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Abstract 

Background:  Leaf chlorophyll content plays an important role in indicating plant stresses and nutrient status. 
Traditional approaches for the quantification of chlorophyll content mainly include acetone ethanol extraction, 
spectrophotometry and high-performance liquid chromatography. Such destructive methods based on laboratory 
procedures are time consuming, expensive, and not suitable for high-throughput analysis. High throughput imaging 
techniques are now widely used for non-destructive analysis of plant phenotypic traits. In this study three imag-
ing modules (RGB, hyperspectral, and fluorescence imaging) were, separately and in combination, used to estimate 
chlorophyll content of sorghum plants in a greenhouse environment. Color features, spectral indices, and chlorophyll 
fluorescence intensity were extracted from these three types of images, and multiple linear regression models and 
PLSR (partial least squares regression) models were built to predict leaf chlorophyll content (measured by a handheld 
leaf chlorophyll meter) from the image features.

Results:  The models with a single color feature from RGB images predicted chlorophyll content with R2 ranging 
from 0.67 to 0.88. The models using the three spectral indices extracted from hyperspectral images (Ration Vegeta-
tion Index, Normalized Difference Vegetation Index, and Modified Chlorophyll Absorption Ratio Index) predicted 
chlorophyll content with R2 ranging from 0.77 to 0.78. The model using the fluorescence intensity extracted from 
fluorescence images predicted chlorophyll content with R2 of 0.79. The PLSR model that involved all the image fea-
tures extracted from the three different imaging modules exhibited the best performance for predicting chlorophyll 
content, with R2 of 0.90. It was also found that inclusion of SLW (Specific Leaf Weight) into the image-based models 
further improved the chlorophyll prediction accuracy.

Conclusion:  All three imaging modules (RGB, hyperspectral, and fluorescence) tested in our study alone could esti-
mate chlorophyll content of sorghum plants reasonably well. Fusing image features from different imaging modules 
with PLSR modeling significantly improved the predictive performance. Image-based phenotyping could provide a 
rapid and non-destructive approach for estimating chlorophyll content in sorghum.

Keywords:  Plant phenotyping, Chlorophyll content, Specific leaf weight, Partial least squares regression, High 
throughput, Image analysis

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visithttp://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Chlorophyll constituents a major component of plant 
leaves and is a useful indicator of the overall health con-
dition of the plant. Chlorophyll is the most important 
pigment for photosynthesis and growth. The determina-
tion of chlorophyll content in plant leaves can be used to 
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investigate plant physiological and nutritional status, and 
consequently has important implications on crop stress 
and pests detection (such as in precision agriculture 
practices [23]). Generally, as plant stress levels increase, 
chlorophyll content tends to decrease [43]. Traditional 
approaches for the quantification of chlorophyll content 
mainly include acetone ethanol extraction, spectropho-
tometry and high-performance liquid chromatography. 
Such destructive methods based on laboratory proce-
dures are time consuming, expensive, and not suitable for 
high-throughput phenotyping [15]. Using spectroscopy 
and a portable chlorophyll meter, several spectral indices 
have been identified, which can be used for predicting 
chlorophyll content in plant tissues in vivo [21]. However, 
manually operated portable chlorophyll meters are rela-
tively biased, and spectroscopy techniques cannot meas-
ure the spatial distribution of chlorophyll in plant leaves 
[20]. Clearly these two methods are too labor-intensive to 
meet the needs of large-scale screening programs.

Advancements in phenotyping tools and methods 
for both proximal and remote sensing obtains massive 
amounts of plant imaging data. For chlorophyll content 
estimation, satellite imagery is useful for evaluation of 
moderate to large sized plots; whereas for smaller plots, 
remote sensing with unmanned aerial vehicles (UAVs) 
and proximal phenotyping are viable alternatives [19, 
26, 35]. Satellite imaging could be especially valuable for 
replicated experimental trials at different locations to 
study genotype by environment interactions [6]. As tri-
als are often performed with different stresses, proximal 
phenotyping could be a viable tool for evaluating chloro-
phyll estimation in greenhouse. For proximal phenotyp-
ing, sensors can be handheld or mounted on phenotyping 
platforms [3].

Rapid and non-invasive approaches for the screening 
and quantification of plant traits are particularly suitable 
for plant breeding programs. With the establishment of 
advanced technology facilities for high throughput plant 
phenotyping [10], estimating chlorophyll content of indi-
vidual plants from their images becomes possible. This 
imaging based approach is more desirable than handheld 
chlorophyll meters, because it eliminates the involve-
ment of human labor and further improves measurement 
throughput. Meanwhile, plants can be imaged by several 
imaging modalities, allowing accurate in vivo evaluation 
of many plant traits simultaneously. Conceivably, meas-
urements of a large number of plants (e.g., hundreds) is 
possible, and measurements can be done at multiple time 
points across the entire life cycle of the plants which ena-
bles temporal dynamic analysis [46].

With the advancement in sensor technologies, high-
throughput plant phenotyping (HTPP) has become more 
widely available to the research community, in particular 

the high-throughput imaging technology. Many research-
ers believe that image acquisition is no longer the chal-
lenge; the true bottleneck is in the analysis of thousands 
of plant images that are acquired in a short time window 
[29, 42]. Image-based features extracted from images, 
which contain the information on the morphological 
and biochemical traits of plants, enable effective use of 
genomic data to bridge the genotype-to-phenotype gap 
for crop improvement.

