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Abstract 

Background:  On tomato plants, the flowering truss is a group or cluster of smaller stems where flowers and fruit 
develop, while the growing truss is the most extended part of the stem. Because the state of the growing truss reacts 
sensitively to the surrounding environment, it is essential to control its growth in the early stages. With the recent 
development of information and artificial intelligence technology in agriculture, a previous study developed a real-
time acquisition and evaluation method for images using robots. Furthermore, we used image processing to locate 
the growing truss to extract growth information. Among the different vision algorithms, the CycleGAN algorithm was 
used to generate and transform unpaired images using generated learning images. In this study, we developed a 
robot-based system for simultaneously acquiring RGB and depth images of the growing truss of the tomato plant.

Results:  The segmentation performance for approximately 35 samples was compared via false negative (FN) 
and false positive (FP) indicators. For the depth camera image, we obtained FN and FP values of 17.55 ± 3.01% 
and 17.76 ± 3.55%, respectively. For the CycleGAN algorithm, we obtained FN and FP values of 19.24 ± 1.45% and 
18.24 ± 1.54%, respectively. When segmentation was performed via image processing through depth image and 
CycleGAN, the mean intersection over union (mIoU) was 63.56 ± 8.44% and 69.25 ± 4.42%, respectively, indicating 
that the CycleGAN algorithm can identify the desired growing truss of the tomato plant with high precision.

Conclusions:  The on-site possibility of the image extraction technique using CycleGAN was confirmed when the 
image scanning robot drove in a straight line through a tomato greenhouse. In the future, the proposed approach 
is expected to be used in vision technology to scan tomato growth indicators in greenhouses using an unmanned 
robot platform.
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Background
In crops, the growing tip and roots where cell division 
occurs are sensitive to the surrounding environment. In 
particular, the hypertrophy of early reproductive growth 
of crops can be determined from the early stages of 
truss development [1], which can also affect the quality 

of flowers and fruits. Although experts can determine 
hypertrophy with the naked eye, this practice makes col-
lecting accurate numerical data and setting crop manage-
ment standards difficult. While studies are being actively 
conducted to analyze diseases using digital imaging on 
tomato crops, few have measured the indicators related 
to tomato growth. In the case of the growing truss of the 
tomato plant, it is difficult to collect numerical informa-
tion from obtained images to determine a label value 
considering the lack of reference video images.
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Developing a future-oriented agricultural robot plat-
form is expected to reduce the challenges in acquiring 
image data comprising growth information [2] developed 
a mechanical robot arm with a high degree of freedom 
and an intelligent control unit that moves the arm by 
analyzing the captured images. Research on object recog-
nition with a diversified view based on images using opti-
mized robot arm placement is underway [3]. Chang et al. 
[4] reported the use of image processing techniques such 
as color space transformations, morphological opera-
tions, and 3D localization to identify objects and grippers 
in captured images, and estimate their relative positions 
using the computer vision area as a novel algorithm that 
identifies the object before determining the optimum 
movement of the robot arm. In agriculture, measuring 
growth using computer vision has been a research topic 
for a relatively long time [4, 5]. In particular, robots are 
used in harvesting, and various image processing tech-
niques have been applied to harvest fruit and determine 
its ripeness [6–8]. Zhuang et al. [9] proposed a computer-
vision-based method for locating acceptable picking 
points for litchi clusters, and image processing algorithm 
was used to track the location of the fruit while consider-
ing the agronomic characteristics of the picking point.

Although it is necessary to apply image processing 
techniques by identifying the characteristics of the crop, 
an image segmentation method has yet to be developed 
to distinguish the growing truss from other parts of the 
tomato plant. Because a tomato cultivation environment 
inside a greenhouse is dense, classifying stems or leaves 
using images is difficult [8, 10]. Thus far, researchers have 
not been able to distinguish tomato stems and leaves, the 
components of the growing truss, from other surround-
ing objects in RGB images. Xiang [11] performed crop 
segmentation using a simplified pulse coupled neural 
network by measuring 385 tomato images at night. The 
best results obtained from this segmentation technique 
were true and false rates of 59.22% and 13.77%, respec-
tively. However, it could only be performed using a spe-
cific light at night for light correction, which requires 
more mechanical devices and technical improvements 
to measure the growing truss of the tomato plant. Zhang 
and Xu [12] reported a method for improving the accu-
racy of image segmentation in the middle and late stages 
of the fruit growth using an unsupervised method. 
However, this method could not differentiate tomato 
stems and leaves from other surrounding objects in 
RGB images. Many studies using RGB images have been 
used to target the tomato fruit, and many have reported 
the possibility of using these identification methods in 
tomato cultivation. However, segmentation studies on 
the growing truss of tomato plants have yet to be success-
fully reported.

