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Abstract 

Background:  The chlorophyll content is a vital indicator for reflecting the photosynthesis ability of plants and it plays 
a significant role in monitoring the general health of plants. Since the chlorophyll content and the soil–plant analysis 
development (SPAD) value are positively correlated, it is feasible to predict the SPAD value by calculating the vegeta-
tion indices (VIs) through hyperspectral images, thereby evaluating the severity of plant diseases. However, current 
indices simply adopt few wavelengths of the hyperspectral information, which may decrease the prediction accuracy. 
Besides, few researches explored the applicability of VIs over rice under the bacterial blight disease stress.

Methods:  In this study, the SPAD value was predicted by calculating the spectral fractal dimension index (SFDI) from 
a hyperspectral curve (420 to 950 nm). The correlation between the SPAD value and hyperspectral information was 
further analyzed for determining the sensitive bands that correspond to different disease levels. In addition, a SPAD 
prediction model was built upon the combination of selected indices and four machine learning methods.

Results:  The results suggested that the SPAD value of rice leaves under different disease levels are sensitive to differ-
ent wavelengths. Compared with current VIs, a stronger positive correlation was detected between the SPAD value 
and the SFDI, reaching an average correlation coefficient of 0.8263. For the prediction model, the one built with 
support vector regression and SFDI achieved the best performance, reaching R2, RMSE, and RE at 0.8752, 3.7715, and 
7.8614%, respectively.

Conclusions:  This work provides an in-depth insight for accurately and robustly predicting the SPAD value of rice 
leaves under the bacterial blight disease stress, and the SFDI is of great significance for monitoring the chlorophyll 
content in large-scale fields non-destructively.
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Background
During the photosynthesis process, chlorophyll, as a plant 
pigment, is an important material for absorbing light 
energy [1]. Chlorophyll content is one of the essential fac-
tors that directly affect plant growth, and therefore it can 

be used to reflect the stress of plants [2–4]. For instance, 
when the rice bacterial blight (BB) disease spreads, rice 
leaves usually turn from green to yellow, eventually to 
brown and white. This change means that the chloro-
phyll content of rice leaves has decreased, leading to the 
fact that rice leaves have difficulty in photosynthesis [5, 
6]. Previous studies have demonstrated that the chloro-
phyll content of infected rice leaves is negatively corre-
lated with the severity of bacterial blight disease [7, 8]. As 
a result, timely and accurately evaluating the chlorophyll 
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content of rice leaves is an efficient measure for monitor-
ing the rice BB disease.

At present, the soil–plant analysis development (SPAD) 
meter is widely adopted to evaluate the chlorophyll con-
tent due to its advantages like low-cost, ease of use, non-
destructive testing, etc. [9]. Various publications have 
reported that the SPAD value and the chlorophyll con-
tent are positively correlated [10, 11]. Therefore, it is pos-
sible to directly measure the SPAD value for monitoring 
the general health of plants instead of conducting chloro-
phyll measurements through laboratory tests. However, 
hand-held SPAD instruments are not suitable for meas-
urements in large-scale fields [12].

To overcome this scalability problem, researchers are 
now applying hyperspectral sensors to the agricultural 
domain [13, 14], thanks to the rapid development of the 
remote sensing technique. For evaluating the chloro-
phyll content, measuring the SPAD value by hyperspec-
tral images has drawn worldwide attention and achieved 
great success [15–18]. Zhang [19] combined multiple 
wavelength regions to define a novel index for evaluat-
ing the relative chlorophyll content in sugar beet. The 
performance of this index was verified through a 3-year 
field experiment, achieving the best prediction accuracy 
of SPAD value with a coefficient of determination (R2) 
of 0.83. Yoshitomo [20] designed a hyperspectral sens-
ing system to estimate the SPAD value by the normalized 
difference vegetation index (NDVI). The results showed 
that the correlation coefficient between the NDVI and 
the SPAD value reached 0.85 at night and 0.77 in the day.

From above works, it is detected that various vegetation 
indices (VIs) have been adopted to evaluate the chloro-
phyll content of plants. Although these VIs could achieve 
promising results, most of them are usually calculated 
based on several visible spectra like red, green, and blue 
edge regions. It is noted that some wavelength regions 
are not considered in current VIs. The ignorance of cer-
tain regions may result in the loss of spectral informa-
tion related to the chlorophyll content evaluation, thereby 
decreasing the prediction accuracy [21, 22]. Meanwhile, a 
few studies have contributed to the assessment of chloro-
phyll content in plant leaves under disease stress. As the 
disease condition becomes worse, the chloroplast and 
cell structure in plant leaves would be further damaged. 
When the chlorophyll content is reduced, the SPAD value 
would decrease as well, and even exceed the estimated 
range of current VIs [6, 23]. It is also worth noting that 
the reflectance of visible spectra would increase when 
plants are infected by diseases. Furthermore, changes of 
spectra caused by the geometric configuration, shape, and 
reflectance would also have an influence on the accuracy 
of the SPAD value measurement [24, 25]. Conclusively, 
current VIs cannot fully detect changes of the SPAD value 

in diseased plant leaves [26]. There is an urgent need to 
develop new evaluation methods by considering more 
spectral information to overcome the accuracy issue of 
SPAD value prediction under disease stress.

