large amount of research focusing on 
the nutritional needs of a variety of nematodes that allow 
them to thrive in the environments they live in, but the 
needs of the SCN nematode are yet to be determined. 
Limiting these nutrients could help combat SCN, but 
only if they are not already present in the soil. It is pos-
sible that removing nutrients that are non-critical to the 
health of the soybean may make it difficult for SCN to 
stay alive [159].

SCN varieties: crop yields in SCN resistant varieties 
or non‑SCN resistant varieties
One of the key tactics in fighting SCN is using resistant 
soybean varieties. The three genetic resistant sources 
that are currently commercially available are PI 88788, PI 
548402 (Peking) and PI 437654 (CystX or Hartwig). Each 
resistant variety uses different tactics to reduce SCN 
infection. PI  548402 prevents the formation of nurse 
cells, reducing the nutrient source for a reproductive 
female. PI 88788 provides poor nutrition for the female, 
resulting in fewer smaller eggs. SCN resistant soybean 
varieties stops 90 Farmers are using soybean varieties 
with the same source of resistance to SCN. PI  88788 
was used as a SCN resistant variety for many years. SCN 
resistant varieties promise a good yield at the beginning 
of use; however, continuous use of the same strain should 
not be used for multiple continuous cycles due to poten-
tial SCN adaptation. Figure  23 illustrates the adaption 
of SCN to resistant varieties such as P  I88788. Increase 
in SCN soil population negatively affects yield. It also 
depicts how the SCN population increase affects yield 
even when planting soybean resistant variety PI  88788. 
The reproduction factor is the ratio of number of eggs at 
the end of the season (Pf ) to the number of eggs at the 
beginning of the season (Pi). An RF value of 40 means the 
number of eggs in the field increased forty times over the 
agricultural season.

It is highly recommended to rotate the SCN resistant 
varieties since the SCN population can adapt to individ-
ual resistant varieties. Rotating to a different variety may 
slow the progression of the SCN population. Farmers use 
a blend of crop rotation along with the rotation of SCN 
resistant soybean varieties to improve yield (please see 
Table 15). The rotation of non-host variety crops, such as 
corn, and SCN resistant varieties are depicted in Fig. 24.

Developing resistant cultivars is the most cost-effective 
method for managing SCN disease. Different sources of 
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resistance have been discovered but as there are some 
shifts in SCN populations, which resulted in decrease 
in resistance from from PI 88788 (from which most of 
SCN-resistant are derived). SCN are known for their high 
genetic variations and because of that there are several 
sources of resistance which have not been fully effective. 
To mitigate this, a race scheme has been initially used to 
describe the genetic variations in SCN populations based 
on four resistant differential lines (1970). The responses 
to various races are used to classify soybean genotypes. 
This scheme has been shown to be ineffective in classify-
ing SCN populations. As a result, this scheme has been 
replaced by a scheme which uses 7 lines instead of 4 
[160].  

Discussion and recommendations
Direct soil sampling
Soil sampling and egg counts remain the most adopted 
technique used for SCN detection. Collecting soil sam-
ples and testing them  for egg counts, however, are 
challenging. Egg counts, for instance, require trained spe-
cialists, are time-consuming, and prone to human error; 
therefore, more than one trained specialist often perform 
the counts to validate the reported results. Soil sampling 
and testing precision affect egg count accuracy. As men-
tioned earlier, the soil testing method used in this study 
was done by collecting 25 and 42 samples from Casselton 
and Prosper fields, respectively, where each sample had 
about 30 cc. of soil. We were informed by experts from 
the plant diagnostic lab at NDSU that soil samples for 
SCN egg counts based on the method proposed by [161] 
which typically requires 250 cc or 100 cc of soil. Taking 
samples from the field often follow grid methods or tak-
ing samples from spots where there are infested soybean. 