To solve this problem, there is potential in the use of 
a 3D camera capable of segmentation according to dis-
tance or image processing techniques that are affected 
by solar light in greenhouses, and 3D-depth cameras are 
widely used in image acquisition platforms for recogniz-
ing objects in various industries, including agriculture 
[13–15]. It has been reported that a technology that com-
bines depth and color image information recorded with 
a stereo camera (a 3D camera technology) can be used 
to classify objects [16, 17]. Unlike conventional 2D cam-
eras, 3D-depth cameras can be distributed to the field 
and used to calculate the depth value of each pixel in an 
image, and research on growth measurement using 3D 
cameras is underway.

Deep learning image processing technology has 
advanced in recent years. For instance, in image recog-
nition and classification, studies using convolutional 
neural networks (CNN) have been effectively applied to 
various industrial fields [18–21]. For example, Afonso 
et  al. [22] used Mask-RCNN, which recognizes objects 
at high speed and is specialized for segmentation, for 
tomato fruit recognition and confirmed its potential 
in greenhouse environments. The structure of such a 
CNN has the form of general supervised learning, which 
requires the region of interest (ROI) in all image data to 
be annotated, and the accuracy of the model is depend-
ent on some extent by the quantity and quality of the data 
obtained. Therefore, it is important not only to develop 
a robot platform to extract accurate images in an auto-
mated greenhouse, but also to apply an algorithm capable 
of self-learning with an appropriate number of images.

Generative advertising networks (GANs) have par-
ticularly gained wide attention [23, 24]. The basic GAN 
configuration comprises a deep learning technology that 
simultaneously learns the delimiter and generator model 
to obtain the target image from the generator, showing 
endless possibilities in unsupervised learning. GAN tech-
nology specifically aims to map input and output images 
using an image dataset called image to image translation. 
It is possible to color a black and white image, turn a day 
photo into a night photo, or make a border-only photo 
look like a real object. It is a technique frequently used in 
applications such as artificial intelligence coloring, photo 
restoration, and image transformation. A Pix-2-Pix and 
conditional GAN algorithm have been reported to con-
vert paired images [25], which require paired image data 
of the same format. However, because a relatively large 
amount of training data is required, the CycleGAN algo-
rithm has been proposed as an alternative to the tradi-
tional GAN as it has been trained to avoid switching 
between images through the learning of two unpaired 
images by circulating the two generators and identifi-
ers [26, 27]. A representative application example of the 
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CycleGAN is a study wherein an image of a zebra was 
converted to that of an ordinary horse. Researchers have 
reported [28] that this technology can switch the patterns 
of two images, such as a photo with depth information 
and a general image with RGB information. Furthermore, 
unlike other CNN algorithms, CycleGAN is a learn-
ing process that generates images by self-learning and 
requires a relatively small number of labeled image data. 
Therefore, the CycleGAN is expected to enable efficient 
algorithm application in environments where data acqui-
sition is difficult, such as in a greenhouse.

Considering these points, the current research lacks 
detection technology for determining the growing truss 
of the tomato plant, and is therefore the goal of this 
study. For image acquisition using an unmanned robot, 
extraction of the growing truss must be performed on-
site, requiring a segmentation technique that uses depth 
image information. The specific objectives of this study 
are:

1.	 Building a robot monitoring system that can identify 
a growing truss image.

2.	 Converting between RGB and depth images of green-
house plants using the CycleGAN algorithm.

3.	 Verifying the application of a robot vision-based 
image separation technique to identify the growing 
truss of the tomato plant in a greenhouse.