As a popular branch in the mathematics domain, frac-
tal dimension is potentially applicable to analyze the 
spectral information [27]. A fractal dimension can be 
seen as a statistical index that characterizes patterns by 
quantifying the irregularity as a ratio of the change in 
detail to the change in scale. The major benefit of the 
fractal dimension is its sensitivity to changes of the spec-
tral information, caused by the geometric configuration, 
shape, reflectance, etc. [28]. These changes are the main 
factors that reflect the general health of plants [29, 30]. 
By calculating the fractal dimension over the spectrum 
of infected leaves, adequate spectral information could 
be obtained. Under this circumstance, the evaluation of 
the SPAD value depends on the use of all spectral bands 
instead of selected ones, which may improve the evalu-
ation accuracy [31]. Moreover, the fractal dimension is 
also able to quantify the irregularity of the spectrum due 
to its advantageous nature [28, 32, 33].

In this work, we applied the fractal dimension to ana-
lyze the hyperspectral information to predict the SPAD 
value of rice leaves under the BB disease stress. A novel 
vegetation index, namely the spectral fractal dimension 
index (SFDI), is proposed. After comparing four machine 
learning models, including support vector regression 
(SVR), decision tree (DT), partial least squares regression 
(PLSR), and back propagation neural network (BPNN), 
we selected the optimal one and combined SFDI with 
it to establish a prediction model to evaluate the SPAD 
value of rice leaves under the bacterial blight disease 
stress. This work demonstrates that compared with cur-
rent VIs like MSAVI, NDVI, PRI, and so on, the proposed 
SFDI can more accurately predict the SPAD value of rice 
leaves under different bacterial blight disease levels.

Materials and methods
Experimental design
A moderately resistant rice cultivar, namely “Nanjing 
9108”, was selected as the experimental material. After 
soaking and germinating, we planted the seeds in a facil-
ity environment with an average temperature of 30  °C 
and an average air humidity of 75%. To lower the planting 
density, emerged rice was transplanted to individual pots, 
and each pot contained 3 rice plants. In total, 50 healthy 
plants were chosen to be infected with Xanthomonas ory-
zae pv. oryzae (Additional file 1: Fig. S1a). For the purpose 
of infection, we used a pair of scissors dipped in patho-
genic bacteria to cut off the top of a healthy rice leaf when 
the 5th leaf of rice emerged (Additional file 1: Fig. S1b).
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For obtaining the hyperspectral image, we adopted a 
push broom hyperspectral imaging system (Isuzu Optics 
Corp, Taiwan, China). The main components of this 
imaging system and their parameters are listed in Addi-
tional file 1: Table S1. The system software is composed 
of Spectral-image and the HSI Analyzer. Totally, for a 
single rice leaf, the reflectance of 306 bands is obtained, 
ranging from 378 to 1033 nm.

In general, the workflow of predicting the SPAD value 
of rice leaves under the bacterial blight disease is illus-
trated in Fig.  1. First, we preformed pre-processing 
operations on the collected raw spectra, including HSI 
correction and smoothing. Then, the SFDI and selected 
VIs were calculated. We also used the SPAD meter to 
measure the SPAD value as the ground truth. The corre-
lation between all vegetation indices and the SPAD value 
was then analyzed. Lastly, the performance of machine 
learning based SPAD value prediction models was 
assessed.

Hyperspectral image acquisition and pre‑processing
Hyperspectral image acquisition
Before imaging, the light source was turned on and 
preheated for 5  min to produce a stable light source. 
The imaging parameters for collecting the spectra in 

this experiment are presented in the Additional file  1: 
Table S2.

In order to eliminate the background noise, rice leaves 
were fixed on a black cardboard before imaging. Next, 
the black cardboard is placed on a shifting platform. The 
duration of measurement lasts for 3  weeks. Every other 
day, we measured two leaves of each sample of rice plant, 
and the HSI of selected leaves was collected 10 times. 
Finally, we obtained 500 hyperspectral images in total. 
The imaging system is shown in Fig. 2.

Considering that the moving speed of the shifting plat-
form and the exposure duration may have an influence 
on the resolution of images and cause distortion, we cali-
brated the obtained images by following Eq. (1) to reduce 
noise and to improve the stability and accuracy of further 
analysis.

where R(i) denotes the reflectance, Ir(i) denotes the 
uncalibrated reflectance of the obtained images, Iw(i) 
denotes the reflectance of a white panel, and Id(i) denotes 
the substitute for the dark current and noise when the 
camera shutter is closed.

(1)R(i) = Ir(i)− Id(i)

Iw(i)− Id(i)
,

Fig. 1  Workflow of predicting the SPAD value of rice leaves under BB disease stress
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Disease level categorization
After segmenting the obtained 500 original images, we 
built a dataset with 1000 hyperspectral images and each 
image only contained a single rice leaf. According to the 
GB/T 17980.19-2000 standard (http://​www.​gbsta​ndards.​
org/​GB_​stand​ard_​engli​sh.​asp?​code=​GB/T%​20179​80.​
19-​2000) presented in Table  1, the bacterial blight dis-
ease level can be categorized into six classes by visual 
inspection.

In the dataset, the number of rice leaf hyperspectral 
images labelled by level 0 to 5 is 200, 170, 160, 200, 140, 
and 130, respectively. An example of leaf images with dif-
ferent labels is displayed in Fig. 3.