The imaging processing techniques have recently been 
used for remote detecting chlorophyll content. After 
obtaining the image, the chlorophyll content could be 
predicted by image segmentation and feature extrac-
tion. Image analysis has been used as an alternative for 
quantitatively predicting the chlorophyll distribution in 
some plants. In order to quantify the chlorophyll distri-
bution in rice leaves, an integrated image analysis pipe-
line was developed for processing hyperspectral data. 
Three leaves were cut from the main stem of each rice 
plant and scanned using a hyperspectral camera. Mod-
els were built to quantify chlorophyll content and deter-
mined the important bands associated with it. The R2 
values of the models were from 0. 827 to 0.928 [12]. An 
image analysis system was described for rapid determi-
nation of chlorophyll content of leaves of regenerated 
plants using the primary color components of red, green 
and blue. The leaves of micropropagated potato plants 
were scanned by the HP scan jet 3670 scanner to acquire 
images. A good correlations between the predicted and 
actual chlorophyll content was observed with RGB model 
and the R2 values were from 0.42 to 0.77 [48]. Research-
ers have also developed some algorithms to determine 
the correlation between chlorophyll content and color 
features. The leaves of four commercial cultivars were 
removed from the plants and placed flat on the light box 
and photographed by a digital color camera. The results 
showed that (R−B)/(R + B) is the most fitted function of 
RGB space to estimate the chlorophyll content of leaves 
[33]. In order to evaluate the correlation between photo-
graphic image-based hue parameters and classic, pigment 
extraction-based chlorophyll content determination, leaf 
disks with different pigment content at varying stages of 
naturally occurring senescence were cut form tobacco 
and grapevine leaves and photographed with a digital 
camera. The results suggested the relationship between 
photographic estimated and actual values of chlorophyll 
content was fitted well (R2 = 0.883) [34].

The previous research provided the parameter extrac-
tion method for one individual leaf image. The leaves 
were removed from the plant and placed flat and scanned 
by a camera, and then chlorophyll quantification model 
was constructed to analyze leaves’ chlorophyll content. 
However, it is not possible to follow developmental stages 
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of plants using such destructive methods. Additionally, 
the image analysis of an individual plant in  vivo on a 
large scale has not been previously applied to the chloro-
phyll content estimation. It is possible to make spatially 
resolved predictions for the chlorophyll content at the 
whole plant level. It would be a tool to quantify the spa-
tial distribution of chlorophyll content within the plant at 
multiple time points along the life cycle. If it can accu-
rately work on predicting the chlorophyll content, the 
approach of image analysis could provide a rapid moni-
toring and screening technique to identify genotypes of 
high chlorophyll in large breeding populations for cover-
ing more growth stages.

The image fusion technique is employing by integrat-
ing complementary information from multi-image sen-
sor data such that the new images are more suitable for 
the purpose of computer process. Effective combination 
of such sensors with different features could, therefore, 
extend the capabilities of the individual ones and provide 
a robust and complete description of an environment 
or process of interest, rather than using an individual 
source alone. Data fusion of image falls into three levels: 
data level, feature level, and decision level [11]. Although 
the concept of image fusion was proposed decades ago, 
the technology is still in its infancy in terms of increas-
ing the reliability of proximal sensing systems for plant 
phenotyping, and is gaining popularity towards fast, high 
throughput and non-destructive evaluation of chloro-
phyll content.

In this paper, we present our work for non-destruc-
tive estimation of leaf chlorophyll content in sorghum 
using image-based traits derived from several imag-
ing modules. We used a mini diversity panel of 15 sor-
ghum genotypes exhibiting large variations in physical 
and physiological traits. The objectives of this study 

were to: (i) develop and validate an image analysis-based 
approach for non-destructive measurement of chloro-
phyll for individual plants, (ii) investigate how the chlo-
rophyll estimation could be improved by including other 
auxiliary variables including DAS (day after sowing) and 
SLW (specific leaf weight), (iii) evaluate the potential use 
of the high throughput phenotypic images as a rapid tool 
to estimate spatial distribution of chlorophyll content 
within sorghum, and (iv) explore the fusion of multi-
sensor images at the data level with different spatial 
and spectral resolutions in predicting plant chlorophyll 
content.

Results
Correlation of visible image with chlorophyll content
The linear model seems to be the best of those considered 
so far, justified by its common use in the literature. For 
our data, the linear method for estimating chlorophyll 
content (Chl) as a linear function of visible image was 
used. In these models the chlorophyll content (reading of 
MC 100 chlorophyll content meter) was the dependent 
variable, while DAS and the visible image were defined to 
be independent variables. For instance, the linear model 
is a function with the equation of Chl = a0 + a1R + a2DAS, 
where R is the specific leaf image of red value from visible 
image.

The values of the three primary colors were linearly 
correlated to obtain the characteristic RGB models as 
described in Fig.  1. Among the values of three primary 
colors of the leaves of sorghum, R and G were negatively 
correlated with the chlorophyll content measured by 
chlorophyll content meter MC 100. It can be seen from 
Fig. 1 that in contrast to R and G, an increasing trend of 
mean brightness with chlorophyll content was observed 
with B color chromate. A good agreement between the 

Fig. 1  The correlations between the Chl values of measured by MC100 with predicted by R (red), G (green) and B (blue) component and DAS (day 
after sowing). Chl chlorophyll content, MC100 portable leaf chlorophyll meter
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value of G and chlorophyll content was observed, while 
value of R and B were poorly correlated with chlorophyll 
content which indicates the more relevance of G color 
than R and B for determining the chlorophyll content 
in living plants by using a single color component. The 
regression between chlorophyll data obtained from MC 
100 values, R, G, B pixels and DAS showed a linear rela-
tionship (R2 = 0.56, 0.64 and 0.48).

From the visible image, primary colors R (red), G 
(green) and B (blue), was recorded. Spectral parameters 
such as H (hue), S (saturation) and I (intensity) were esti-
mated from RGB values. The H, S, and I parameters were 
chosen from color space because it corresponds better 
to how people experience color than the RGB parameter 
set [31, 44]. Image information such as, hue, saturation 
and intensity color coordinates were also considered to 
study the relationship of color coordinates with chloro-
phyll content. Using the H, S and I components, the vis-
ible ‘‘greenness’’ of three leaves can be quantified and 

can be compared. A significant correlation was observed 
between the S parameter with chlorophyll content, 
while weaker correlation was observed with I parameter 
(Fig. 2). The R2 of hue effect on chlorophyll content was 
0.61, which was supposed to distinguish the real colors 
on the leaves and be related to the chlorophyll content. 
However, it was worse than saturation, which was 0.85.

For Chl estimation in sorghum, Fig. 2 showed the cor-
relation between hue, intensity and MC 100 reading 
(R2 = 0.61 and 0.57, respectively). Saturation gave a better 
Chl detection results with R2 = 0.85. HSI color model is 
found to achieve better fitting than RGB color model.