Methods
Greenhouse environment and image acquisition device
The experiment was conducted in a greenhouse facility 
where tomatoes are grown. A 2000 m2 interlocking Venlo 

greenhouse was utilized, wherein the insides comprised 
of sensors and control systems to manage the level of 
carbon dioxide at a constant temperature and humid-
ity. The location of the greenhouse is at latitude 37.7986 
and longitude 128.8575. We used Dafnis tomatoes for the 
experiment, and images of the harvested tomatoes were 
collected approximately 180  days after planting. Toma-
toes are grown in a greenhouse drip irrigation-based 
hydroponics system, and the nutrient solution is supplied 
through a solar proportional irrigation control. The roots 
of the tomatoes are established in a rock-wool substrate, 
and the substrate and the gutter supporting it are located 
at a height of about 1.3 m from the ground. The growing 
truss of the tomato plant is located 1.6–2.5  m from the 
gutter using the inducer lines, which is determined by the 
line works of the farmer.

To acquire the images, we used a vehicle placed on a 
robot platform capable of driving automatically in a 
greenhouse. A 5-joint UR5 (Universal Robots, Odense, 
Denmark) was used as a menu plater to fix the photo-
graphing unit at the position of the growing truss of the 
tomato plant. The menu plate operation was manually 
adjusted in the field, and the position of the photograph-
ing camera was kept constant at the center of the line. 
The image acquisition unit comprising a Realsense 435i 
camera (Intel, Santa Clara, CA, USA) acquired RGB and 
depth images. The maximum resolution of the camera 
was 1600 by 800. The measured images were collected on 
a mini-Windows PC (NUC, Intel, Santa Clara, CA, USA) 
and saved using a workflow developed in the Python pro-
gramming language. Figure 1 shows a photograph of the 
robot platform and the measurement module used.

Fig. 1  a Robot platform for image acquisition in greenhouse. b End effector for RGB depth image acquisition



Page 4 of 15Jung et al. Plant Methods           (2022) 18:83 

CycleGAN implementation for segmentation of the tomato 
growing points
The CycleGAN structure
The GAN is said to be successful when an adversarial loss 
makes the generated image indistinguishable from the 
actual photo. This loss is particularly powerful for image-
creation tasks considering most computer graphics aim 
at achieving optimization [26]. The objective of the 
CycleGAN model is to learn the mapping functions 
between the two domains of X and Y using the given 
training samples {xi}Ni=1 , where xi ∈ X and 

{

yj
}M

j=1
 , where 

yj ∈ Y , which can be expressed as data distribution as 
x ∼ pdata(x) and y ∼ pdata

(

y
)

. Zhu et al. [27] introduced 
two cycle-consistency losses (Fig. 2a), indicating that the 
starting position of x must be reached when converting 
from one domain to another and vice versa. The forward 
cycle consistency loss is given as: x → G (x) → F (G (x))) 
≈ x (Fig.  2b) and the reverse cycle consistency loss is 
given as y → F (y) → G (F (y)) ≈ y (Fig. 2c).

Application of CycleGAN for tomato depth image transaction
As seen in Fig.  3, the RGB and depth images were 
obtained from the robot platform and the acquisi-
tion unit. As seen in Fig.  4 (left), a normal RGB image 
is similar to an image obtained from a normal camera. 
Figure 4 (right) shows an image with the depth technol-
ogy applied, and the location information between the 
camera and the object in the video is displayed in a color 
table.

Using CycleGAN learning, we constructed a model 
that converts RGB images to depth images and vice 
versa, as seen in Fig. 4. The model was configured using 
approximately 356 sample images of the growing truss 
acquired from the image acquisition device at the fruit 
growing stage. Of the 356 sample images, 276 were used 
to train the CycleGAN model, and 80 samples were used 
for testing.

Each CycleGAN generator comprises three sections: 
the encoder, transformer, and decoder. Figure 5 shows the 
components of each generator section. The 1600 × 900 

Fig. 2  The CycleGAN structure. a Two mapping functions G: X → Y and F: Y → X. b Forward cycle-consistency loss. c Reverse cycle-consistency loss