Hyperspectral image pre‑processing
To reduce the noise caused by the imaging system and 
environmental factors, hyperspectral images were syn-
thesized by the HSI Analyzer. After extracting the region 

Fig. 2  Display diagram of the hyperspectral imaging system

Table 1  Categorization standard of rice leaves under the bacterial blight disease

Disease level Symptoms

Level 0 No clear spot is shown

Level 1 It appears 2–3 cm white spots, or even few brown spots are shown. The spot area is account for 10% of the leaf

Level 2 The length of appeared spots is less than a quarter of the leaf’s length, or the spot area is account for 20% of the leaf

Level 3 The length of appeared spots is between a quarter and half of the leaf’s length, or the spot area is account for 20–49% of the leaf

Level 4 The length of appeared spots is between a half and three quarters of the leaf’s length, or the spot area is account for 50–74% of the leaf

Level 5 The length of appeared spots reaches beyond three quarters of the leaf’s length, or the spot area is account for more than 75% of the 
leaf

Fig. 3  Leaves under different disease levels

http://www.gbstandards.org/GB_standard_english.asp?code=GB/T%2017980.19-2000
http://www.gbstandards.org/GB_standard_english.asp?code=GB/T%2017980.19-2000
http://www.gbstandards.org/GB_standard_english.asp?code=GB/T%2017980.19-2000
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of interest (ROI) through ENVI 5.1x (Research System 
Inc., Boulder, CO., USA), we smoothed the original spec-
trum and calculated the average spectrum. The size of the 
ROI in this work is 50 × 50 pixels.

The smoothing operation is widely used to eliminate 
the interference of high-frequency noise in raw spectral 
data and to improve the spectral signal-to-noise ratio. The 
Savitzky–Golay (SG) algorithm is a popular method to 
smooth the raw spectrum by calculating the average value 
of a set of sample raw spectra following a moving smooth-
ing window [34]. Since various researches have reported 
its effectiveness [35], we adopted the SG algorithm in this 
work as well (Additional file 1: Fig. S2). The SG smooth-
ing filter has a kernel size of 5 × 5 × 5 and the polynomial 
order is 3. The filter calculates the filtered value at the cen-
tral node of the kernel. The SG convolution uses the least 
square fitting coefficient as the digital filter response func-
tion to perform convolutional smoothing.

It is noted that both ends (wavelength less than 420 nm 
and greater than 950 nm) of the spectrum contain much 
noise. Considering the number of subsequent data and 
computation costs, Pi [36] removed the less informative 
and noisy 40 bands at both ends of the spectrum. In this 
work, the noise at both ends of the original spectrum is 
also high. Therefore, we removed both ends of the origi-
nal spectrum and the wavelength ranging from 420 to 
950 nm was maintained for further analysis.

SPAD value acquisition
Many studies have demonstrated that the SPAD value 
and the chlorophyll content are positively correlated [37]. 
The change of the SPAD value can reflect the change of 
the chlorophyll content accordingly [38]. In this work, 
for ensuring the correctness of hyperspectral analysis, we 
used the SPAD-502 meter to directly measure the SPAD 
value of rice leaves under the bacterial blight disease 
stress.

A hand-held SPAD-502 meter, produced by KONICA 
MINOLTA (JAPAN), was used in the experiment (Addi-
tional file 1: Fig. S3, Table S3). The SPAD-502 meter can 
determine the chlorophyll concentration by measur-
ing the leaf absorbance in red-light and near-infrared 
regions. Two LEDs with peak wavelengths of 650 and 
940  nm emit the light. After the light passes through 
the sample leaf in the measuring head, the receptor will 
count the amount of passed light and convert it into elec-
trical signals, thereby calculating the SPAD value and dis-
playing the result on the screen in real time [11].

To ensure that the rice leaves are infected with the bac-
terial blight disease successfully, we inoculated leaves 
by artificially cutting them at their tips. In this way, the 
pathogen can spread along the leaf vascular tissue and 
infect rice leaves. The stress symptom at the tip of the leaf 
was more obvious, so we selected the ROI from the tip 
for investigation. Considering the deviation caused by the 
difference of leaf thickness, we chose the sampling posi-
tion near the cutoff point as the ROI (50 × 50 pixels), as 
shown in Fig. 4. In our experiment, because the ROI was 
small, for a single sample, we measured the SPAD value 
three times and calculated the average value for record. 
Finally, we obtained 1000 SPAD values and categorized 
them under six disease levels.

Spectral fractal dimension index calculation
As a matter of fact, the reflectance curve in any pixel area 
of a hyperspectral image can be represented by a trade-
mark shape [39, 40]. However, this shape is considered 
as an irregular curve, which cannot be characterized 
by any numerical equation. Here, the fractal geometry 
is introduced. As a branch of the mathematics domain, 
fractal dimension is good at describing shapes, espe-
cially irregular ones. The fractal dimension of any curve 
can be measured by its irregularity, thereby being treated 
as its characteristic feature [28]. It is worth mentioning 
that the fractal dimension can provide a comprehensive 

Fig. 4  ROI selection diagram. The size of the ROI is 50 × 50 pixels
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description of spatial curves. For the hyperspectral data, 
if the spectral signals of pixels are plotted against bands, 
they will generate a corresponding hyperspectral curve 
[41]. In general, the fractal dimension can be computed 
by the box dimension method, the variance method, the 
structure function method, and so on [29]. In this work, 
we computed the fractal dimension by iterating the 
radius. The details of computing the proposed SFDI are 
presented in Fig. 5, following three main steps.