Correlation of hyperspectral image with chlorophyll 
content
Figure 3 showed significant relationships between the Chl 
predicted by vegetation indices of hyperspectral images 
and MC 100 measured Chl. In fact, the obtained results 
are similar for the three indexes. On the other hand, the 

Fig. 2  The correlations between the values of H (hue), S (saturation), I (intensity) and DAS (day after sowing) with chlorophyll content. Chl 
chlorophyll content, MC100 portable leaf chlorophyll meter

Fig. 3  The correlations between the values of hyperspectral image with chlorophyll content. Chl chlorophyll content, MC100 portable leaf 
chlorophyll meter
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proposed method achieved better R2 to outperform liner 
regression method in predicting chlorophyll content.

Figure  3 showed the correlation between NDVI, RVI, 
MCARI and MC 100 reading (R2 = 0.68, 0.69 and 0.69, 
respectively). RVI and MCARI gave a slightly better Chl 
detection results with R2 = 0.69. It can be seen that nor-
malized spectral index, ratio spectral index, and multi-
band spectral index can predict the chlorophyll content 
well.

Correlation of fluorescence image with chlorophyll content
Data were subjected to simple regression analysis, with 
value from MC 100 chlorophyll meter as the dependent 
variable and greenness chlorophyll content form fluo-
rescence image as the independent variable. The result 
was shown in Fig.  4  and R2 was 0.69. By non-destruc-
tively detecting the chlorophyll content and chlorophyll 
distribution of sorghum, it could provide a support 

for greenhouse crop growth evaluation and precision 
management.

Correlation of different images with chlorophyll content
PLSR was developed by using the selected vegetation 
indices computed from different imaging data to model 
and predict chlorophyll content for sorghum plants. Hue, 
saturation, intensity, R, G, B, fluorescence, NDVI, RVI, 
MCARI, are first used, and then DAS (day after sowing) 
was added. Firstly, the models without DAS information 
are considered. The component number of 9 suggests 
the best result with all variables. To get the necessity 
for all variables included, the importance of all vegeta-
tion indexes is also examined. It shows that all vegetation 
indexes were important in constructing the model. Then 
the models with DAS information were considered. The 
component number of 8 guarantees the best result with 
all variables considered. Based on the absolute value for 
coefficients for each variable, the importance for each 
vegetation index is sorted. The larger the absolute value 
of the coefficient is, the more indispensable the corre-
sponding variable is. Therefore, it indicated that the hue 
information is not necessary for constructing the PLSR 
regression with the component number of 9. The statis-
tics to evaluations for each model are listed in Table 1.

Table  1 showed that PLSR regression models had R2 
greater than 0.84 and RPD larger than 2.49, which sug-
gested that PLSR regression models provided an accurate 
way to predict chlorophyll’s content.

It can be seen form Fig.  5 that the PLSR Model 2 
(with DAS and feature ‘Hue’ reduction) has improved 
the R2 compared with the PLSR Model 1 (without DAS) 
and PLSR Model 2 (with DAS). Comparing the perfor-
mance among different models, it can be concluded that 
(1) When more useful features are considered, the per-
formance of the model becomes better. (2) Reducing 

Fig. 4  The correlations between the values of Fluo (fluorescence) 
image and DAS (day after sowing) with chlorophyll content. Chl 
chlorophyll content, MC100 portable leaf chlorophyll meter

Table1  Test results of using the selected vegetation indices computed from different imaging data to predict chlorophyll content for 
sorghum plants

Calibration dataset with 
fivefold validation

Calibration 
dataset

Validation 
dataset

Entire dataset

Model 1 (without DAS) Without feature reduction R2 0.84 0.86 0.90 0.87

RMSE 60.70 57.53 51.34 55.39

RPD 2.49 2.62 3.16 2.77

Model 2 (with DAS) Without feature reduction R2 0.87 0.88 0.92 0.89

RMSE 54.68 51.89 45.54 49.89

RPD 2.76 2.90 3.57 3.08

With feature ‘Hue’ reduction R2 0.87 0.88 0.92 0.90

RMSE 54.60 51.61 45.37 49.64

RPD 2.76 2.92 3.58 3.09



Page 6 of 17Zhang et al. Plant Methods           (2022) 18:60 

unnecessary features in the model, the performance of 
the model becomes better.

Discussion
In order to reduce the bias, we put forward a predic-
tive model based on the specific leaf weight (SLW). 
SLW and single-leaf apparent photosynthesis (AP) have 
been shown to be positively correlated in field studies 
[4]. Sampling for SLW as a predictor of AP is not widely 
employed because it takes much time and energy and 
thus is not practical for evaluating large populations 
[45]. SLW is defined as the leaf dry weight per one-side 
area and it is sensitive to plant nitrogen status, light cli-
mate and several other stresses [13], so it is a key variable 
involved with or related to physiological processes occur-
ring in the functioning of canopies. The observations 
across the images showed that chlorophyll content can be 
estimated as a multiple linear function of color compo-
nent and SLW (Table  2). Therefore, chlorophyll content 
could be written as a linear form of images, DAS and 
SLW, i.e. Chl = b0 + b1R + b2DAS + b3SLW.

As the multiple linear model based on DAS and SLW 
proved to be better than the multiple linear models we 
considered, we compared our proposed model with the 
linear model described in Table 2. Multiple linear model 
based on DAS and SLW produced significantly larger 
R2, so the correlation of regression model introduced 
SLW has significantly improved. Similarly, low values of 
AIC also confirmed the model tested on DAS and SLW 
can satisfactorily estimate chlorophyll content. It can be 
seen from Table  2 that the maximum correlation coef-
ficient of R2 = 0.88 was obtained with multiple linear 
regression based on DAS, SLW, and S (Saturation). The 

multiple linear regression based on DAS of S revealed 
the correlation coefficient of R2 = 0.85. The analysis also 
substantiated the potential use of H, S and I than the pri-
mary colors R, G and B. For hyperspectral index, NDVI, 
RVI, MCARI all shows that the adjustment of phenotypic 
image values for SLW greatly increases the accuracy of 
the prediction. The higher R2 values and lower AIC val-
ues confirmed the best fitted model after introducing 
parameter SLW that estimates the chlorophyll content 
(Table 2). Multiple linear regression model with MC 100 
value as the dependent variable, and greenness chloro-
phyll content form fluorescence image and SLW as the 
independent variables gave the good estimation of chlo-
rophyll content in leaves of sorghum. This analysis was 
to test hypothesis that specific leaf weight (SLW) could 
be one factor determining leaf chlorophyll content under 
different water and nutrition conditions. The influence 
of SLW on chlorophyll content and an improved simple 
method to determine chlorophyll content of sorghum by 
MC 100 chlorophyll meter was seen from Table 2.