Fig. 3  Schematic representation of the two cyclical generators of the 
CycleGAN
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pixels image used in this study was obtained as a raw 
value and resized to 512 × 512 pixels. First, the resized 
input image was fed directly to the encoder compris-
ing three convolutional layers to increase the number of 
channels and decrease the representation size. The acti-
vated result was then passed to the transformer, which 
is a series of eight Resnet blocks that efficiently transfer 
information into the CNN structure. In the optimization 
problem, even if the number of layers is not deep, Resnet 
performs additional layer identity mapping by copying 

the learned layers; therefore, it can be used as a CNN 
structure verified in GAN image conversion technology 
[29]. The transformation result was then expanded by 
the decoder comprising two transpose convolutions that 
enlarges the representation size and one output layer, 
which then produced the final RGB image. Although 
each layer was followed by an instance normalization and 
Rectified Linear Unit (ReLU) activation function, it has 
become the default activation function for many types of 
neural networks. The basic form of ReLU is as shown in 

Fig. 4  Relationship between the images generated from the X and Y generators and the image data to be extracted

Fig. 5  The CycleGAN generator architecture
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Eqn (1), and when it is differentiated, it can be expressed 
as Eqn (2). The rectified linear activation function over-
comes the vanishing gradient problem, allowing models 
to learn faster and perform better.

Furthermore, we built a discriminator that captures 
images and predicts whether they are real or fake. The 
real image is an actual RGB or depth image, and the fake 
image was generated by CycleGAN. The generator can be 
visualized in Fig. 5.

Image processing and evaluation methods for the extraction 
of growth points
The obtained depth image was subjected to pre-process-
ing to extract the parts corresponding to the crop. First, a 
general RGB-based image of the crop showing the grow-
ing truss of the tomato plant was converted into a depth 
image. Because the depth image classifies the color of an 
object by distance, it can distinguish objects by finding 
boundaries (Fig. 4). Here, the growing truss of the clos-
est part of the image we want has a relatively red color. 
Therefore, we extracted the area through hue, saturation, 
lightness (HSV). Although the extraction performance 
was better than the RGB-based method, the process 
was optimized with a trial-and-error method. In addi-
tion, morphological operations were performed to fill the 
remaining small fragments and the extracted area.

We used the developed CycleGAN model in this study. 
The image was pre-processed by applying the HSV and 
Otsu thresholds. As seen in Fig. 6, the three HSV ranges 

(1)f (x) =

{

0 for x < 0

x for x ≥ 0

(2)f
′

(x) =

{

0 for x < 0

1 forx ≥ 0

were applied to the image preprocessing model in the 
development stage under the following three conditions: 
(a) H: 0 to 65, S: 150 to 255, V: 150 to 255, (b) H: 0 to 30, 
S: 180 to 245, V: 250 to 255, and (c) H: 0 to 30, S: 248 
to 255, V: 240 to 255. As a result, the HSV range corre-
sponding to (c), which was best able to identify the grow-
ing truss, was applied. The image designated by the HSV 
was then converted to be further binarized using the 
Otsu threshold.

The contour of the crop was determined using the 
morphology EX algorithm, which can perform advanced 
morphological transformations using basic erosion and 
dilation operations in place. In multichannel images, 
each channel is processed independently. The edge was 
detected from the contour obtained, and erosion was 
performed in one iteration using a 3 × 3 kernel to remove 
small objects corresponding to noise. Although this pro-
cess can be applied universally in tomato greenhouses, 
it is difficult to use in general outdoor areas and places 
where the distance of the plantation from the camera is 
not fixed. The results of the entire image processing are 
shown in Fig. 7.

We compared the accuracy of the obtained growing 
truss image between the automated image processing 
technique and manual image extraction using 80 test 
samples. For the manual image extraction, a method of 
creating polygons and leaving ROI areas was intuitively 
determined by a person.

The image extracted by manually was assumed to be 
the actual ROI. The extracted growing truss from the 
image processing technique and the actual ROI of the 
same size were overlapped, and the extracted image 
value at the same coordinate as the position of the actual 
growing truss was eliminated. The error rate was then 
calculated based on the number of pixels in the remain-
ing images. Two indicators were calculated for the error 
rate: The residual ratio of the image after removing the 

Fig. 6  Comparison of crop extraction area using HSV range under three conditions: a H: 0 to 65 S: 150 to 255 V: 150 to 255, b H: 0 to 30 S: 180 to 
245 V: 250 to 255, and c H: 0 to 30 S: 248 to 255 V: 240 to 255
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predicted pixels from the actual image was designated as 
false negative (FN), and after removing the actual image 
pixel from the predicted image pixel was designated as 
false positive (FP). Equation (3) shows the calculation for 
the residual ratio. In addition, as a standard segmentation 
method, mean intersection over union (mIoU) was cal-
culated for evaluating the image segmentation methods. 
Figure  8 shows the specific calculation method for FN 
and mIoU using the resulting image and eqn (4) shows 
the details of mIoU.

