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Abstract 

Background:  Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify 
novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of 
high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single 
cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the 
potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable 
regeneration conditions.

Results:  High-throughput automated microscopy coupled with the development of image processing pipelines 
allowed to quantify various developmental properties of thousands of protoplasts during the initial days follow-
ing cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell 
expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We com-
pared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated 
athanogene 4 from Arabidopsis (AtBAG4).

Conclusions:  AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area 
increases than the wild type and showed increased growth rates as well as increased proliferation rates upon contin-
ued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience 
to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our 
single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance 
which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell proper-
ties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechno-
logical screening strategies able to determine improved plant properties via single-cell analysis.
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Background
Plant cells are organized within a tissue context in which 
most cells are embedded in a stiffened chassis, the cell 
wall, comprising cellulose microfibrils which inter-
act with a matrix of mainly pectins, hemicelluloses and 
structural proteins [43]. This chassis is flexible during 
early plant cell developmental stages which take place 
in restricted regions within a plant body, the meristems. 
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These zones contain stem cells with a high proliferation 
activity which generate small, isodiametric, undifferenti-
ated cells, subsequently increasing in size by about ten-
fold, to finally differentiate into specialized plant cells, for 
instance mesophyll cells of leaves, pavement cells of the 
epidermis, or endodermis cells of roots [2, 43].

Usually, proliferation and subsequent cell volume 
increase is restricted to the early stages of cell develop-
ment prior to the stiffening of cell wall components. 
However, plant cells are considered as totipotent, which 
is defined as the capacity of differentiated cells to first 
dedifferentiate, then proliferate and redifferentiate into 
the complete repertoire of plant cell identities thus form-
ing whole plants [22]. This process, however, requires 
suitable stimuli which can occur naturally, e.g. induced 
by wounding of plant tissues which finally results in the 
formation of new organs [17]. Dedifferentiation can also 
be induced in isolated, differentiated single cells, but 
requires presence of suitable media components and 
plant growth regulators and is stimulated by stochas-
tic gene expression induced through the isolation pro-
cess [14, 53, 58]. For isolation, cell walls are usually lysed 
enzymatically and single cells, protoplasts, are released. 
Protoplasts are extensively used in plant research for 
multiple purposes, recently extending towards gene 
editing approaches and single-cell transcriptomics and 
genomics [48, 50].

Besides biotechnological applications, this system 
offers the advantage of studying growth properties inde-
pendent from the cell wall counterforce as cell walls are 
regenerated earliest after about 48 h [35]. Upon isolation 
and the provision of suitable physiological conditions in 
the medium, a proportion of protoplasts remains viable 
and can grow in size [23, 55]. Cell growth can be influ-
enced by multiple factors, both external, such as chemi-
cal and physical stimuli, as well as internal, such as the 
cell size and physiology at the time of cell extraction and 
isolation from in  vivo to in  vitro environment [1, 12]. 
Even within a population of isogenic cells there is a high 
variability in growth rates of individual cells [49, 55]. Cell 
growth analysis is frequently done at the cell popula-
tion level at a single time point, and is thus an end-point 
analysis. Such population-based studies are informative 
for effects of chemicals or other factors on average cell 
growth, but hide information on the effects on individual 
cells and their developmental properties occurring over 
time. Thus, average growth responses at the population 
level may not translate to responses at the level of single 
cells. In addition, single time point analysis cannot relate 
the differences in growth responses of single cells to their 
initial state [12].

Single-cell tracking allows to study changes in single-
cell properties, such as its size, shape and relate with 

intracellular metabolic state as well as gene expression 
over time [51]. This provides a quantitative approach to 
study the influence of various perturbations on single-
cell dynamics, such as cell growth and proliferation rate, 
and to understand how these processes are regulated. 
Single-cell tracking complemented with high-content 
image-based data from high-throughput microscopes 
is very powerful in providing deep insight into cellular 
dynamics through large chemical screening, statistically 
rigorous correlation studies and modeling [33, 39]. How-
ever, analysis of such high-volume data in a time-efficient 
manner necessitates the development of computational 
tools capable of efficient processing of images and sub-
sequent statistical data analysis which we approached in 
this work.

Our approach is based on the fact that quantita-
tive microscopic analysis of single-cell responses is well 
established and widely used for animal and yeast cells 
while corresponding applications on plant single cells is 
largely restricted only to the very early time points occur-
ring within minutes to a few hours after isolation [6, 19, 
33, 52]. However, monitoring of growth properties over 
time, several days after isolation until the initiation of 
proliferation, has only been rarely done so far [35]. This 
is probably due to difficulties associated with the tracking 
of isolated protoplasts which tend to move and aggregate 
when cultivated in liquid media. Moreover, quantifica-
tion of cell area changes over time requires the precise 
determination of cell shapes from bright field image 
acquisitions. However, the tools to convert a greyscale 
image into a corresponding binary image established for 
animal and yeast cells are unsuited to be applied on plant 
cells with their different morphology.