Chl could be estimated quite satisfactorily with the 
selected vegetation indices computed from different 
imaging data for sorghum plants (Table  3). It can be 
seen R2 range from 0.87 to 0.92; whereas RPD is larger 
than 2.77. Therefore, the linear combination of satura-
tion, intensity, R, G, B, fluorescence, NDVI, RVI, MCARI, 
DAS, and SLW, suggests the best regression model, as 
shown in Fig. 6. The red dots represent all samples, and 
the blue line is the prediction line from the model. It can 
be seen form Table 3 that the PLSR Model 3 (after adding 
DAS) has improved the R2 and RPD.

Overall, these results confirmed the idea that the SLW, 
which was used as an additional input for predicting 

Fig. 5  The correlations between the selected vegetation indices computed from different imaging data with chlorophyll content. Chl chlorophyll 
content, MC100 portable leaf chlorophyll meter
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chlorophyll content in high throughput phenotypic 
image, plays a vital role in reducing the error. This can be 
seen in Tables 2 and 3 that R2 of the model was increased 
by including SLW.

As can be seen from Table 2, the values of error func-
tion used to minimize the differences between the 
experimental and predicted data, all the models based 
on DAS and SLW exhibited high R2 value and low values 
of AIC, thereby confirming better performance for mod-
els tested. This difference between the linear regression 
and multiple linear regression might have been due to 
introducing variable SLW, one of indicators for leaf thick-
ness. The influence of leaf thickness on regression model 

contributed to better estimation of chlorophyll content 
by the chlorophyll meter. Leaf thickness changes accord-
ing to leaf age and growth environment [18, 28]. Also, 
it has been demonstrated that reflectance increases and 
transmittance decrease with an increase in leaf thickness 
[49]. Thus, it is hypothesized that leaf thickness is one of 
the factors that determines chlorophyll content under 
different conditions (water conditions, and nutrition 
treatment).

Increasing SLW may improve leaf apparent photo-
synthesis. Pettigrew reported that plants grown under 
dryland production had a 12% increase in SLW, and he 
speculated that these leaves may have been denser or 

Table 2  Estimation error for different multiple linear models used to estimate chlorophyll content for various imaging technology

Imaging technology Component Regression R2 AIC

Visible image R y = a0 + a1R + a2DAS 0.56 3630

y = b0 + b1R + b2DAS + b3SLW 0.77 3440

G y = a0 + a1G + a2DAS 0.64 3569

y = b0 + b1G + b2DAS + b3SLW 0.79 3413

B y = a0 + a1B + a2DAS 0.48 3680

y = b0 + b1B + b2DAS + b3SLW 0.70 3513

H y = a0 + a1H + a2DAS 0.61 3589

y = b0 + b1H + b2DAS + b3SLW 0.67 3539

S y = a0 + a1S + a2DAS 0.85 3309

y = b0 + b1S + b2DAS + b3SLW 0.88 3252

I y = a0 + a1I + a2DAS 0.57 3621

y = b0 + b1I + b2DAS + b3SLW 0.77 3440

Hyperspectral image NDVI y = a0 + a1NDVI + a2DAS 0.68 3488

y = b0 + b1NDVI + b2DAS + b3SLW 0.77 3395

RVI y = a0 + a1RVI + a2DAS 0.69 3475

y = b0 + b1RVI + b2DAS + b3SLW 0.77 3383

MCARI y = a0 + a1MCARI + a2DAS 0.69 3471

y = b0 + b1MCARI + b2DAS + b3SLW 0.78 3375

Fluorescence image y = a0 + a1Fluo + a2DAS 0.69 3519

y = b0 + b1Fluo + b2DAS + b3SLW 0.79 3404

Table 3  Test results of using the selected vegetation indices computed from different imaging data and SLW to predict chlorophyll 
content for sorghum plants

Calibration 
dataset
with fivefold 
validation

Calibration 
dataset

Validation 
dataset

Entire dataset

Model 3
(with DAS and SLW)

Without feature reduction R2 0.87 0.88 0.92 0.90

RMSE 54.40 51.56 45.61 49.59

RPD 2.77 2.93 3.56 3.09

With feature ‘Hue’ reduction R2 0.87 0.88 0.92 0.90

RMSE 54.29 51.46 45.41 49.49

RPD 2.78 2.93 3.58 3.10
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thicker than leaves of irrigated plants [40]. In response 
to drought, water-stressed plants had 12% more chloro-
phyll than well watered plants [7]. Campbell et  al. ana-
lyzed the relationship between the SPAD-501 (SPAD) 
meter and total extracted chlorophyll (TChl) for leaf 
sets grown under greenhouse and field conditions, and 
found big difference. It has been suggested that the dis-
parity in the models between experiments may partly be 
due to differences in leaf thickness. Field-grown leaves 
are typically thicker than greenhouse-grown leaves, and 
this is supported by the higher SLW values for the field-
grown leaves [5]. The estimation of Chl with the SPAD 
over time may be confounded by changes in SLW. Peng 
et al. also demonstrated that thick leaves increased SPAD 
readings and thicker leaves (i.e. higher SLW) absorbed 
red light more than infrared light in leaves with similar 
chlorophyll content on the basis of leaf area [39]. SLW is 
in general an indicator of leaf thickness and the degree 
of mesophyll development within a leaf blade. The extent 
of mesophyll development largely determines the photo-
synthetic capacity of a leaf. Thus, SLW can potentially be 
used as an indirect measure of the photosynthetic char-
acteristics of a leaf [25].