1.	 Spectral normalization

	 The reflectance of calibrated hyperspectral curve 
ranges from 0 to 1, therefore, we adopted the maxi-
mum and minimum normalization method to elimi-
nate the influence of wavelength magnitudes. The 
mathematical model of wavelength normalization is 
formulated in Eqs. (2) and (3) as follows.

where ϕ denotes the curve of the hyperspectral pixel, 
xn and yn denote the nth wavelength of the pre-pro-
cessed spectrum, xi denotes the wavelength after 
normalization, xmin and xmax are the minimum and 
maximum wavelength values, respectively.

2.	 Radius iteration
	 Radius iteration is the core of computing the frac-

tal dimension. Because the length of hyperspectral 
curves can be quantified by different radii. The radius 
in the current iteration can be used to detect minor 
changes of the hyperspectral reflectance, according 
to fractal theory. As the radius decreases, the length 
of the hyperspectral curve would become stable. The 
radius and the length of the curve are correlated by 
exponents [40]. We computed the fractal dimension 
of the average hyperspectral curve for each ROI by 
following the below sub-steps.

Sub-step 1: The hyperspectral curve ranging from 
420 to 950 nm is read and the total number of bands 
is counted. The starting and ending coordinates are 
(

x1, y1
)

 and 
(

xn, yn
)

 , respectively. The initial radius is 
defined in Eq. (4).

(2)ϕ =
(

x1, y1; x2, y2; . . . ; xn, yn
)

,

(3)xi =
x − xmin

xmax − xmin
,

(4)r1 =
1

2

(

1

n− 1

n−1
∑

i=1

√

(xi+1 − xi)
2 +

(

yi+1 − yi
)2

)

, (i = 1, 2, . . . , n− 1),

where r1 denotes the initial radius.
Sub-step 2: Considering the starting coordinate 
(

x1, y1
)

 as the center of an arc, we drew an arc to 
intersect the hyperspectral curve. At this time, we 
obtained an intersection point and treated it as the 
center of an arc for drawing the next. The draw-
ing of arcs is repeated along the direction of the 
hyperspectral curve until the distance between the 
center of the last arc and the ending coordinate 
(

xn, yn
)

 is less than the initial radius. Here, we can 
obtain the number of arcs, denotes as N (r1).

Fig. 5  Flow chart of computing the spectral fractal dimension index
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Sub-step 3: For further exploring the minor changes 
of the hyperspectral curve, we changed the radius to 
draw the arc. The radius rj is iterated by Eq. (5), while 
the curve length L

(

rj
)

 in each iteration with different 
radii is computed by Eq. (6).

where rj denotes the radius of the jth iteration, N
(

rj
)

 
denotes the number of arcs drew by rj , L

(

rj
)

 denotes 
the curve length of the jth iteration, M denotes the 
maximum number of iterations.

	 The termination condition of the radius itera-
tion is defined that the curve length in the neighbor-
ing iteration is equal or less than rM/M , described by 
Eq. (7).

	 Figure 6 shows the process of the spectral curve 
length measurement for radius r1 , rj and rM , respec-
tively. It can be seen from Fig. 6 that a smaller radius 
can more clearly reflect the irregularity of hyperspec-
tral curves. The more arcs are obtained, the more 
accurate the curve length will be, thereby providing a 
more robust result [33].

3.	 Fractal dimension logarithmic fitting
	 The fractal dimension of 420–950 nm bands, denoted 

by FD , is fitted by the logarithmic of Hausdorff 
dimension [42] and the formula is defined in Eq. (8).

	 The value of the fractal dimension FD is the proposed 
SFDI and it lies in the interval from 1 to 2.

(5)rj+1 = rj/
√
2,
(

j = 1, 2, . . . ,M − 1
)

,

(6)L
(

rj
)

= N
(

rj
)

× rj ,

(7)L(rM)− L(rM−1) ≤
rM

M

(8)FD = −
lg
(

N
(

rj
))

lg
(

1/rj
) ,

(

j = 1, 2, . . . ,M
)

,

	 The SFDI is a powerful representation to reflect the 
irregularity of the hyperspectral curve. The selected 
bands (e.g., visible and near-infrared bands) cover 
almost all the necessary information for predict-
ing the SPAD value. By iterating the radius, minor 
changes in the reflectance of neighboring bands can 
be detected and the relationship between them can 
be patterned. Thus, the proposed SFDI provides 
solid support for monitoring the SPAD value of rice 
leaves under the bacterial blight disease stress.

Definition and calculation of current VIs
Various researches have demonstrated the strong posi-
tive correlation between the visible light, red edge, and 
near-infrared regions and the SPAD value [43, 44]. In 
the visible region, the ideal wavelengths for predict-
ing the SPAD value are near 550 and 670  nm, which 
correspond to the absorption peaks in the red and 
blue regions [45]. As a result, these two wavelengths 
are usually used as sensitive indicators to quantify the 
SPAD value. In addition, the wavelengths near 500 and 
750  nm are often treated as anti-interference indica-
tors because these two wavelengths correspond to the 
absorption valleys [46]. Based on these sensitive and 
anti-interference indicators, for quantifying the SPAD 
value, researchers have formulated various VIs like the 
modified soil-adjusted vegetation index (MSAVI), nor-
malized difference vegetation index (NDVI), photo-
chemical reflectance index (PRI), modified chlorophyll 
absorption in reflective index (MCARI), etc. Some 
popular indices are listed in Table 2.