In this study we have used a method of immobiliz-
ing protoplasts in high density in multi-well plates cou-
pled with repeated image acquisitions using automated 
microscopy in order to quantify area changes of single 
cells during continued incubation. We present the devel-
opment of an image processing pipeline including image 
processing requirements needed to precisely quan-
tify area changes of single cells. Our processing routine 
was applied on isolated protoplasts from tobacco leaves 
as one of the most widely used systems [37]. Moreo-
ver, we challenged our system by including protoplasts 
from tobacco plants expressing the antiapoptotic pro-
tein BCL2-ASSOCIATED ATHANOGENE 4 (BAG4) 
from Arabidopsis which was reported to affect various 
plant processes ranging from altered stress response to 
increased stomatal movements [29]. Among different 
plant cell identities, stomatal guard cells have a special 
requirement for an efficient regulation of ion homeo-
stasis as they need to quickly adjust their shapes to ful-
fil their function as a valve regulating water and gas 
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exchange in response to changing physiological condi-
tions. Potassium influx in stomatal guard cells is mainly 
determined by two K+ channel family members, KAT1 
and KAT2 [26, 38]. Accordingly, the KAT1 channel is 
subjected to a large number of regulatory mechanisms, 
e.g. via phosphorylation or its transport activity [45]. 
Recently, Locascio et al. [29] identified BAG4 as another 
interaction partner of KAT1. They showed that BAG4 
controls the abundance of KAT1 on plasma membranes 
of stomatal guard cells, which affects stomatal move-
ments, however, it remained unknown whether BAG4 
also affects the physiology of other cells. We questioned 
whether a similarly altered ion homeostasis might affect 
expansion properties of isolated protoplasts of BAG4-
expressing plants and applied an automated process for 
quantitative analysis. Comparative determination of the 
properties of wild-type versus BAG4-expressing tobacco 
cells revealed a universal function of BAG4 in regulat-
ing cellular volume changes which seems not restricted 
to guard cells. Moreover, our approach is suitable to be 
applied to precisely determine single-cell area changes in 
plant protoplasts and allows to align single-cell responses 
with phenotypic alterations at the whole plant level. This 
opens the way to envision an improvement of plant prop-
erties by single-cell screening procedures as novel high-
throughput breeding strategy.

Results
Establishment of protoplast tracking assay
For the establishment of a system which allows to deter-
mine single cell properties for unraveling possible effects 
of BAG4 on cell expansion properties, we overexpressed 
BAG4 in tobacco. We generated independent trans-
genic lines expressing Arabidopsis BAG4 (AtBAG4) and 
AtBAG4 as N-terminal translational fusion with YFP 
(YFP-BAG4), respectively. The expression of the YFP-
BAG4 fusion protein allowed us to monitor AtBAG4 
localization properties simultaneously. The transgene 
expression levels were determined by qRT-PCR (see 
Additional file  2: Fig. S1) and the two independent 
strongest AtBAG4-expressing lines (lines #1-1-1 and 
#2-20-5) were chosen for further analysis.

By monitoring growth properties of protoplasts over 
time, we explored to establish a microscopy workflow 
which allowed cell tracking analysis. For this, we iso-
lated protoplasts from young leaves of in vitro cultivated 
tobacco plants. This yielded almost quantitatively meso-
phyll protoplasts with only minor abundance of other 
leaf cell types such as guard cells or epidermal cells. After 
isolation, protoplasts were immobilized into multi-well-
plates with a density of 8000 protoplasts per well. Immo-
bilization was achieved by the use of low-melting agarose 
which allowed to position most cells in a monolayer at the 

bottom of the wells by low-speed centrifugation. Subse-
quently the agarose block was overlaid with liquid prolif-
eration medium and cell layers were repeatedly recorded 
over time using automated microscopy. The proliferation 
medium contained the plant growth regulators auxin and 
cytokinin required to induce expansion and proliferation 
of protoplasts [47]. We first exploited YFP as a fluorescent 
marker to monitor AtBAG4 localization, and recorded 
single-cell development during 13 days after immobiliza-
tion (DAI, Fig. 1). Interestingly, YFP-AtBAG4 was almost 
exclusively localized in the nucleus/ER immediately after 
protoplast isolation/immobilization, while with contin-
ued cultivation, the YFP-AtBAG4 signal was present in 
cytoplasmic membranes in addition. This agrees with the 
observation that the KAT1-AtBAG4 complex colocalized 
with an ER marker which was associated with the func-
tion of AtBAG4 in KAT1 assembly prior to its transport 
to plasma membranes [29]. Moreover, YFP-AtBAG4 sig-
nal intensity increased also in areas of contacting proto-
plasts. Protoplast area increased visibly during the first 
3 DAIs without visible cell divisions, while after 7 DAIs, 
protoplasts initiated cell proliferation. Strikingly, with the 
beginning of cell divisions, YFP-AtBAG4 signal inten-
sity increased strongly and accumulated preferably in 
the cell plate in early cell divisions, while it was detected 
throughout the cytoplasm with the completion of divi-
sions and subsequent proliferations at early microcalli 
stage (Fig. 1).

Development of single cell tracking workflow
These results showed that the immobilization method 
used was suitable to maintain viable tobacco protoplasts 
after immobilization and allowed protoplast prolif-
eration. In order to quantify area changes of single cells 
tracked over time, an automatized image processing and 
data analysis pipeline was developed (Fig. 2). We assumed 
that turgor-mediated single-cell area changes are slowed 
down as soon as cell proliferation is initiated, as this is 
accompanied by the generation of cell plates and the for-
mation of shaping cell walls thus forming multicellular 
microcalli (Fig. 1). Therefore, in order to focus on single-
cell area changes over time, we restricted the analysis on 
the initial three days following protoplast isolation, which 
was prior to first cell divisions. After immobilization, 
protoplasts were recorded daily in each well in bright 
field mode and cell positions were aligned among all 
chronological images in order to correct for slight posi-
tional displacements of protoplasts using the template 
matching and slice alignment plugin with ImageJ [56]. 
Next, in order to detect single cells and precisely meas-
ure their shapes, we segmented all images using U-net, a 
deep-learning-based software package for cell detection 
and segmentation [10].
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Depending on their proximity, expanding single cells 
frequently contact each other and form a cluster which 
poses difficulties in addressing their single-cell identity 
and alters their growth properties similar to proliferat-
ing protoplasts mentioned above (Fig. 1). We therefore 
intended to exclude contacting protoplasts from the 
analysis. In order to automatize exclusion of cluster-
ing cells, we exploited the speckle inspector plugin in 
ImageJ which is initially intended to quantify smaller 
features/speckles within larger objects, i.e. number of 
nuclei within cells [5]. For our purpose, we first sliced 
cell clusters formed by contacting cells into multiple 
fragments applying the watershed algorithm on seg-
mented images (Fig.  3). Then, we adopted the speckle 
inspector plugin in ImageJ to compare the original seg-
mented image with the corresponding watershed image 
in order to identify cells which formed clusters [4]. 
This allowed removing these cell clusters from further 
analysis leaving only individual single cells that were 
tracked between time points.