The possibility exists for why there was higher chloro-
phyll content in stressed plants: drought-stressed plants 
had smaller and thicker leaves, causing higher chloro-
phyll content. Well-watered plants may have translocated 
nutrient resources to new growing areas due to the fact 
that irrigated plants had an extended growing season 
resulting in lower chlorophyll readings [8]. The SLW data 
revealed stressed plants had thicker and denser leaves, 
which may have led to more chlorophyll per leaf and 

consequently SLW is an important contributing variable 
for predicting chlorophyll.

The objective of the present study is to develop a gen-
eralized method to estimate the chlorophyll content of 
sorghum from its high throughput phenotypic image. We 
have developed a method that significantly reduces the 
bias in chlorophyll content estimation of stressed plants. 
We have demonstrated that models that uses mixed vari-
ables of plant image’s greenness and SLW achieves this 
reduction and therefore the method we proposed can be 
used to compute more accurately the chlorophyll content 
of sorghum regardless of whether or not they are water 
and nutrition stressed.

As easy method for determining the chlorophyll con-
tent is using portable chlorophyll meter. Even in  vivo 
chlorophyll determination can be made using SPAD-
502  m that makes nondestructive and rapid measure-
ments of leaf chlorophyll based on spectral transmittance 
properties of leaves [32]. However, chlorophyll meter 
provides that data only in arbitrary units rather than the 
actually amounts of chlorophyll per unit of leaf tissue.

In order to match the results of image processing to the 
value obtained by reference methods on Leaves 2, 3 and 
4, empirically determined thresholds were evaluated on 
the percentage of the height of the plant. Segmentation 
using a fixed threshold was effective when the experi-
ment was carried out in the greenhouse, because plant 
images were taken in imaging chambers with consistent 
lighting and background. Our image processing method 
focused on the plants in controlled environment, and we 
were trying to make image processing as straightforward 
as possible so as to match the results to the values from 

Fig. 6  The correlations between the selected vegetation indices computed from different imaging data and SLW with chlorophyll content. Chl 
chlorophyll content, MC100 portable leaf chlorophyll meter
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MC 100 in specific leaves more accurately. According to 
the results, the greenhouse based method was proven 
useful to quantify certain sorghum traits such as chloro-
phyll, but it may be of limited relevance and not directly 
translatable for field-grown plants.

Recently the image processing techniques have been 
used for remote sensing studies concerning plant moni-
toring projects. Optical sensors and sensing provide an 
unprecedented way to measure plant phenotypic param-
eters noninvasively to identify traits precisely. However, 
reports on the in-vivo analysis of chlorophyll content 
from high throughput phenotyping facility cannot be 
found in the literature. The use of the imaging techniques 
for in vivo characterization of leaf chlorophyll content at 
the plant level would provide information about the use-
fulness of the technology in non-destructive phenotyp-
ing, stress detecting, ranking, and selection of plants.

It seems that high throughput phenotypic image pro-
vides a simple, rapid, and nondestructive method to esti-
mate the leaf chlorophyll content, and could be reliably 
exploited to predict the exact stress in sorghum. The pre-
sent work demonstrated the potential for real time esti-
mation of chlorophyll content by high throughput image 
analysis and DAS.

SLW is calculated as the ratio of leaf dry weight to 
fresh leaf area. Although there was not an instrument 
to directly and accurately measure leaf thickness in this 
study, the measurement of leaf thickness could be done 
nondestructively and relatively easily (compared to the 
manual measurement of SLW). As a result of technical 
advances, particularly the optical sensor and image pro-
cessing, more methods of instrumental analysis with-
out the destructive effect on the leaf samples have been 
reported [1, 24]. Therefore, it is reasonable to anticipate 
that a method or device for directly measuring leaf thick-
ness could be developed and incorporated into the image 
analysis to provide chlorophyll content more accurately.

Conclusions
In this study, a robust and accurate method has been 
developed for rapid and noninvasive determination of 
the chlorophyll content of sorghum leaves using visible, 
hyperspectral and fluorescence based image analysis. The 
results suggested that the three imaging systems com-
bined with data fusion strategy, could be used synergis-
tically to improve plant chlorophyll content prediction. 
The correlation was improved by the spectral proper-
ties along with two other parameters: DAS and SLW. It 
can be seen that adjustment of phenotypic image values 
for SLW increases the accuracy of the prediction. An 
image analysis method based on SLW may be an alter-
native choice for the real time prediction of chlorophyll 
content of plants. The potential of the imaging system 

in predicting chlorophyll has been discussed. It is con-
cluded that imaging techniques can be a powerful tool 
for low-cost, nondestructive and high-throughput analy-
sis of chlorophyll content.

Development of phenotyping tools and image process-
ing methods for proximal sensing is of paramount impor-
tance in furthering the understanding of “phenomes” 
and the underlying genetics underpinning them for con-
trolled growth conditions. We suggest that future work 
include the following aspects. Firstly, more advanced 
methods should be development and tested in plant seg-
mentation and individual leaf identification. In our study, 
to match the results of image processing to the value 
obtained by reference methods on Leaves 2, 3 and 4 of a 
plant, empirically determined thresholds were evaluated 
on the percentage of the height of the plant. More general 
methods, especially those based on convolutional neural 
network and deep learning, could be leveraged to identify 
individual leaves more accurately. Secondly, this study 
tested the performance of data fusion strategy at the data 
level, and it was the first step in demonstrating the fea-
sibility of the fusion of visible (RGB), hyperspectral, and 
fluorescence imaging systems with complementary spec-
tral ranges for detecting chlorophyll content. It will be an 
interesting task to explore chlorophyll content estimation 
by fusing multi-sensor images at feature level and deci-
sion level. This would make different high throughput 
phenotyping imaging techniques more useful for chloro-
phyll content estimation research.