A receiver operating characteristic (ROC) curve shows 
the performance of the segmentation model in units of 
pixels of the image. The ROC curve compares the true- 
and false-positive rates, and shows that the wider the 
ratio of the true positive rate, the better the classification 
model.

Continuous measurement of images of robots 
for field applicability of CycleGAN
We conducted a field applicability test to examine the 
possibility of measuring the desired tomato stem sec-
tion in the greenhouse crop bed driving. The vehicle was 
driven between the planting spaces in the greenhouse in 
a straight line and continuously scanned images of a par-
ticular location. We only collected the RGB images from 
the RealSense camera, which were then converted using 

(3)Residual ratio (%) =
The number of pixels in the remaining image

Total number of pixels in the ROI of crop
× 100

(4)Mean intersection overunion(mIoU) (%) =
Area of overlap

Area of union
× 100

the previously developed CycleGAN. Further, an image 
processing technique was applied to extract the ROI from 
the image. The RGB images were captured continuously 
at intervals of 1  min by advancing approximately 5  m 
for every 2 s by fixing the forward speed of the robot to 
0.5  m/s. We simultaneously performed the image con-
version and extraction of the ROI on the stem. Figure 9 
shows the performance of the growth measurement 
experiment inside an actual greenhouse.

Results
Training results of the CycleGAN
The growing truss of the tomato plant was collected 
through the camera attached to the vehicle-based robot 
arm proposed above. A total of 350 pairs of images 
were collected and CycleGAN learning was performed. 
This data can be found in the Additional file 1 provided. 
Figure  10 shows the collected data, the shape of the 
growing tomato truss, and the greenhouse cultivation 
environment.

The CycleGAN was trained for approximately 9600 
iterations in five batches using approximately 276 train-
ing samples. At this time, the changes in the loss of the 
generator and discriminators X (Dx) and discriminators 
Y (Dy) can be confirmed, as seen in Fig.  11. First, the 
generator loss was observed to have converged in the 

Fig. 7  The entire image processing after CycleGAN conversion
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Fig. 8  Ratio of the remaining image after removing the predicted pixel from the actual image, designated as false negative (FN), and when the 
actual image pixel is removed from the predicted image pixel, designated as false positive (FP)

Fig. 9  Schematic representation of the experiment for applying the developed algorithm to sequentially captured and registered RGB images. a 
Front view of the scanning area of the robot. b Experimental schematic. c Actual robot running direction
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half at a certain level, although there was some loss in 
the beginning. The discriminator gradually converged to 
0.5 for Dx, but further converged to approximately 0.55 
for Dy. For depth to RGB generation, an error with the 
actual sample was confirmed. However, the learning per-
formance, which was mainly used in this study, seemed 
to have been secured in the RGB to depth image to an 
extent.

Figure 12 (a) shows the RGB-to-depth learning process. 
It was confirmed that the generator results obtained at 
8800 iterations clearly depicted the appearance of crops 
as compared to initial iterations in the initial learn-
ing period. In addition, the RGB color differed based 
on the size and shape of the crop, and a similar pat-
tern was observed in the depth images. Conversely, for 
the depth-to-RGB image, a low-quality crop image was 
obtained considering the input image could not generate 
high-quality images, as seen in Fig.  12(b). Although the 
appearance, characteristics, and color of the crops were 
simulated like real RGB images, it was difficult to distin-
guish specific features with the naked eye.