It is acknowledged that the accuracy of predicting the 
SPAD value through current VIs would be affected the 
plant disease stress. Consequently, establishing these 
VIs with few wavelengths to predict the SPAD value is 
potentially risky. Although the combination of several 
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Fig. 6  Measurement of the hyperspectral curve length by radius iteration. a Measurement with the initial radius r1. b Measurement with iterated 
radius rj. c Measurement the last radius rM. After initialization, the radius keeps being updated according to Eq. (5) during iteration. The termination 
condition is determined by Eq. (7)
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wavelengths is used for formulation of VIs, the selected 
wavelengths cannot fully cover the sensitive information, 
thereby decreasing the SPAD value prediction accuracy.

Evaluation criteria
All the hyperspectral information is processed by a 
computer under the Windows 10 operating environ-
ment, with 16  GB RAM and Inter QuadCore i7-8700 
(4.2 GHz). The analyzer tool is HSI Analyzer, ENVI5.3 
and Matlab R2016a.

The correlation of determination (R2), root mean 
square error (RMSE), and relative error (RE) are 
selected as the evaluation criteria [56]. As the R2 value 
increases and the values of RMSE and RE decrease, 
the prediction model performs better. Formulations of 
evaluation criteria are defined in Eqs. (9–11).

(9)R2 = 1−
∑n

i=1

(

ŷi − yi
)2

∑n
i=1

(

yi − yi
)2

,

(10)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

ŷi − yi
)2
,

(11)RE = 1

n

n
∑

i=1

∣

∣ŷi − yi
∣

∣

yi
× 100%,

where ŷi denotes the predicted value, yi denotes the 
ground truth, yi denotes the average value of yi , and n 
denotes the number of samples.

Results
Changes of spectral characteristics of disease leaves
Changes of hyperspectral reflectance curve
Rice infected by the bacterial blight disease will experi-
ence a decrease in chlorophyll synthesis and photosyn-
thesis. Furthermore, the hyperspectral reflectance of 
infected rice leaves will change as well. In infected rice 
leaves, the hyperspectral curve varied in disease lev-
els. The mean hyperspectral curves of this selected leaf 
under six disease levels are shown in Fig. 7.

Dark green water-stained streaks would appear in the 
infected region of rice leaves during the early stages 
of bacterial blight infection. As the BB disease devel-
ops further, the infected leaves turn gray-green and 
become curled. The reflectance in the visible region is 
increased, especially in the red valley region (between 
650 and 680 nm) increases sharply, the increasing rate 
is much higher than that of the green peak regions (525 
to 575  nm). Until diseased rice leaves turn yellow and 
white, the highest reflectance is reached. Due to the 
hyperspectral characteristics of the visible light region 
are mainly affected by the absorption of the pigment, 
the increasing rate of reflectance in the visible region 
is higher than that in the near-infrared region, which is 
supported by An [57]. It is concluded that the hyper-
spectral reflectance of rice leaves changes with the 

Table 2  Definition of current VIs

R800 : spectral reflection intensity at 800 nm, the same goes for R754 , R680 , R450 , 
and so on

RNir : mean reflection intensity between 760 and 850 nm

RRed : mean reflection intensity between 650 and 670 nm

VIs Definition or equation References

GNDVI (R800 − R550)/(R800 + R550) [45]

MCARI [(R700 − R670)− 0.2(R700 − R550)](R700/R670)

PSRI (R680 − R500)/R750 [46]

VOG1 R740/R720 [47]

VOG2 (R737 − R747)/(R715 + R726)

VOG3 (R737 − R747)/(R715 + R720)

MSAVI 1
2
×

[

(2RNir + 1)−
√

(2RNir + 1)2 − 8(RNir − RRed)

]

[48]

NDVI (R800 − R670)/(R800 + R670) [49]

PRI (R570 − R531)/(R570 + R531)

NPCI (R680 − R430)/(R680 + R430) [50]

MTCI (R754 − R709)/(R709 − R681) [51]

RVI RNir/RRed [52]

NDI (R800 − R680)/(R800 + R680) [53]

SAVI 1.5× (R800 − R670)/(R800 + R670 + 0.5) [54]

VARIgreen (R560 − R670)/(R560 + R670 − R450) [55]

VARIred (R700 − 1.7R670 + 0.7R450)/(R700 + 2.3R670 − 1.3R450)

Fig. 7  Mean hyperspectral curves of ROI from a single leave under 
six disease levels. For illustrating the changes of the hyperspectral 
reflectance, we monitored the reflectance of a single leaf after 
infection (when the severity is Level 0). The severity of the bacterial 
blight disease develops with time, until it reaches to Level 5
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SPAD value after the bacterial blight infection, which 
provides a theoretical basis for the next step in analyz-
ing the correlation between the SPAD value and the 
hyperspectral reflectance.

SFDI and SPAD variation analysis
From the above analysis, it can be seen that the hyper-
spectral reflectance of rice leaves under different dis-
ease levels has major differences, and the irregularity 
of hyperspectral curves is distinguishable. The average, 
maximum, and minimum of the proposed SFDI under six 
different disease levels are shown in Table 3.

It can be seen from Table 3 that the SFDI values under 
different disease levels have major differences. As the 
bacterial blight disease develops, the mean, maximum, 
and maximum values of SFDI are eventually increased.