Materials and methods
 Plant material and growth conditions
The experiment was conducted at the Greenhouse Inno-
vation Center of the University of Nebraska-Lincoln 
starting January 2019. Data collection occurred in April 
2019. Fifteen different sorghum genotypes (each with 20 
individual plants, 300 plants total) were used in this study, 
and the goal was to create a large variation in plant leaf 
property to validate HTPP image-based measurement.

Some detailed greenhouse parameters are listed as fol-
lows. The temperature in the greenhouse was regulated 
between 25 and 27  °C during daytime and 20–22  °C 
during the night time. Relative humidity was main-
tained at ∼60%. The daily light intensity resulting from 
natural sunlight and the supplemental LED peaked at 
∼350  μmol/m2/s photosynthetically active radiation. 
The supplemental LED had a photoperiod set to 12  h. 
The pots used were 25.72 cm in diameter and 23.18 cm 
in height, with a capacity of 8.52  L. The pot substrate 
was made by mixing Fafard germination soil and water. 
The visual differences between DAS were pronounced 
(Fig. 7).
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The experiment was designed as a two-factorial design 
for each genotype (water regime and nutrition regime), 
with replicated five times for each combination. For 
the 20 plants in each genotype, 5 plants were randomly 
selected and assigned to one of the four treatment com-
binations: drought (D) and high nutrition condition 
(HN), drought (D) and low nutrition condition (LN), 
well-watered (HW) and high nutrition condition (HN), 
well-watered (HW) and low nutrition condition (LN). 
The estimated volumetric water content of soil for the 
drought group (maintain 5230 g of pot weight by adding 
water daily) was 30% and for the well-watered group was 
approximately 70% of field capacity. During the growth, 
the plants were watered every day to the targeted soil 
water content. For the nutrient regime, two different 
nutrient solutions (high-nutrition vs. low-nutrition treat-
ments) were applied twice a week, and the detailed infor-
mation of the solutions were as shown in Table 4.

High throughput imaging collection
High throughput images were collected on the sorghums 
prior to destructive sampling of plant leaf tissues. The 
sampled leaves were under stresses that affects chloro-
phyll content. This greenhouse was equipped with a high-
throughput plant phenotyping system (Scanalyzer3D, 
LemnaTec GmbH, Aachen, Germany) [14]. The study 
collected visible (RGB), hyperspectral, and fluorescence 
images by using three imaging chambers. The imaging 
modules and their main parameters in these chambers 
are shown in Table 5. The hyperspectral imaging cham-
ber is illuminated by two banks of halogen lamps (35 W, 
color temperature 2600 K), located on the ceiling above 
the plant and the other on the wall behind the imaging 
system. The chambers are designed to permit the imag-
ing of plants up to a nominal height of 2.5 m. During test, 

the intact plants were loaded onto the conveyer belt and 
transported into the chambers for imaging.

Sampling plant leaves for determination of phenotypic 
traits
Sorghum development was monitored throughout the 
growing cycle. Plant sampling was conducted when 
roughly 80% of the sorghum plants were undergoing 
flowering. The measurements were performed only on 
the main tiller. After image acquisition, the plants were 
destructively measured for the determination of pheno-
typic traits as described below.

From each plant, the 3 leaf samples were chosen 
except for the flag leaf (which is leaf 1). Leaf 2, 3 and 4 

Fig. 7  Photos of the planted sorghum with different DAS (days after sowing)

Table 4  Composition of the nutrient solution to provide 
different levels of nutrition

Chemical High nutrition
g/L

Low 
nutrition 
g/L

Concentration
ml/L

KNO3 82.15 8.21 8

Ca(NO3)2·2H2O 118.07 11.81

KCl 0 46.13

CaCl2·2H2O 0 66.16

NH4H2PO4 14.38 1.44 8

MgSO4·7H2O 61.62 61.62

KH2PO4 0 15.31

H3BO3 0.28 0.28 1

MnCl2·4H2O 0.10 0.10

ZnSO4·7H2O 0.06 0.06

(NH4)6Mo7O24·4H2O 0.12 0.12

CuSO4·5H2O 0.05 0.05

Fe-EDTA 26.21 26.21 1



Page 11 of 17Zhang et al. Plant Methods           (2022) 18:60 	

from the plant were cut at the stem and immediately 
weighed for fresh weight. Leaf Area (LA) of leaf 2, 3 and 
4 was determined with a leaf area meter (LI-3100C, LI-
COR Biosciences, Lincoln, USA). Chlorophyll content 
was estimated nondestructively with a portable chloro-
phyll content meter (MC-100, Apogee Instruments, Inc., 
Logan, UT). It was calibrated to measure chlorophyll 
content in leaves using the sensor’s build-in sorghum cal-
ibration with the unit of chlorophyll content being µmol/
m2. The MC 100 value has already been found to provide 
the most accurate estimation of chlorophyll content in 
good correlation with leaf chlorophyll content extracted 
through organic solvent method [37]. Three sampling 
areas of approximately 64 mm2 (circle with 9 mm diam-
eter) were taken from the same leaf for the determination 
of chlorophyll. That is, every leaf was estimated at the tip, 
middle and base sections to account for in-leaf variabil-
ity, and the average of the nine spot measurements was 
regarded as the plant’s chlorophyll content value from 
that plant. The harvested plant leaves were then placed in 
a walk-in oven at 50 °C for 72 h, followed by the measure-
ment of dry weight.

Phenotyping image processing and data analysis
Image processing of the RGB, hyperspectral, and fluo-
rescence images was done by using Matlab R2017a 
(MATLAB and Image Processing and Computer Vision 
Toolbox Release 2017a, The MathWorks, Inc., Natick, 
Massachusetts, United States). The major task of image 
processing was to extract plant pixels from RGB, hyper-
spectral, and fluorescence images from which image-
based plant phenotypes can be derived.

As stated earlier, chlorophyll content was measured at 
Leaves 2, 3 and 4 of each plant. However, the cameras 
captured images of the entire plant including all leaves 
and the stem. In order to match what the chlorophyll 
meter measure to the images, efforts were made to con-
fine the analysis on leaves 2, 3 and 4 of each plant image 
only and calculate their projected area. In the present 

study, the specific leaf image is defined as the leaf image 
amount (for example, greenness of image) per total pro-
jected area(pixel number).