From a total number of 8000 protoplasts per well, about 
2500 cells finally passed all filtration steps and were used 
for further quantitative cell expansion analysis. As shown 
in Fig. 4, the average individual cell numbers passing the 
filtration decreased slightly with continued incubation, 
explained by the elimination of cells forming clusters 
caused by volume increases over time. This drop in indi-
vidual cell numbers occurred at DAI2 for wild-type pro-
toplasts and already after DAI1 for AtBAG4-expressing 
lines, but then remained constant.

Single‑cell population analysis
In order to track cell lineages of individual cells over time 
and also to consider possible slight positional cell shifts 
occurring between image acquisitions of subsequent time 
points, we tracked segmented cells retrogradely based 
on Euclidean distance. Identification of identical cells in 
each images in a time series is realized by calculating the 
distance between the centroids of cell pairs. A threshold 
of 27 µm shift was allowed for a cell being tracked across 
two time points. All further analyses were performed 
with data extracted from these tracked cell lineages.

Growth of individual single cells was quantified by 
constructing the cell area distribution of tracked cells. 
The cells were tracked up to three DAIs in wild type and 
the two AtBAG4-expressing lines, namely lines #111 
and # 2205. The cell area distribution of wild-type and 
AtBAG4-expressing cells at the initial starting time point, 
i.e., DAI0, formed a single, slightly asymmetric peak indi-
cating higher area variability in larger cell areas (Fig. 5A–
C). The average area of protoplasts was 850 ± 20 µm2 for 
wild type, 750 ± 10 µm2 for line #111 and 800 ± 40 µm2 
for line #2205 which corresponds to average cell diam-
eters of 16.45 ± 2.5 µm for wild type, 15.45 ± 1.8 µm for 
#111 and 16 ± 3.6 µm for line #2205 which matches with 
the average size of mesophyll protoplasts [15].

A plot of the cell area distribution of individual single 
cells at DAI1 revealed an additional second peak cor-
responding to a cell population which responded with 
increased cell areas (Fig.  5D–F). As expected, the peak 
of the DAI0 area distribution was reduced in width, 

Fig. 1  AtBAG4 localization during proliferation. Nicotiana tobacum protoplasts expressing YFP-AtBAG4 were immobilized and recorded in bright 
field and epifluorescence modes for 13 days after immobilization (DAI). While YFP-AtBAG4 is almost exclusively nuclear localized immediately after 
isolation at DAI0, YFP-AtBAG4 is found also in cytoplasmic membranes with continued incubation until DAI3 and increases massively in microcalli 
after completion of cell divisions. Note also the increased fluorescence in contact areas of adjacent protoplasts. Bar = 50 µm
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however the abundance of cells with smaller cell areas 
was increased. This corresponds to the population of cells 
which responded with cell area decreases, thus shrink-
age during the first day of incubation. Remarkably, the 
second peak appearing on DAI1 was more pronounced 
in the cells from AtBAG4-expressing lines compared 
to the wild type. This tendency continued also for the 
subsequent days upon immobilization, as visualized in 
Fig.  5G–I. The overlay of cell area abundances of indi-
vidual tracked cells at DAI1 and DAI3 revealed a further 
shift of the cell population with increased cell areas while 
the peak corresponding to cells with shrinking cell areas 
further increased slightly in size.

Single‑cell response analysis
In order to separate the two distinct cell populations 
responding with either increased or decreased cell areas, 
we used the information provided from the tracking 
analysis to determine cell area changes over time. Using 
growth rate, defined as the ratio of cell area at a later 
time point to cell area at DAI0, i.e., the first time point, 
we distinguished cells that had an area growth greater 
than 1 from cells which had an area growth lower than 1 
(Fig. 6). An overlay of area distributions of the cells with 
growth rate greater 1 and less than 1 on the total cell area 
distribution confirmed that the total area distribution is 
composed of the two cell subpopulations with the two 

Fig. 2  General workflow of automated image processing and data analysis pipeline. A Isolated protoplasts are immobilized into 96-well plates and 
subjected to automated microscopy with daily recordings in bright field mode for 4 days after immobilization (DAIs). Chronological image stacks 
are generated and subjected to positional correction of slight cell shifts occurring during repeated recordings. B Bright field images are cropped 
into 9 equal tile sections in order to accelerate further image processing. After preprocessing cell segmentation is done by U-net. This generates 
result files listing all the identified cells and their corresponding features such as cell position coordinates, area and circularity (C). D After removal of 
cell clusters and contacting cells, the result file of each well at each time point is used to track individual single cells using Euclidean distance of cell 
centroid between two time points. E Using this result file, statistical data analysis is carried out to build cell area distribution of cells tracked between 
two time points. The results of rigorous statistical analysis is used to infer the effect of different conditions on cell behavior, such as expansion and 
proliferation, and guide future experiments
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different responses defined above. The second peak in the 
total cell area distribution, located at the larger cell area 
values, is mainly due to cells with positive area growth, 
whereas, the first peak, located at smaller cell area values, 
is shaped by shrinking cells.