Influenced by the cell structure and leaf chlorophyll 
content, there are large reflective surface cavities within 
the spongy tissue structure of healthy rice leaf flesh, and 
the intracellular chlorophyll is in a hydrosol state, leading 
to strong infrared reflection and a large SPAD value. For 
rice leaves under the bacterial blight disease stress, after 
the bacterial blight disease invaded leaves, the leaf chlo-
roplasts and structure are damaged, which would hinder 
the synthesis of the leaf chlorophyll and the smooth pro-
gress of photosynthesis. The chlorophyll content of rice 
leaves gradually decreases, and the SPAD value would 
also decrease [38].

The SPAD value varies in the chlorophyll content, rang-
ing from 0 to 60, and the change of the SPAD value under 
different disease levels is shown in Fig. 8.

It can be seen from Fig. 8 that the average SPAD value 
of diseased rice leaves shows a downward trend. This 
finding is consistent with previous research, which found 
that chlorophyll content drops rapidly when plants are 
stressed and during leaf senescence [58]. In the early 
stage of infection, a small number of bacteria cannot 
cause extensive damage to leaves, and the diffusion rate 
is slow, so there is minor change in the leaf chlorophyll 
content in the infected area [59]. The chlorophyll content 
of rice leaves at level 0 is the highest, with the maximum 
value of 53.7 and an average value of 44.65. The SPAD 

value is mainly affected by the leaf structure and the 
cell structure of rice leaves, both of which are damaged 
after the bacterial blight infection. As the disease further 
develops, the average SPAD value gradually decreases to 
11.5 (when the disease level reaches Level 5).

Correlation analysis between VIs and SPAD value
When using current VIs to predict the SPAD value, it is 
noted that some indices will become saturated with the 
change of the measured parameters (e.g., the chlorophyll 
content). As a result, these indices would become less 
sensitive to changes of SPAD values under different dis-
ease levels and eventually achieve poor prediction accu-
racy. In order to determine the hyperspectral bands that 
are strongly correlated with the SPAD value of rice leaves 
under the bacterial blight disease stress, the contour 
maps of the coefficients of determination for the relation-
ship between spectra and SPAD values under six different 
disease levels were analyzed (Fig. 9).

Figure 9 shows that the SPAD value is correlated with 
certain hyperspectral bands under different disease lev-
els. For instance, for the disease level 0, hyperspectral 
bands from 500 to 650 nm show a strong correlation with 
the SPAD value. For the disease level 3, a strong corre-
lation appears at bands that range from 560 to 720 nm. 
Lastly, for the disease level 5, bands from 420 to 700 are 
positively correlated with the SPAD value. Therefore, 
it can be concluded that current VIs cannot accurately 
predict the SPAD value of rice leaves under the bacte-
rial blight disease stress, due to the reason that the selec-
tion of sensitive bands is usually fixed and limited. For 

Table 3  Statistical data of SFDI under different disease levels

Disease level Mean Maximum Minimum

Level 0 1.1807 1.2042 1.1372

Level 1 1.2190 1.2408 1.1975

Level 2 1.2595 1.2895 1.2401

Level 3 1.2779 1.3036 1.2483

Level 4 1.3199 1.4126 1.2627

Level 5 1.3962 1.5040 1.3595

Fig. 8  SPAD value of rice leaves under different disease levels. The 
top and bottom black lines represent the maximum and minimum 
SPAD values, respectively. The red line represents the average SPAD 
value. The number of rice leaves under disease levels 0 to 5 is 200, 
170, 160, 200, 140, and 130, respectively



Page 10 of 15Cao et al. Plant Methods           (2022) 18:67 

example, NDVI only concerns the wavelengths at 670 and 
800 nm. Under such circumstances, NDVI may become 
less sensitive to the disease level 4, because the sensitive 
bands for this disease level correspond to 480–550  nm 
and 620–680  nm according to our correlation analysis. 
The result of the statistical analysis presented in Table 4 
also supports this finding. Among the 17 VIs, including 
the SFDI, 9 VIs have a correlation coefficient with the 
SPAD value exceeding 0.5000, and 6 of them reach over 
0.7000. The correlation between the SFDI and the SPAD 
value is the strongest, reaching the correlation coefficient 
of 0.8263.

Model evaluation with selected VIs
SFDI, MSAVI, RVI, VARIred, MTCI, and MCARI were 
selected for regression analysis. VIs under different dis-
ease levels were used as input variables, and the desired 
output variable is the SPAD value. Datasets of hyperspec-
tral images and their corresponding SPAD values were 
divided into training and testing sets in an 8:2 ratio and 
a K-fold cross validation approach is adopted (K = 5). 
The regression models were established based on four 
machine learning models, including decision tree (DT), 
partial least square regression (PLSR), support vector 

regression (SVR), and back propagation neural network 
(BPNN). The prediction performance of each model built 
with selected VIs was presented in Table 5.

As shown in Table  5, all regression models built with 
SFDI achieve the optimal performance. For the test set, 
the result of R2 reaches over 0.8387, while the results of 
RMSE and RE are below 4.7184 and 10.6479%, respec-
tively. In particular, the regression model based on SVR 
is the optimal one, reaching R2, RMSE, and RE at 0.8752, 
3.7715, and 7.8614%, respectively.