Accuracy of image extraction
The conversion from an RGB image to a depth image was 
mainly for the segmentation of target crops, and we veri-
fied the accuracy of FN and FP as an evaluation method. 
From the previously developed CycleGAN models, the 
results were inferred using 8800 iterations, whereas the 
image pre-processing and growing truss extraction image 
processing methods were the same. We obtained results 
as seen in Fig. 13 by comparing the results based on 80 
images that were not used for model training. When the 
FN and FP were calculated using the image obtained 
from the depth camera, we obtained an approximate 
value of 17.55% ± 3.01% and 17.76 ± 3.55%, respectively. 
Similarly, on converting the image using CycleGAN, 
the FN and FP were approximately 19.24% ± 1.45% and 
18.24% ± 1.54%, respectively. In terms of error probabil-
ity, the CycleGAN and depth images were compared with 
the actual extracted region and crossed segmentation val-
ues through mIoU as shown in Fig. 14. Among the total 
test samples, when segmentation was performed using 
the depth image, the mIoU was 63.56 ± 8.44%; whereas, 

Fig. 10  RGB and depth image to be used in the acquired data set (top: RGB, bottom: depth)
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when segmentation was performed through CycleGAN, 
the mIoU was 69.25 ± 4.42%. Additional analysis result 
samples for each algorithm are presented in the attached 
mIoU sample file.

Figure  15 shows the results of the ROC curve for the 
evaluation of segmentation using the CycleGAN model. 
The red dotted line in the figure corresponds to the per-
formance by random guessing. Based on this, the more 
the curve is biased in the true-positive rate region, the 
better the model performance can be estimated, and this 
area is calculated as the area under curve (AUC). In this 
CycleGAN model, when segmentation of the test set was 
applied, an AUC of 0.701 was obtained.

Field application results for continuous detection
Because this study aims to extract the growing truss of 
tomato crops in a greenhouse using CycleGAN and image 
processing technology, the possibility was confirmed by 
field application experiments. Figure 16a shows the result 
of continuously acquiring and matching images with 
a height of approximately 3.5  m, wherein the growing 

truss can be confirmed while the image acquisition vehi-
cle advances inside the greenhouse. After advancing for 
5 m, it was confirmed that approximately six crops were 
unevenly distributed. Figure 16b shows the result of con-
verting the image into a depth image using the developed 
CycleGAN model. Similar to the actual depth image, the 
image showed the object to be segmented. The depth in 
the image was indicated in red for the closer crops, and in 
blue for the farther crops. Finally, the result of extracting 
the growing truss, i.e., the stem and leaves of the tomato 
plant, using the image processing technique, can be con-
firmed from Fig. 16c.

Discussion
Past researches have focused on applying the vision of 
crops in fruit-oriented research. However, in the case 
of stem plants, such as tomatoes, the state of the grow-
ing truss, which grows continuously, can be used as an 
important indicator to determine the future yield. There-
fore, we conducted research on image processing tech-
niques to identify the growing truss of the tomato plant 

Fig. 11  Changes to the overall loss. a Change in loss of discriminator X and Y. b On training the proposed CycleGAN structure
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and used deep learning to acquire highly efficient results. 
We first devised an image processing technique to seg-
ment the part of the plant that could be identified as a 
growing truss through CycleGAN using a depth image 
and a simple RGB image converted into a depth image. 
Given that the CycleGAN is useful in image conversion, 
it was useful for recognizing objects that existed in two 
images, which successfully extracted the growing truss. 
Furthermore, it was possible to convert the color of the 
growing truss to the color of the depth, which was red 
in the prepared training set. Owing to the CycleGAN 
method, both transformations can be applied, which has 
already been proven in a previous study [23, 24]. If we 
compare the purpose and approach of the existing seg-
mentation studies on tomato images [11, 12], it can be 
seen that many studies have focused on the analysis of 
tomato fruit, whereas we focused on the growing truss 
(the stems and leaves). Although, it is very difficult to 
classify the stems and leaves of the tomato plant because 
the growing environment is very dense, the possibility of 

Fig. 12  Results of RGB to depth image conversions (a) and realizing the depth in RGB (b) through CycleGAN’s 8800 iteration learning

Fig. 13  Comparison between the depth and CycleGAN image of 
a manually specified ROI using the proposed image processing 
technique, and the FP, FN, and mIoU values in pixel units
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an approach using depth imaging was confirmed in this 
study.