The differences in the shapes of the cell area distri-
bution over time for wild-type and AtBAG4-express-
ing lines indicated different responses. The total cell 
area distributions show that the number of cells with 
smaller cell area values is lower in AtBAG4-expressing 
lines as compared to wild-type, whereas the number of 
cells with higher cell area values increases in AtBAG4-
expressing lines. In order to quantify the different pro-
portions of cells responding with negative and positive 
cell area changes over time, we computed for all cells 
tracked between two time points the quantity n =

n>1

n<1
 

which is the ratio of the total number of cells with an 
area growth greater than 1 and the total number of cells 
with an area growth rate less than 1 (Fig.  7A, B). For 
wild-type protoplasts, n was about 0.5 and remained 
constant when quantified for cells tracked between 
DAI0 and DAI1 and between DAI0 and DAI3. This 

indicates that in the wild-type the cell population size 
responding with cell shrinkage upon isolation was 
twice as large as the cell population size responding 
with growth. In contrast, AtBAG4-expressing lines had 
higher n values of 0.8 (#2205) and 1.3 (#111), respec-
tively which also remained constant during contin-
ued incubation. Thus, expression of AtBAG4 strongly 
shifted the cell population size towards cells respond-
ing with growth compared to wild-type protoplasts. 
The constant ratios of n observed over time for all gen-
otypes indicates that the decision for cell area increase 
or shrinkage is taken upon isolation and remains largely 
unchanged until DAI3.

These findings are visualized by a density scatter plot 
which showed, qualitatively, the influence of AtBAG4 
expression on the cell area growth in relation to their ini-
tial/starting size. Compared to wild-type protoplasts in 
both AtBAG4-expressing lines the cloud of data scatter 
spread to higher values of relative area growth, corrobo-
rating that higher number of cells respond with an area 
increase more than two-fold between DAI0 and DAI2 
(Additional file 2: Fig. S2).

Fig. 3  Selection of isolated single cells for tracking analysis. Bright field images of a time series of immobilized tobacco wild-type protoplasts, 
recorded at 1, 3 and 4 days after immobilization (DAI). A Protoplast growth is affected by contact with neighboring cells if positioned too close to 
each other (red arrow) while only single cells are able to expand isodiametrically (green arrow). B The property of segmented cell clusters to split 
into multiple objects after application of the watershed algorithm was exploited by adapting the Speckle Instructor plugin to filter for single cells 
exclusively
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Single‑cell growth rates
The previous analysis allowed us to conclude on differ-
ent growth properties of AtBAG4-expressing lines when 
individual single cells were monitored for three DAIs. 
While the population analysis suggested that a larger 
population of protoplasts responded with increased area 
changes than in wild type, the response analysis con-
firmed that more cells are viable and show positive area 
changes. However, both analysis did not clearly allow to 
conclude on the actual rate with which cell area change. 
This rate was determined by calculating the relative cell 
area change between two subsequently recorded time 
points of all tracked cell lineages (Fig. 7C). This revealed 
that wild-type protoplasts expanded with less than 5% 
area increase in average between two time points. In con-
trast, both AtBAG4-expressing lines showed between 
with 15–28% area change corresponding to 1.1 and 1.3-
fold higher growth rates compared with the wild type.

Overall, our developed image analysis pipeline allowed 
to determine that protoplasts expressing AtBAG4 have 
an increased response rate as well as an increased growth 
rate when monitored within the first three days following 
isolation. In order to investigate how this affects proto-
plast proliferation, we estimated the number of micro-
calli which revealed that AtBAG4 expression increased 
the proliferation rate by 3–fourfold compared with wild-
type protoplasts (Fig. 7D; Additional file 2: Fig. S3). Our 
results allow to both generalize physiological conclusions 

hitherto restricted to guard cells of AtBAG4-expressing 
plants [29] as well as to align cellular findings with effects 
previously observed with BAG4 overexpression in differ-
ent plants.

Discussion
Single cell tracking analysis pipeline allows extraction 
of crucial cell expansion parameters
Quantitative microscopy on single cells is frequently 
applied on animal cells e.g. for drug discovery screen-
ings while this technique is not applied on plant cells to a 
similar extent. We have approached to expand the appli-
cation of this technology using protoplasts, plant single 
cells which can be released from almost all plant tissues 
by enzymatic lysis of the cell wall. Depending on suitable 
media and plant growth regulator composition, culti-
vated protoplasts have the potential to proliferate, gener-
ating microcalli and finally whole plants. We were able to 
quantify various developmental properties of thousands 
of protoplasts by cultivation in multi-well-plates and 
the application of high-throughput automated micros-
copy coupled with image processing pipelines. Here, we 
focused mainly on early protoplast responses, cell expan-
sion prior to the initiation of proliferation as we intended 
to study cell growth properties without the effects of 
shape-compromising cell walls. We used tobacco leaves 
as a widely used system for protoplast isolation and com-
pared the properties of wild-type protoplasts with those 
expressing the antiapoptotic protein AtBAG4 which is 
reported to alter various physiological parameters in dif-
ferent plant systems.

Our analysis pipeline was able to distinguish different 
protoplast subpopulations, corresponding to responding 
and non-responding cells which emerge after cultiva-
tion, and to extract their growth features such as expan-
sion rate and response rate. This revealed that AtBAG4 
expression increased the fraction of protoplasts which 
responded with positive area change compared with 
wild-type protoplasts. Moreover, AtBAG4-expressing 
protoplasts showed an increased cell expansion rate 
compared with wild-type protoplasts, as well as a higher 
relative proliferation rate after continued cultivation. 
Interestingly, our results on single-cell responses can be 
associated with physiological data obtained with BAG4-
expressing plants as discussed below.