Therefore, by using the SVR model built with the SFDI, 
the SPAD value can be predicted more accurately and 
robustly. The prediction performance of the model estab-
lished by SVR and SFDI under six disease levels is shown 
in Fig. 10. The R2 indicates the distance of the measured 
data from the regression line, which gives the overall 
effect of the regression model. The closer R2 is to 1 and 
the smaller the RMSE, and the closer the slope of the 
regression equation is to 1, the better the model fitting 
ability and prediction ability.

It can be seen from Fig.  10 that the SVR model built 
with the proposed SFDI demonstrates outstanding 
stability and accuracy in predicting the SPAD value. 
The prediction performance of SPAD value under the 

Fig. 9  Contour maps of the coefficients of determination for the relationship between hyperspectral bands and SPAD values under six disease 
levels. In the color bar, the color changed with the correlation, from 0 to 1, meaning the stronger the positive correlation between the SPAD value 
and the spectral band. And from 0 to − 1, meaning the stronger the negative correlation between the SPAD value and the spectral band
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disease level 3 is the best, the determination coefficient 
R2 reaches the highest at 0.9154, and the RMSE is 3.8270. 
Overall, the values of R2 and RMSE for all 6 disease levels 
only have a minor difference. As a result, the SFDI can 
overcome the saturation problem of current VIs in pre-
dicting the SPAD value of the rice leaves under the bac-
terial blight disease stress by providing a more robust 
result.

Discussion
Discussion about sensitive bands and prediction 
performance
To determine the SPAD value of infected rice leaves, VIs 
established with hyperspectral information have been 
applied. As a non-destructive method for qualitative and 
quantitative analysis, the hyperspectral technology plays 
an important role. Bacterial blight would accelerate the 
process of chlorophyll degradation and leaf structure 
destruction, causing a dramatic change in the hyperspec-
tral information, which has been explained in previous 
studies [26, 60]. In this work, the SFDI has been proven 
to be a robust and accurate index for predicting the SPAD 
value of infected rice leaves because it contains more 
hyperspectral information and can explain the irregu-
larity of hyperspectral curves. Through radius iteration, 
the minor changes of reflectance curves between any two 
adjacent hyperspectral wavelengths can be detected by 
the SFDI.

In the visible light region, especially the green light 
region, the reflectance is mainly affected by leaf pig-
ments [61]. At the early stage of the bacterial blight dis-
ease, the chlorophyll content in the rice leaves gradually 
decreases, and the color of leaves changes from green to 
yellow. The hyperspectral curve shows a green peak at 
around 550  nm, where leaves absorb green light at the 
highest rate, leading to the lowest reflectance of green 
light. Meanwhile, there is a red valley at around 680 nm, 
where the leaves absorb the most red-light, resulting in 
the lowest red-light reflectance. As the BB disease pro-
gresses, chloroplasts suffer severe damage. The SPAD 
value decreases, and the reflectance of green and red-
light regions increases [59]. The green peak and red val-
ley disappear at this time. It is worth mentioning that the 
reflectance of the red-light region rises faster than that of 
the green light region, and the original peak-valley curve 
gradually becomes a parabola.

It is noted that current vegetation indices only adopt 
few bands selected. For instance, MSAVI is composed 
of near-infrared and red-light regions [48], while NDVI 
consists of wavelengths at 670 and 800  nm [49]. Wave-
lengths at 531 and 570 nm are used to establish PRI [49]. 
According to our analysis, the combination of different 
bands may have an influence on the prediction accuracy, 

this is consistent with the findings of Zhang [24]. On 
the one hand, VIs composed of more wavelengths, such 
as SFDI, MSAVI, and RVI, would be more strongly cor-
related with the SPAD value under the bacterial blight 
disease stress. Due to the adequate inclusion of hyper-
spectral information in the red-light and near-infrared 
regions, the correlation coefficients of these indices reach 
over 0.7900 with the SPAD value. On the other hand, the 
rest VIs that contain less hyperspectral information are 
all weakly correlated with the SPAD value.

Discussion about sensitive bands under different disease 
levels
We also find that the SPAD value of rice leaves under dif-
ferent disease levels is sensitive to different bands, which 
corresponds to the findings of the literature [60]. Accord-
ing to Yu et al. [62], leaf reflectance is mainly affected by 
the pigment, cell structure, and leaf water content in the 
leaf, while in the visible light waveband (350–720  nm), 
leaf reflectance is most affected by chlorophyll. From 
420 to 680  nm, a downward trend in the light absorp-
tion rate is shown, especially in the red valley region 
where the chlorophyll light absorption ability is stronger 
and the reflectance shows an upward trend, the same as 
in Jin’s research results [63]. A peak and a valley appear 
at around 550 nm and 680 nm, respectively. Meanwhile, 
the hyperspectral reflectance increases dramatically 
between 650 and 700 nm. It means that the current VIs 
may achieve poor accuracy. For instance, NPCI (with 

Table 4  Correlations between SPAD value and VIs

* and ** indicate that correlations are significant at confidence levels of 0.05 and 
0.01, respectively

VIs Correlation 
coefficient

SFDI 0.8263**

MSAVI 0.8024**

RVI 0.7947**

VARIred 0.7235**

NPCI 0.6426*

NDVI 0.5545**

SAVI 0.4989*

GNDVI 0.4559*

VOG3 0.3125**

VOG1 − 0.2692**

NDI − 0.3752**

VOG2 − 0.4041**

PSRI − 0.4591*

PRI − 0.4779**

VARIgreen − 0.5852**

MTCI − 0.7541**

MCARI − 0.7578**
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fixed wavelengths at 430 and 680 nm) may fail to predict 
the SPAD value of rice leaves under the disease level 1, 
because the sensitive bands for this level are 550–570 nm 
and 710–740 nm. Fortunately, the proposed index, SFDI, 
takes advantage of adopting a period of continuous bands 
ranging from 420 to 950  nm, which covers adequate 
hyperspectral information.