The use of damage threshold (3 cysts/100 cm3 soil) to 
deal with SCN is criticised by   many entomologists 
because  defining a threshold for SCN eggs to make rec-
ommendations presents several problems. These prob-
lems are listed by the authors of [17]: the SCN population 
densities at planting and soybean yield vary according 
to the soil properties and other conditions. The second 
problem is associated with using cysts as a mechanism to 
establish the the damage threshold given that the cysts 
are  not infective units but J2 and assessment of the root 
infection is still  an unsolved problem. Other information 
such as P and K levels, soil pH, weather factors should be 
considered to make reasonable predictions on soybean 
yield loss but the  relationship between egg numbers, soil 
properties, weather data, and soybean yield loss remains 
an open issue. In the absence of an equation that approxi-
mates the potential loss damage due to SCN based on 
information related to SCN egg population density, soil 
pH, texture, and some other soil factors, weeds and insect 
pests (see Fig. 25), temperature and rainfall, it is hard to 
make recommendations to deal with SCN. Therefore, it is 
very important to develop machine learning techniques 
or statistical models that can provide such estimates. 
Even though  soil sampling methods and egg counts are   
performed at high levels of precision, they are not 100% 
accurate. If we add to this the issues related to  the effi-
ciency of the sampling, then the uncertainty of the results 
becomes higher. It was reported that the distribution of 
the eggs in the fields is not uniform so collecting sam-
ples that are representative of the field is challenging 
despite the current recommendations and guidelines. In 
the absence of soil samples that are not representative of 
the field, one cannot assess to which extent the SCN has 
damaged the field. Another issue of direct soil sampling 

Fig. 23  SCN population vs. time (for PI 88788). (source: thescncoalition.com)
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is that the use of tools for extracting soil samples with-
out proper cleaning and disinfecting can help in spread-
ing SCN from fields where SCN exists to fields that are 
not infested. These challenges have motivated the use of 
deep learning and imaging techniques to quantify   egg 
counts and automatically detect SCN without human 
involvement and in some cases, detecting SCN without 
going through egg counts and acquiring multispectral/
hyperspectral images and study the reflectance spectra to 
identify infested soybean.

Deep learning and imaging
Deep learning is a promising approach for soybean cyst 
nematodes detection and management; the state-of-the-
art models indicate adequate performance in detecting 
soybean diseases or predicting yield loss. Deep learn-
ing combined with multispectral imaging, hyperspectral 
imaging, and data acquired from different sensors such as 
weather data provides an alternative to direct soil sam-
pling and egg count methods. However, there are still 
some challenges that need to be addressed to advance 
this field.

Acquiring hyperspectral imaging using drones is quite 
new; therefore, there are many questions that are unan-
swered, such as how to determine accurate resolution the 
drone is flying at altitude of 10 m since it requires more 
time to cover the field. Stitching the images together and 
generating the vegetation indices, using Pix4Dmapper 
as an example, requires more pre-processing time com-
pared to flying at an altitude of 20:20 m takes approxi-
mately 8 min and 10 m takes approximately 20 min to 
stitch the images and generate the vegetation indexes. 
There are several other parameters that must be investi-
gated to determine the best combination of parameters 
in terms of accuracy, cost, and processing time. Assessing 

the optimal flight parameters for soybean crop manage-
ment is still an open issue.

Deep learning applications for soybean detection and 
management is also challenging because of the inher-
ent problems associated with deep learning theory itself, 
such as overfitting, network hyperparameters tuning, and 
training time. Deep learning has established the state-
of-the-art in the field of hyperspectral imaging; however, 
training well-generalized models due to a lack of ground-
truth data is challenging.

Sometimes, it’s not enough to tell farmers that whether 
they   have SCN  fields or not; pointing exactly which 
parts of the field are infected can help  in stopping the 
SCN spread, especially if detected early. Therefore, deep 
learning based soybean detection is not enough and 
methodologies should go multiple steps further by apply-
ing instance segmentation on hyperspectral images to 
not only classify different regions on the field to healthy 
soybean and infested soybean, but draw bounding boxes 
around these regions and mapping these regions to GPS 
coordinates. This is challenging because this methodol-
ogy requires ground-truth data, which is hard to obtain. 
To build ground truth data for instance segmentation 
or semantic segmentation technique, sampling the field 
using small grid is required. However, sampling the field 
using small grid is laborious   and requires several days 
to sample even a small field. Advanced instance and 
semantic segmentation techniques, such as Mask RCNN, 
YOLOv4, and Faster RCNN have not yet investigated in 
soybean disease detection.