Automation of single‑cell analysis workflow
Cell population analysis derived from single-cell tracking 
is very powerful in identifying phenotypes of interest [3]. 
Most methods in physiological and anatomical studies of 
cellular specialization rely on fluorescent protein markers 
and involve tracking and isolation of cell populations of 
particular identity [9]. However, such approaches clearly 

Fig. 4  Total number of cells passing cluster filtration. Immobilized 
tobacco protoplasts were subjected to filtration step removing 
clustered cells which appeared over time due to contacting 
protoplasts after volume increase. Cells numbers are shown for 
wild-type (WT) and the two AtBAG4-expressing lines #1-1-1 and 
#2-20-5 recorded at DAI0, DAI1 and DAI2. The total number of 
cells drops slightly over time indicating cluster formation. Data are 
mean ± SD number of cells per well for 3 bioreps with 3 tech reps 
each
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possess limitations and provide a biased analysis. Typical 
lifetime of a marker is much shorter than the develop-
mental timeline of a cell, making it, as a result, difficult to 
track single cells over longer period of times [16]. In addi-
tion, protoplast development is not only dynamic but also 
progresses continuously, from isolation to differentiation, 
through multiple developmental stages. Therefore, mark-
ers labeling cellular components at the initial stage might 
lose its efficacy and introduce noise as the cell navigates 
through the complex landscape of development. Marker 
dilution to cell expansion also possess a problem as good 
markers for crucial cell populations are missing in some 
cases [9]. In contrast, quantification of cell morphology, 

which includes cell size and shape, monitored by bright 
field/gray scale images obtained from microscopic image 
acquisitions offer a powerful approach to marker-free 
single cell profiling. Due to the marker-free property, 
experiments are far less laborious experimentally and 
are applicable throughout various taxa, moreover such 
approaches also provide an unbiased view of cellular 
organization.

Recently, many tools have been developed which can 
identify and segment the boundary of single cells in 
grayscale microscopy images [16]. While some of these 
tools confound multiple image analysis techniques, 
others are based on deep/machine learning algorithms. 

Fig. 5  Area distribution of isolated protoplasts. Tobacco protoplasts were immobilized, filtered for individual single cells, tracked across DAI0 and 
DAI1, and subjected to size distribution analysis. Cell area distribution of individual single cells at DAI0 (A–C) and DAI1 (D–F) for A wild-type and 
AtBAG4-expressing lines #111 (B) and #2205 (C). An overlay of the area distribution of cells tracked between DAI0 and DAI1 (purple) and cells 
tracked between DAI0 and DAI3 (light green) is shown in G–I. Data shown are pooled data from 3 bioreps with 3 tech reps each
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There are also tools that can track single cells over time 
and perform analysis. Most of these tools are available 
as separate software that perform only one action, i.e., 
either segmentation, tracking or analysis [16]. Here 
we present a pipeline that combines on one platform 
cell segmentation, tracking, and analysis. Single cell 
segmentation in this pipeline is performed directly in 
grayscale microscopy images using U-Net, which is 
a powerful deep-learning solution for quantification 
tasks such as cell detection and shape measurements in 
biomedical image data [10]. In experiments extending 
over many days, due to repeated movement of the plate, 
cell positions are likely to be disturbed. The cell track-
ing module in our pipeline is able to track cells with 
slight shifts in cell position across time. Finally, the 
pipeline allows cell population analysis derived from 
statistics based on single-cell tracking. Such per-cell 
measurement based population analysis approaches 
quantify cell changes over time while maintaining 
information on heterogeneity in cell population [34].

Universal function of BAG4 in controlling cell expansion
We have applied our pipeline on protoplasts expressing 
AtBAG4 which was identified as an interaction partner 
of KAT1 assuming altered cellular properties [29]. In 
AtBAG4-expressing lines and mutants, altered regula-
tion of cellular potassium levels was concluded from 
changed stomatal guard cell opening properties. This was 
molecularly explained by a BAG4-mediated procession of 
KAT1 during its way through the secretory pathway prior 
to its insertion into the plasma membrane. As the same 
family of K+ channels regulates K+ conductance also in 
most other cell types and protoplast expansion mainly 
depends on auxin-mediated regulation of ion channels 
causing enhanced abundance of intracellular K+ and Cl− 
ions followed by passive water uptake, it is conceivable 
to expect a similar function of BAG4 on KAT1 and thus 
expect altered intracellular potassium concentrations in 
other cells as well [7]. However, approached to investigate 
this potential effects in cells embedded within tissues 
is difficult as altered cellular growth properties affected 

Fig. 6  Area distribution and cell response of tracked single cells. The total cell area distribution (red) of single cells tracked between DAI0 and DAI1 
in a wild-type, and AtBAG4-expressing lines b #111 and c #2205. The overlay indicates the area distribution of tracked cells whose growth rate is 
greater than 1 (green) or less than 1 (yellow). Data shown are pooled data from 3 bioreps with 3 tech reps each
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by accelerated K+ flux might readily be compensated by 
superior architectural requirements of leaves and finally 
might not affect cell size in plants with altered BAG4 
levels.