Visible imaging acquisition
Ten 2454×2056 resolution RGB images were taken of 
every plant: ten side view images from every 36 degrees 
at a horizontal rotation. In order to compare the estima-
tion between chlorophyll content with color features, 
image processing technique was used and the color com-
ponents of red (R), green (G) and blue (B) in RGB space 
and hue (H), saturation (S) and intensity (I) in HSI space 
were determined. During the color analysis, the HSI 
space was calculated by using the RGB space to increase 
the contrast between plant region and background 
region. Color spaces RGB and HSI can be transformed 
from one to another easily as illustrated in Eqs. (1)–(3). A 
schematic diagram of the image processing procedure is 
shown in Fig. 8.

Segmentation of these images was done by calculating 
a color index for each pixel and then using a threshold to 
derive a segmented image. The color index 3*S/(H + S + I) 
(where H, S, and I denote the hue, saturation and inten-
sity components) was found to be effective in transform-
ing HSI images to a single band images, because this 
index emphasized the saturation component in HSI pix-
els, and minimized the effect of non-consistent illumi-
nation among different images. A universal threshold of 
0.75 was used to segment plant pixels from background.

(1)H = arccos

{
[(R− G)+ (R− B)]/2

[
(R− G)2 + (R− B)(G − B)

]1/2

}

(2)S = 1−
3

(R+ G + B)
[min(R,G,B)]

(3)I =
1

3
(R+ G + B)

Table5  Main parameters of the LemnaTec3D Scanalyzer imaging system

Imaging chamber Camera maker Position Key parameters

Visible (RGB) Basler Side,
Top

Resolution: 2454–2056 pixels 24 bit
Spectral range: 400–700 nm

Steady state fluorescence Basler Side,
Top

Excitation wavelength: 400–500 nm
Measured emission wavelength:500–750 nm
Resolution: 1038–1390 pixels 24 bit

Hyperspectral Headwall Side Wavelength range: 550–1750 nm
Spectral bandwidth: 5 nm
number of bands: 243
Spatial resolution: 320 pixel line width
Image formation: vertical scanning
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The resulting image is a binary image, using white and 
black to distinguish the plant and background regions, 
respectively. But the binary image was found to con-
tain noise in the form of isolated noise as well as vertical 
stripes near the edge of the image. Since the frames of the 
chamber were located in a fixed position for all images, 
the stripes were eliminated by using the reference image. 
Then morphological opening operation was applied to 
remove the small objects that contains fewer than 200 
pixels from the binary image.

One important step in image processing is to determine 
the region in the images corresponding to Leaves 2, 3 and 
4 of the plants. For this purpose, 300 RGB images were 
randomly drawn from the 3000 images (300 plants × 10 
side-view RGB images for each plant). It was found that, 
among the selected 300 images, over 95% of the plants 
had their second leaf ’s position below 5% of the plant 
height (measuring from the top). Similarly, over 95% of 
the plants had their fourth leaf ’s position above 35% of 
the plant height. Therefore, the two thresholds, 5% and 
35% in terms of the plant height, were used to define 
the region in which Leaves 2, 3 and 4 resided. We then 

acquired the extraction of the area with leaves 2, 3 and 
4 to calculate the H, S, and I values, and used the same 
region to acquire the R, G, and B values from the origi-
nal RGB image. Specific leaf image of hue (H) component 
was calculated as the total Hue value of image divided 
into the pixel number. Specific leaf image of saturation 
(S), intensity (I), red (R), green (G) and blue (B) compo-
nent are in the same way.

The total pixel count of the plant from ten side views 
were then averaged as plant Projected Area (PA, or 
equivalently, pixel count). The number of pixels inside the 
plant region was counted in each of the ten side views, 
and then averaged to give the projected shoot area. This 
is not the actual above-ground surface area but the aver-
age of the areas of the image projected in ten planes. 
There are many cases when a mature plant’s leaves are 
overlapping, appearing behind one another in side view 
images [17]. Figure  9 shows ten different binary images 
converted from RGB from 0 to 360 degree. The ten 
orthogonal views (ten side views from 36 rotational dif-
ference) provides a means of correction of plant area for 
those overlapping leaves, corrects for hidden areas in the 

Fig. 8  The sequential steps in segmentation of plant pixels from the background
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other views and gives a robust representation of plant 
area overall.

Hyperspectral imaging acquisition
The hyperspectral image chamber consisted of a total 
of 243 image bands, with a spectral sampling resolution 
of 5 nm per band. The raw image was captured in a BIL 
(Band Interleaved by Line) format to acquire and store 
the original hyperspectral data. Then the individual spec-
tral bands were then extracted from the BIL file using a 
custom MATLAB function to build 243 hyperspectral 
images [38]. The plant image cubes were individually pro-
cessed to extract the spectrum of pixel intensities. The 
segmentation of plant pixels in the hyperspectral images 
was achieved by making use of the rapid increase in 
reflectance of vegetation [36]. The imagery was calibrated 
to reflectance [22]. The following procedures were used 
to process the hyperspectral images. Firstly, the segmen-
tation process was accomplished. Then, pixels belonging 
to the plant region were selected for further processing. 
In order to separate the plant pixels from the non-plant 
pixels in the hyperspectral images, we used the two image 
bands with the following characteristics, one image band 
with the highest contrast between background and plant 

(705 nm) and the other image band with the lowest con-
trast (750 nm). Intensity of images at band 35 (705 nm) 
and band 44 (750 nm) were used to normalize and gener-
ate new increased intensity; and then we got a function of 
the sum of those new intensities. Second, the new inten-
sities were applied to separate the plant pixels well from 
the non-plant pixels in the hyperspectral images. A global 
threshold of 0.89 was used to get a binary mask from this 
image, where the higher values belonged to the plant pix-
els. This binary mask was then used for segmentation of 
all image bands in the hyperspectral cube. After removal 
of noise, the binary image was matched to the original 
image, and specific leaf image of hyperspectral image 
was calculated as the total hyperspectral value of image 
divided into the pixel number. The complete hyperspec-
tral image processing procedure was shown in Fig. 10.