Discussion about sensitive bands and various stresses
There are many causes for the change of the hyperspec-
tral reflectance, such as insect, drought, and vegetation 
deficiency stresses [29, 58, 61]. Plenty of studies have 
provided a solid foundation for the effective application 
of spectrum in rice disease detection and the prediction 
of biochemical parameters of rice leaves under various 
stresses [7, 24, 26], while the sensitive bands are differ-
ent under various stresses. All these stresses may have 
potential influences on the hyperspectral characteris-
tics, thus affecting the accuracy of the SPAD predic-
tion. The development of new indices for predicting the 
SPAD value considering various stresses and wavelengths 
would be a very interesting topic to explore in future 

studies. Furthermore, a stable index is urgently needed to 
quantitatively analyze changes of the rice leaf spectrum 
under different stresses, as well as to predict biochemical 
parameters and detect diseases under different stresses.

Conclusion
Periodically estimating the chlorophyll content is 
essential to monitor the general health of rice. The ulti-
mate objective is to maximize the crop yield and reduce 
losses caused by the bacterial blight disease spread-
ing among crops. Current VIs (e.g., MSAVI, MCARI, 
MTCI, etc.) are established by considering only the 
sensitive (e.g., 670 and 450  nm) and anti-intervention 
wavelengths (e.g., 700 and 550 nm). However, the com-
bination of selected bands cannot fully reflect the minor 
changes of the chlorophyll content in plants under 
disease stress. Because the ignorance of certain wave-
lengths may lead to the loss of sensitive information, 
thereby decreasing the prediction accuracy. Besides, it 
is found that the SPAD value of rice leaves under differ-
ent disease levels is sensitive to different wavelengths. 
In this work, to overcome the limitations of current 

Table 5  Performance of prediction models built with different VIs

The bold values highlight the best performance

VIs Model Training set Test set

R2 RMSE RE/% R2 RMSE RE/%

MSAVI DT 0.8153 4.2358 9.3182 0.7916 4.7874 9.5617

PLSR 0.8019 5.2545 10.2113 0.7711 5.3593 10.3156

SVR 0.8553 4.0548 8.3935 0.8355 4.5187 9.3219

BPNN 0.8437 3.2254 8.7417 0.8322 3.3290 10.8533

MCARI DT 0.7215 8.3541 14.0523 0.7006 9.2147 15.3319

PLSR 0.6853 7.4097 11.0561 0.6631 10.2416 12.1102

SVR 0.7783 6.8345 9.7764 0.7547 10.9724 9.1542

BPNN 0.7512 6.7714 10.2314 0.7431 9.2433 10.2011

MTCI DT 0.5839 10.9318 20.2176 0.5581 18.5998 20.3154

PLSR 0.6337 13.4315 17.7154 0.6255 14.3392 18.6833

SVR 0.6239 8.3549 13.1171 0.6213 10.4582 14.6914

BPNN 0.6617 7.9018 12.1272 0.6571 9.8851 13.2387

RVI DT 0.5311 12.2155 19.2513 0.4924 13.5217 19.7315

PLSR 0.5442 11.5125 18.2651 0.5351 12.3652 18.9113

SVR 0.5537 9.2254 13.7114 0.5463 10.3290 13.8151

BPNN 0.5329 8.7592 14.2615 0.5154 9.3651 14.3216

VARIred DT 0.7419 9.8263 10.2344 0.7224 10.2355 12.9371

PLSR 0.7133 12.3652 14.2615 0.7062 13.6239 16.3117

SVR 0.7939 11.9217 10.0200 0.7819 12.9759 13.8592

BPNN 0.7785 8.8251 9.3154 0.7435 10.9472 9.8138

SFDI DT 0.8413 4.5163 10.5127 0.8387 4.7184 10.6479

PLSR 0.8516 3.8715 9.8435 0.8479 4.5526 9.9316

SVR 0.8874 3.5124 7.7451 0.8752 3.7715 7.8614
BPNN 0.8759 3.3152 8.3218 0.8679 3.6780 8.6153
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VIs, a robust index, SFDI, is proposed by computing 
the fractal dimension of a hyperspectral curve ranging 
from 420 to 950  nm. The experimental result demon-
strates that the SFDI shows a stronger positive correla-
tion with the SPAD value than current ones. We further 
build a SPAD prediction model by combining the SFDI 
with various machine learning models. The comparison 
result over the testing dataset shows that the predic-
tion model based on SVR and SFDI achieves the best 
prediction performance, reaching R2, RMSE, and RE at 
0.8752, 3.7715, and 7.8614%, respectively.

In conclusion, it is recommended to consider to use 
this newly-proposed index, SFDI, to robustly and accu-
rately predict the SPAD value of rice leaves under the 
bacterial blight stress with the hyperspectral information 
ranging from 420 to 950 nm. Further exploration of our 
study may focus on testing the SFDI over other plants to 
verify its applicability and usefulness.
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