However, as we show, leaf cells deprived from their vol-
ume-restricting cell walls, show altered properties when 
AtBAG4 is expressed which aligns with similar proper-
ties determined for guard cells concluded from physi-
ological experiments [29]. Increased abundance of KAT1 
channel proteins similar to AtBAG4-expressing guard 
cells would result in accelerated K+ uptake, followed 
by faster volume changes through passive water influx 
just like we observed in AtBAG4-expressing protoplasts 
when compared with the wild type. Accelerated cellular 
K+ influx might also help to explain the enhanced resist-
ance towards salt and drought stress which is observed in 

AtBAG4-expressing plants [21] although there are alter-
native explanations which relate to the function of BAG4 
as an anti-apoptotic protein (see below).

Different single‑cell properties relate with phenotypic 
alterations in plants
While the link between BAG4 and ion homeostasis in 
guard cells—and as we impose in this work in other leaf 
mesophyll cells as well—is a recent finding, members of 
the plant BAG protein family are functionally associated 
with stress resilience and programmed cell death (PCD) 
in plants. PCD represents an evolutionary conserved 
pathway occurring in animals and plants which is also 
involved in many physiological processes in plants such 
as the controlled elimination of cells during growth and 
development and the hypersensitive reaction following 

Fig. 7  Quantification of cell responses and growth rates. The response rate n defines the ratio of the number of cells with area growth rate greater 
than 1 to the number of cells with area growth rate less than 1. This was generated from individual single cells tracked between DAI0 and DAI1 (A) 
and DAI0 and DAI3 (B). Higher n values for AtBAG4-expressing protoplasts in comparison to wild type indicates a significantly increased pool size 
of expanding cells. C The cell growth rate was determined by quantification of the relative area changes between two subsequent time points 
which revealed about 20–30% larger growth rates for AtBAG4-expressing lines. The scattered points on each represents the mean of each biorep 
and tech rep separately. The white line in the middle of each box represents the overall mean (one way ANOVA, *** indicates p < 0.001). D Protoplast 
proliferation rate determined at DAI5 (3 bioreps ± SEM, ttest, *** indicates p < 0.001)
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abiotic and biotic stresses [30]. In mammals, the fam-
ily of BAG proteins was initially identified as interaction 
partners of the antiapoptotic protein Bcl-2 and function 
similarly in preventing apoptosis when present in higher 
abundance [54, 57]. While default approaches to iden-
tify potential BAG homologues in plants using primary 
protein sequence identity as criteria were unsuccess-
ful, seven structurally similar proteins were identified 
in Arabidopsis which share a common C-terminal BAG 
domain [8, 11]. Among these proteins, the function of 
BAG4 is most intensively investigated by overexpression 
and knockout approaches although biochemical mecha-
nisms are largely unknown.

PCD is also induced in consequence of plant cell 
exposure to Agrobacterium tumefaciens during genetic 
engineering and reduces the transformation efficiency 
significantly. Interestingly, PCD was reduced and in con-
sequence the transformation rate was strongly increased 
if the mammalian antiapoptotic genes Bcl-2 were coex-
pressed in banana cell suspension cultures; moreo-
ver transient transgene expression rates were similarly 
improved when AtBAG4 was coexpressed in tobacco [25, 
40]. Moreover, cold stress treatment induced apoptosis-
like cell death in wild-type tobacco plants while this was 
not observed in AtBAG4-expressing tobacco plants [20]. 
These results corroborate the involvement of the antia-
poptotic genes including AtBAG4 in promoting cell via-
bility which is especially required after biotic and abiotic 
stress situations.

Biotechnological applications of plant single‑cell analysis 
tools
The enzymatic maceration required to release proto-
plasts from plant tissue generates various reactive oxy-
gen species which are thought to exert oxidative stress 
to protoplasts [41]. This is maybe a major cause for the 
high rates of cell deaths which is usually observed upon 
protoplast isolation, despite the development of a variety 
of different complex cultivation media and optimization 
of plant growth regulators [18, 24]. As we show in this 
work, isolated protoplasts expressing AtBAG4 exhibit a 
higher fraction of viable cells, identified as cells respond-
ing with increased cell area when compared to wild-type 
protoplasts. It is reasonable to assume that this is due to 
AtBAG4-mediated improvement of stress resistance thus 
allowing to associate single-cell properties with those 
observed in plants. For instance, tobacco lines expressing 
AtBAG4 were shown to exhibit increased tolerance to UV 
light stress and the oxidants menadione or paraquat [20]. 
It thus seems conceivable to exploit single-cell systems 
for the identification of genes which confer improved 
stress resilience, e.g. by high-throughput screening of 
protoplasts from different genotypes exposed to a variety 

of different stresses mimicking biotic stresses on a whole 
plant level (e.g. salt, drought). Such approaches could 
accelerate development of new traits with improved 
agronomical properties as they bypass sophisticated and 
costly plant studies.

Although stress imposed on protoplasts during iso-
lation results in severe cell losses, the cellular stress 
response which is induced via the lysis process is consid-
ered as an essential trigger for a stochastic expression of 
genes. This includes also key genes which finally enable 
protoplasts to reprogram and initiate proliferation [58]. 
As we show, AtBAG4 expression in tobacco increases 
the fraction of cells responding with positive expansion 
which indicates their viability, thus presence of AtBAG4 
apparently increases the capacity to cope with stresses 
associated with the isolation and cultivation procedure. 
Confirmatory, we also observed a higher proliferation 
rate of AtBAG4-expressing protoplasts. Similar to the 
stress-protective effect of BAG4 observed with plant tis-
sues as discussed above, this could be exploited for equiv-
alent single-cell applications for instance via AtBAG4 
coexpression during single-cell gene editing using 
CRISPR/Cas9 in order to increase regeneration efficiency 
in protoplast in vitro approaches or support regeneration 
rate in equivalent approaches performed with protoplasts 
from recalcitrant taxa which usually fail to proliferate at 
all.