It is interesting to investigate deep learning and hyper-
spectral imaging to assess the root damage caused by 
SCN. It is quite difficult to perform thi task that why 
threshold damage methods are based on the cyst and 
not the root damage. Hyperspectral imaging can provide 
some tools to assess the root damage but yet there is few 

Fig. 24  SCN resistant soybean variety rotation scenario
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to no research papers in this direction even though it can 
help in detecting SCN more reliably and make recom-
mendations to deal with this damaging pathogen.

Another issue when it comes to deep learning and 
machine learning research is that there is no straightfor-
ward rule for splitting the dataset between training and 
testing. The most common split percentages are 70−30% , 
90−10% , and 80−20% . Some other techniques research-
ers used 50−50% . k-Cross validation is another common 
practice with 5, 10, and 20 folds.

There are several techniques that can be used to allevi-
ate the problem of little ground truth data, such as data 
augmentation techniques, transfer learning, and unsu-
pervised learning. Data augmentation techniques apply 
transformations to the images, such as rotation or flip-
ping to augment the number of training samples. Data 
augmentation presents itself as a good solution to the 
lack of data. Several data augmentation techniques can 
be used:

Adding Salt and Pepper noise Salt and Pepper noise 
refers to the addition of white and black dots in the 
image.

Rotation (at finer angles) The network must recognize 
the object at any orientation. Rotating the image by 90 
degrees does not add any background noise if the image 
is square.

Flipping This scenario is more important for networks 
to remove the bias assumption for certain object fea-
tures if it is only available on a particular side. Consider 
the case of an image where the object is a banana tilted 
to the right. This is certainly not the only orientation that 
represents this object as such objects can grow or can be 
captured in different angles. This allows the deep neural 

network to learn that the  tilt of a banana does not hap-
pen only on the  right side. Also, flipping produces differ-
ent set of images from rotation at multiples of 90 degrees.

Lighting Lighting is an important component of the 
image dataset due to the diversity it creates in images, 
which is vital for the network to properly learn objects 
and simulate the practical scenario of the images acquired 
by the user. The lighting conditions of the images are var-
ied by adding Gaussian noise in the image. The authors 
of [162] proposed an instance segmentation based on 
convolutional neural networks and data augmentation 
applied to spectral images. This approach is useful when 
there is a lack of ground-truth training data.

Transfer learning techniques use the model trained 
to perform specific tasks. The random initialization of 
the weights associated with the connection between 
the neurons of two successive layers is often used when 
training a neural network. Random initialization does 
not help the model converge faster. An alternative is 
to initialize the set of weights using the set of weights 
from a pre-trained model, which allows the model to 
converge faster than with random initialization is used. 
This technique can be applied to deep learning based 
on hyperspectral images when detecting soybean cyst 
nematodes using a set of model weights that have been 
trained on general features, such as plant reflectance 
spectra, soil, and water. The model can converge faster 
and may need fewer training samples. This technique 
works at it best when the learned features in the first 
tasks are general. Transfer learning in   image data is 
successful and can be applied with different CNN mod-
els. For instance, the authors of [163] proposed a hyper-
spectral image classification using transfer learning. 

Fig. 25  Pictures of Prosper field. Images taken on 2021-07-22. The image to the right shows presence of insect damage to the field
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The authors of [164] proposed effective transfer learn-
ing for hyper-spectral imaging based on deep learning.

Unsupervised learning-based hyperspectral analysis 
is another method that can be applied to detect cyst 
nematodes in soybeans when there is a lack of ground 
truth data. Unsupervised learning does not typically 
require labeled training datasets since it clusters the 
training features to a predetermined number of classes 
using training dataset sample correlations. A CNN can 
be used as a feature extraction and feature selection 
tool before clustering models can be applied to map 
these extracted features to their corresponding classes. 
Another approach to tackle the lack of ground training 
data is the use of unsupervised deep learning models, 
such as the approach proposed by [165], who investi-
gated the use of fully unsupervised hyperspectral image 
segmentation.