Although the identification error rate was lower when 
using the depth image, as seen in Fig.  13, the average 
error rate was less than 20% in the two techniques, which 
indicated that the segmented object was not another 
ROI. The difference in error rate between the two 

methods was 2–3%, and it was determined that this was 
not a clear performance difference. The reason was that 
the ground truth was manually referred to because the 
error rate of this ground truth itself exists. However, in 
standard deviation, CycleGAN confirmed the result with 
a minor deviation value, which could have been due to 
the depth camera image being applied to the field consid-
ering the tendency of the camera to lose focus at proxim-
ity with a 10% probability, as seen in Fig. 16c. However, 
because this was related to the applicability field of the 
camera, it was not considered in this study. Objects that 
remain unrecognized by the depth camera are termed as 
a failure case, as seen in Fig.  17, can cause problems in 
field applications in the future. However, this problem 
did not occur in the depth image converted using Cycle-
GAN, considering it was already being used in the train-
ing set stage.

Additionally, it is often necessary to prepare annotated 
image samples as training data for artificial intelligence 
algorithms that recognize objects by judging through 
human intellectual contribution, and a large amount of 
data samples is required to verify the accurate perfor-
mance. However, the results of CycleGAN and the image 
processing method proposed in this study have con-
firmed that preparing the annotated image samples is not 
required.

In the future, robots will be required in agriculture 
to automatically measure plant growth. However, the 
robot must accurately recognize the growing truss to 

Fig. 14  Comparison of the CycleGAN and depth image with the actual extracted area and cross-segmentation values through mIoU

Fig. 15  ROC curve for evaluation of segmentation using CycleGAN 
model
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establish a menu plating strategy to choose the desired 
growing truss. In this study, we adopted CycleGAN, an 
artificial intelligence image conversion technique, as the 
first step for the robot to recognize the growing truss. 
Consequently, the robot was able to effectively extract 

the growing truss using the matched image even in field 
applications. In the field applicability verification experi-
ment, the moving robot matched several images and 
finally converted the image using CycleGAN. The result 
was verified by only extracting the growing truss from 

Fig. 16  a RGB image acquired using on-site robot platform. b Depth image created using CycleGAN. c View underneath the growth point location 
extracted through image processing

Fig. 17  Failed cases due to blurred focus of the depth camera. a RGB image. b Growing point in focus. c Focused farther from the growing point
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the image. However, an irregular connection of images 
was observed during the registration, and the Cycle-
GAN structure used when converting to depth applies 
to only 512 × 512 images, making a grid shape inside the 
images. As this applies to all images using deep learning, 
it is necessary to solve the problem using an algorithm 
for the flexible application of the input layer structure. 
Nevertheless, the result indicated that the application of 
unmanned robots in agriculture in the future has been 
well considered.

In future research, we will consider using a method 
of acquiring optimal images by menu plating the robot 
arm once the growing truss is recognized. In addition, 
the result of converting the depth image to an RGB 
image, although not addressed in this paper, is worthy 
of discussion as a future study (Fig.  12). In conclusion, 
remote-operated and unmanned machines have a high 
potential for use in the agriculture industry [30], and 
creative results can be achieved when fused with artificial 
intelligence.

Conclusions
In this study, we developed a technique for extracting 
the growing truss in tomato plants in a greenhouse using 
image processing techniques based on the image infor-
mation obtained by a robot platform and images of the 
growing truss captured by a depth camera. Furthermore, 
a study was conducted to convert the characteristics of 
two images, that is, converting RGB images into depth 
images, using the CycleGAN algorithm. Discriminators 
X and Y used in the loss of learning process converged 
to 0.43 and 0.65, respectively. The image information 
converted using CycleGAN was further used to com-
pare the performance of the extraction of growing truss. 
The FN and FP values based on the images from the 
depth camera were approximately 17.55% ± 3.01% and 
17.76 ± 3.55%, respectively. Similarly, using CycleGAN, 
the FN and FP values were approximately 19.24% ± 1.45% 
and 18.24% ± 1.54%, respectively. When using depth 
image, the mIoU was 63.56 ± 8.44%, and when segmen-
tation was performed through CycleGAN, the mIoU was 
69.25 ± 4.42%. In terms of error probability, CycleGAN 
exhibited a higher value. Finally, we performed field 
application tests to determine the growing truss of toma-
toes, wherein the continuously scanned image informa-
tion was converted into depth images using CycleGAN. 
In the future, the proposed approach is expected to be 
used in vision technology to scan the tomato growth 
indicators in greenhouses using an unmanned robot 
platform.

Abbreviation
GAN: Generative adversarial networks.
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