Methods
Generation of transgenic tobacco lines
For the backbone vector pCAMBIA2300-35S, the 
CaMV-35S promoter was amplified from the vector 
mAV and cloned into the vector pCAMBIA2300-bar. 
pC2300-35S-AtBag4 was constructed by PCR amplifica-
tion of the coding sequence of AtBAG4 (accession no. 
NM_115037.7), with the nos terminator sequence, as 
present in the vector pCAMBIA1305-Gt1-AtBAG4-nosT, 
and inserted downstream of the CaMV-35S promoter 
in the vector pCAMBIA2300-35S by Gibson isother-
mal assembly [13]. For pC2300-35S-eYFP-AtBag4, eYFP 
was amplified from the plasmid pGEN047-eYFP, fused 
with the PCR fragment AtBAG4-nosT and cloned into 
pCAMBIA2300-35S by Gibson isothermal assembly. All 
constructs were verified by sequencing. Plasmids were 
transformed into Agrobacterium tumefaciens (strain 
LBA4404) and leaf explants from tobacco (Nicotiana tab-
acum L. cv. “Petit Havana” SR1; [32] were transformed as 
described [36]. Phosphinotricin was used with 2 mg/l for 
selection of transformants and with 1.5 mg/l for rooting.

Seeds from homozygous plants were sawn on MS agar 
and cultivated under long day conditions (16 h light–8 h 
dark) at 22  °C with 100  µmol photons m−2  s−1. Total 
RNA isolated from leaves was used to determine AtBAG4 
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expression levels according to Maass et al. [31]. Specific 
AtBAG4 mRNA levels were quantified by real-time RT-
PCR using the primer pair AtBAG-F (GGA CCC GGG 
ATG ATG CAT AAT TCA AC) and AtBAG-R (CTC 
TAG TCG ACT CAG TCA AAT TTC TC) and SYBR 
green with 18S rRNA levels for normalization. For 18S 
rRNA quantification, the eukaryotic 18S rRNA endog-
enous control kit (Thermo Fisher) was used. The rela-
tive quantity of the transcripts was calculated by using 
the comparative threshold cycle method [28]. Data were 
normalized first to the corresponding 18S rRNA levels 
and then expressed as relative to the wild-type transcript 
levels.

Protoplast isolation
Seeds from homozygous plants were sawn on MS agar 
and subcultured three subsequent times prior to first 
protoplast isolation as described in Lin et  al. [27]. Pro-
toplast isolation was performed from 2–3 young leaves 
of selected homozygous lines essentially using enzy-
matic digestion of leaf cell walls followed by filtration 
and density gradient centrifugation as described in 
Schnorf et al. [47]. The final protoplast pellet was resus-
pended in Kao medium [24] containing 0.4  M glucose, 
the auxins 1-naphthaleneacetic acid (NAA; 1  mg/l) and 
2,4-D (0.2 mg/l) and the cytokinin 6-benzylaminopurine 
(0.5 mg/l). This medium is referred to as K8.

Protoplast immobilization and microscopy
Protoplast density was determined by cell counting in a 
Fuchs-Rosenthal chamber. For immobilization, proto-
plasts were mixed with equal volumes of 1.2% (w/v) low 
melting agarose in K8, prewarmed at 40 °C and immedi-
ately pipetted into a 96-well plate (Ibidi GmbH, Munich, 
Germany), prewarmed at 34 °C with 125 µl per well. The 
plate was immediately centrifuged (2  min, 20  g, 25  °C) 
and incubated at 4  °C for 5  min. 200  µl of cultivation 
medium was added on top of each well and the proto-
plasts were cultivated at 22 °C in the dark.

An automated microscope (more, Till I.D. GmbH, 
Munich, Germany) was used for the analysis of proto-
plast development and for the detection of YFP fluores-
cence. Transillumination was recorded with 10 × 0.45 
objective (Zeiss); epifluorescence was recorded after 
excitation with single-mode diode lasers (iBeam smart, 
Toptica) with excitation of 510 nm (YFP)/green emission 
filter. Image acquisition was performed using the SIAM 
software (Till I.D. GmbH, Munich, Germany).

Image processing and data analysis
A detailed description on the software version and 
requirements and on individual steps on how to execute 

the analysis pipeline is provided in Additional file 1. All 
the scripts and codes used in the analysis pipeline, addi-
tional downloaded plugins used in processing the images 
as well as sample data can be found in our Github page 
https://​github.​com/​jodaw​son/​cell_​seg_​track​ing_​analy​sis.

Image processing was performed with Fiji [46] an image 
processing package distributed by ImageJ2 [44]. Raw tile 
image stacks were reconstituted to full-well images using 
the stitching plugin [42] and minor shifts within different 
time point recordings were corrected using the template 
matching and slice alignment plugin [56]. Image segmen-
tation was performed with U-net [10]. For estimation of 
the protoplast proliferation, segmented objects were con-
sidered as proliferating microcalli if the object size after 
segmentation was larger than 4000 px, determined at 
DAI9 (corresponding to 40  µm diameter). Object num-
bers were normalized to cell number determined at DAI1 
after subtracting background defined as objects with 
areas larger than 4000 px at DAI1, revealing the relative 
proliferation rate.

Tracking script development
The automated image processing and subsequent sta-
tistical data analysis pipeline consists of five blocks, the 
(i) image pre-processing block, (ii) image segmentation 
block, (iii) image post-processing block, (iv) cell track-
ing block, and (v) the statistical data analysis block. Using 
this custom developed pipeline, fully automatized growth 
analysis of single cells in multiple images of different 
wells between any two time points was performed.