Data collection considerations
One of the main challenges associated with UAV-based 
remote sensing is determining the optimal flight parameters. 
For instance, at what altitude one should set the vehicles to 
hover at, whether there is overcast, and suitable wind speeds 
to prevent any instability or aberrations in image collection; 
if one or more of these considerations are compromised, 
the collection and analysis process will be affected. In order 
to determine the optimal flight parameters, further testing 
and empirical results are needed. As an example, flying the 
vehicles using different sets of parameters for each time and 
studying the impact of these parameters on the accuracy of 
the detection could be one way to identify   the best set of 
flight settings. Some other factors come into play such as 
preprocessing and stitching the image to form the image of 
whole field, how much overlap exists between images, and 
how to leverage this information.

Need for soybean datasets
There are several datasets which can be used in soybean 
research. For instance, “Soybean (Large) Data Set” [166] 
is a dataset that contains 19 classes (diaporthe-stem-
canker, charcoal-rot, rhizoctonia-root-rot, phytophthora-
rot, brown-stem-rot, powdery-mildew, downy-mildew, 
brown-spot, bacterial-blight, bacterial-pustule, pur-
ple-seed-stain, anthracnose, phyllosticta-leaf-spot, 
alternarialeaf-spot, frog-eye-leaf-spot, diaporthe-pod- 
&-stem-blight, cyst-nematode, 2–4-d-injury, herbicide-
injury) that was created in 1980. It contains more than 30 
attributes features such date, plant-stand, precip, temp, 
hail, crop-hist, area-damaged, etc. a small dataset from 
Soybean Large Data Set has been derived and known as 
“Soybean (Small) Data Set” [167]).

The second dataset is a “dataset for weed detection in 
soybean” [168]. This dataset was used three years ago in 
Kaggle competition to classify plant images in 4 classes: 
broadleaf, grass, soil, and soybean. This dataset consists 
of 15,336 segments: 3249 of soil, 7376 of soybean, 3520 
grass, and 1191 of broadleaf weeds.

The third dataset is “Infestation ratings database for 
soybean aphid on early-maturity wild soybean lines” 
[169] released by the US department of agriculture to 
address the issue of soybean aphid (Aphis glycines Mat-
sumura; SA), which is one of the major invasive pest of 
soybean (Glycine max(L.) Merr.) in northern production 
regions of North America. “This data set consists of infes-
tation ratings generated for a total of 337 distinct plant 
introduction lines of wild soybean that were exposed to 
avirulent SA biotype 1 for 14 d in 25 separate tests”. This 
dataset was released publicly  to allow for further analy-
ses and evaluation of resistance among the test lines.

The next dataset is related to the soybean price fac-
tor data 1962–2018 [170] compilation of soybean prices 
and factors that effect soybean prices. Temperature col-
umns are daily temperatures of the major U.S. growth 
areas. Production and area are the annual counts from 
each country (2018 being the estimates). Prices of com-
modities are from CME futures and are not  adjusted for 
inflation. Updates of these CME futures can be found on 
Quandl. Additional data could be added, such as, interest 
rates, country currency prices, country import data, and 
country temperatures.

As it can be seen from the listed examples, there 
exists no dataset related to soybean cyst nematode 
detection which can be used for deep learning and 
imaging. To advance this field, there is a strong need for 
building large comprehensive datasets that can be used 
to train deep learning techniques. Having a common 
public dataset can be used to reproduce the results and 
assess the proposed deep learning techniques. In addi-
tion, scaling up machine learning datasets and building 
robust detection techniques requires heterogeneity of 
sources/sensory and data fusion-based approaches to 
collect datasets. This problem is common to most of 
ML/DL where hardware and acquisition protocols are 
different that results in various challenges and incom-
patibilities between hardware and software. To develop 
accurate SCN detection, sufficient training data need 
to be populated. Different geographical factors such as 
weather, soil type, and seasons in addition to multiple 
forms of collection i.e., ground-, aerial-, and satellite-
based approaches should be considered while collecting 
these datasets in order to ensure that the models are 
robust and able to generalize better on unseen data.
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Limitations of computer vision in SCN detection
The following are limitations of detecting SCN using 
computer vision models: 

1	 Annotations may need to be completed by nema-
tologists, who are eye trained to distinguish between 
nematode eggs and non-essential particles such as 
debris.