(I)		  Image pre-processing block
	 The image analysis is built exclusively in java 
scripting language and is integrated into ImageJ 
[44, 46]. Running the image analysis part of the 
pipeline results in the automatic execution of 
a series of interlinked steps. The experimental 
data is stored such that images (in.tif format) 
were sorted according to different wells and 
time points. For example, corresponding to well 
1B, there are two images which were named as 
‘1B_TP1.tif ’ and ‘1B_TP2.tif ’, where TP1 and 
TP2 correspond to time point 1 (DAI0) and time 
point 2 (DAI1), respectively. The following steps 
were implemented in this block:

(a)	 The cell positions were aligned among all 
chronological images in order to correct for 
slight positional displacements of protoplasts 
using the template matching and slice align-
ment plugin [56]. The pre-processed image files 
were saved in the original folders/directories 
for each well and corresponding time point.

https://github.com/jodawson/cell_seg_tracking_analysis
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(b)	 After correcting for the shift in the images 
recorded between two time points each image 
was cropped into nine sections of equal dimen-
sions, i.e. 3 × 3 to enhance processing speed 
and restrict memory usage.

(c)	  The contrast of each section of the cropped 
image was increased using the in-built ImageJ 
plugin ‘Normalized Local Contrast’. For execu-
tion of this plugin, we used the following val-
ues: block_radius_x = 90, block_radius_y = 90, 
standard_deviations = 1, center. This pro-
cess not only increases the contrast of the cell 
objects in the image but it also smoothens the 
shading of light across the border of tiles within 
each section.

(d)	  The contrast of the cropped section of the 
image is further enhanced using the in-built 
ImageJ plugin ‘Enhance Contrast’. We used the 
following parameter values: saturated = 0.8, 
normalize.

(e)	  Since each image at first place resulted from 
stitching multiple tiles together, there is a 
clear mark of tile border both in vertical and 
horizontal direction. To remove these vertical 
and horizontal lines, resulting from the bor-
ders of the tiles, each cropped section of the 
image was further processed using the in-built 
ImageJ plugin ‘Bandpass Filter’. The following 
parameter values were used for executing this 
plugin: filter_large = 100 filter_small = 3 sup-
press = Horizontal tolerance = 5.

(II)		   Image segmentation block
	 After each section of the cropped image is pre-
processed as described in the ‘Image pre-pro-
cessing block’, it passed on to U-net. U-net is 
an open source, deep learning based software 
for biomedical image segmentation [10]. Pro-
cessing via U-net results in a segmented binary 
image corresponding to the cropped section 
of the experimental gray scale pre-processed 
image. The binary image is an image that con-
sists of pixels that can have exactly one of the 
two colors black or white. Generally white corre-
sponds to the region occupied by each individual 
cell, and black corresponds to the image back-
ground. U-net identifies with remarkable accu-
racy each individual cell in the image. This pro-
cess of identifying cells and differentiating them 
from the background is known as segmentation. 
The resulting binary image is processed, so as 
to fill any holes using the in-built ImageJ plugin 
‘Fill Holes’: A new folder with the same name as 

the image Is created, for example ‘1B_TP1’. The 
resulting binary image of each cropped section of 
the image is then saved in this folder. As a result, 
it is expected at the end to have 9 binary images, 
each corresponding to the cropped section.

(III)		  Image post-processing block
	 The binary image of each cropped section of 
the original image is stitched using the in-built 
ImageJ plugin ‘Grid/Collection Stitching’. This 
process results in a segmented binary image 
which has the same dimension as the original 
raw experimental image. This binary image is 
then processed via ‘Watershed’ function. Water-
shed splits multiple cells that were identified as 
one cell object in the U-net based segmentation 
step. This usually happens when the cells are too 
close and touch each other forming clumps or 
multicellular aggregates. In order to remove such 
cell aggregates from the cell tracking analysis we 
adopted the speckle inspector plugin in ImageJ to 
identify cells which formed clusters, by defining 
cells in such a cluster as speckles, and by compar-
ing the original segmented image with the corre-
sponding watershed image [4]. Finally, the infor-
mation of each and every segmented cell in the 
binary image, such as their position coordinates, 
area and circularity, is obtained by using ‘Analyze 
Particles’ function. Running ‘Analyze Particles’ 
produces a result file (.txt format) which contains 
a list of all the individual segmented cells and 
their corresponding position (x and y) coordi-
nates, area and circularity.

(IV)		  Cell tracking block
	 After the image pre-processing, segmentation 
and post-processing is completed, the next step 
involves tracking of single cell between two time 
points. A custom-built code developed in Matlab 
performs this task. Currently, our cell tracking is 
limited to tracking single cells between two time 
points. This will be extended, in the future, to 
track cells over multiple time points. Cell track-
ing of a cell in the first time point involves suc-
cessfully identifying this cell in the second time 
point. We implement cell tracking based on the 
Euclidean distance between the cell centroid 
coordinate at the first time point and the second 
time point. The Euclidean distance is given by 
dij =

√

(xTP1i − xTP2j )2 + (yTP1i − yTP2j )2 , where 
i denotes the index of a cell in the first time point 
TP1 and j denotes the index of a cell in the sec-
ond time point TP2. A cell in the first time point 
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is successfully identified in the second time point 
if the Euclidean distance is smaller than a thresh-
old. The execution of this step of the pipeline 
generates a result file. The result file lists an array 
of all the cells of the first time point, and their 
corresponding features (such coordinates, area 
etc.), followed by an array of all the cells that 
were tracked from the first time point, and their 
corresponding features.

(V)		   Statistical data analysis block
	 From the result file containing the information 
of cells tracked between two time points vari-
ous different statistical analyses, such as those 
reported in this work, were performed in Matlab 
using custom built codes.

Supplementary Information
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