2	 Imaging defects when using a high precision instru-
ment like a microscope include:

•	Different background lighting or orientation of 
the image sample.

•	Inconsistencies in egg colorization during any 
pre-imaging marking phases.

•	Nematode egg obstruction through other micro-
scopic objects.

•	Presence of noise, loss of detail, and geomet-
ric distortion during digitization degrade image 
dataset quality.

3	 Dataset images must be captured based on the nema-
tode growth stage.

4	 Dataset must account for feature distribution differ-
ences related to the inherent characteristics of the 
weather and soil types.

5	 Need for protocol of data acquisition to minimize the 
feature distributions extracted from the images cap-
tured by the trained pilots flying the drones.

6	 Flying drones sometimes requires optimal weather 
conditions for better image quality, which may bias 
the ML/DL models, as few training images that 
reflect the weather conditions may be present.

Table  16 lists the advantages and disadvantages of 
direct sampling and computer vision methods for pre-
cision agriculture applications.

Conclusion
Precision agriculture (PA) is a key component of opti-
mized agriculture production to improve the produc-
tion yield with reduced input losses. PA coupled with 
the advancements in IoT, ML, and computer vision can 
make intelligent management decisions to improve 
crop production. Management strategies for preci-
sion crops need spatial, spectral, and temporal knowl-
edge about the crop. Remote sensing techniques are 
appropriate tools for the derivation of crop parameters. 
Remote sensing is used to identify, measure, and ana-
lyze characteristics of objects of interest without direct 
contact, and GIS supports storing, analyzing, and 
retrieving spatially retrieved data. Remote sensing with 
GIS help farmers and researchers to have a deep under-
standing of what is happening in the field. Satellites 
were extensively used for remote sensing before the 
advancement of autonomous systems such as ground 
robot and aerial vehicles. Use of satellite for remote 
sensing gives fast, overall view of the large area while 
the satellite navigate in it’s orbit. Use of small aircraft or 
drones gives better sensing capabilities  which include 
better flexibility, flight control, and fast data transfer 
and hence processing. Sensing using unmanned aerial 
system (UAS) platforms and aircraft gives a high spa-
tial resolution compared to  the low spatial output from 
satellite images. UAS platforms allow easy plug and play 
options while using multiple sensors for investigating a 
field. In this paper, we have provided a comprehensive 
review of soybean detection and management tech-
niques with a special focus on machine learning tech-
niques for detecting SCN   and its management. First, 
we provided an overview on soybean cyst nematode 
disease and its symptoms as well as its impact on the 
yield. Then, we provided a classification of SCN detec-
tion methods into soil sampling methods and remote 
sensing methods. We discussed each category and we 
provided the advantages and the challenges associated 
with each methodology. We concluded with ongoing 
research related to deep learning, SCN detection based 

Table 16  Advantages and disadvantages of direct sampling and computer vision methods

Method Advantages Disadvantages

Direct sampling -Widely-used -Prone to Error

-Provides Accurate Egg Counts -Mapping Egg Count, Soil Type, and Nutrients to Presence and 
Absence of Nematodes is Difficult

Computer vision -Reduces the Cost and Labor -Hard to Build Robust Models and Scale the Solution

-Reduces the Damage Caused to Soybean -Building Ground Truth for the Dataset by Experts is Challeng-
ing

-Fast -Absence of Large Training Sets
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on hyperspectral imaging, and limitations of machine 
learning in SCN detection.
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