The identification of plant stresses using hyperspectral 
imaging technology traditionally has been based upon 
changes in individual band intensities or changes in simple 
band ratios. In order to maximize the information reflected 
by the vegetation and minimize the impact of external fac-
tors, various hyperspectral indices were put forward and 
can detect subtle differences in physiological conditions 
and environmental stresses by their unique fine spectral 

Fig. 9  Ten different binary images converted from RGB from 0 to 360 degree
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characteristics, so these spectral indices have a broad appli-
cation prospect in the inversion of chlorophyll content. The 
noninvasive optical methods all provided reliable estimates 
of relative leaf chlorophyll content. Empirical models to 
predict chlorophyll content are largely based on reflectance 
regions where the absorption is saturated at higher chloro-
phyll. Indices formulated with 705 nm and 750 nm bands 
would have higher accuracy in estimating chlorophyll con-
tent [16]. Reflectance index (chlorophyll content NDVI  
=  (R750 − R705)/(R750 + R705) ) were commonly used in 
the literature [38, 41]. Hyperspectral index can be divided 
into the following types: normalized spectral index, ratio 
spectral index, and multi-band spectral index. Algorithms 
such as the ratio vegetation index (RVI), the normalized 
difference vegetation index (NDVI), modified chlorophyll 
absorption ratio index (MCARI) have been used to meas-
ure canopy cover and chlorophyll content of plants. These 
ratios and algorithms are positively correlated to total 
chlorophyll levels in plants and each of them represents 

normalized spectral index, ratio spectral index, and multi-
band spectral index. The most known and widely used 
vegetation index is NDVI. In addition, improved indices 
such as RVI and MCARI have been developed in order to 
combine the advantage of different vegetation index and 
improve the linearity relationship with vegetation biophysi-
cal variables. Three indices NDVI [750,705], RVI [750,705], 
and MCARI [750,705 and 550] [27, 30, 47] were tested in 
this study with the following formulate:

(4)NDVI =
R750 − R705

R750 + R705

(5)RVI =
R750

R705

(6)
MCARI = ((R750 − R705)− 0.2 ∗ (R750 − R550))

∗ (R750/R705)

24
3 i

mag
es

Hyperspectral 
image cube

Image 
binarization
(threshold=

0.89)
Remove 

noise

Region extraction

Apparent reflectance 
spectra of plant

Wavelength

705nm 750nm

Normalize 
and generate 

new increased 
intensity

Match the original 
image and calculate 

the total height

Fig. 10  Flowchart showing the steps in hyperspectral image analysis to obtain apparent reflectance spectra
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Fluorescence imaging acquisition
Fluorescence imaging captures the image that the red 
band is mainly emitted from photosystem. With this 
system, various fluorescence signals could be obtained. 
For each region of interest, the fluorescence parameter 
values of all pixels within the area were averaged. Many 
different fluorescence parameters were used to charac-
terize the various aspects of photosynthetic performance 
comprehensively.

Once chlorophyll fluorescence images were obtained, 
chlorophyll content of the entire plant was analyzed. 
For sorghum, the area of the entire plant was estimated 
using region of interest pixel numbers, and was used 
to monitor plant growth. A threshold value of 0.13 was 
determined to effectively segment plant pixels from the 
background. The fluorescence image of the plant from 
different degree side views were then averaged as plant 
projected area. Fifty images were randomly sampled 
from the fluorescence image dataset. For each image, 10 
different pixel locations were randomly selected, with 5 
locations indicating the non-plant pixels and 5 positions 
indicating the plant pixels. As a result, 250 positions for 
background and 250 positions for plants were obtained. 
The intensity for each locations was derived by convert-
ing the fluorescence intensity to a grayscale intensity in 
the fluorescence image. The critical threshold was then 
determined by choosing the intensity which was above 
the background upper limit and below the plant lower 
limit. A schematic diagram of the fluorescence image 
processing procedure was shown in Fig. 11. Specific leaf 
image of fluorescence image was the ratio of the total flu-
orescence value of image divided and the pixel number.

Data analysis
From the visible image, primary colors red (R), green (G) 
and blue (B), was recorded. Spectral parameters such as 
hue (H), saturation (S) and luminosity (L) were estimated 
from RGB values. Specific leaf image was calculated by 
dividing the total component of image by total pixel 

number. Hyperspectral and fluorescence image was pro-
cessed in the same way. Specific leaf weight (SLW) is the 
oven-dry mass, divided by its one-sided area of fresh leaf 
(unit, g cm−2).

In this analysis, DAS (days after sowing) is meas-
ured from the date of planting. The visual appearances 
were confirmed by DAS, because DAS represent the 
growth stage development. Previous research reported 
that the first period occurring in seeding stage matched 
with chlorophyll content’s slow rise. The second critical 
period occurred in active jointing-booting growth stage 
and matched with chlorophyll content’s fast increase. 
The third period is filling to maturing stage matched 
with chlorophyll content’s slow decrease [2, 9]. DAS also 
showed a significant (p < 0.01) positive correlation with 
the macronutrient content [50]. Therefore, chlorophyll 
content could be written as a linear form of DAS and 
high-throughput image.

For each type of imaging, the 300 plants were split into 
two groups: 240 plants (80%) for model calibration and 
the other 60 (20%) for independent model validation. 
The split was done such that the different sorghum geno-
types and the treatment levels for both water and nutri-
ent were presented in the calibration and validation set. 
The following statistic was calculated using software R 
for model evaluation: Coefficient of Determination (R2) 
between for MC 100-measured and model-predicted 
chlorophyll content values. Akaike Information Criterion 
(AIC) is asymptotically equivalent to cross-validation and 
works to balance the trade-offs between the complexity 
of a given model and its goodness of fit. AIC is used to 
select the regression models that balance the size of the 
model and the predictive power. When choosing the best 
model from a set of alternative models, the smallest AIC 
is criterion.

To comprehensively include all the variables acquired 
form visible, hyperspectral and fluorescence images, 
partial least squared regression (PLSR) was used to 
model the sorghum plant chlorophyll content from 

Fig. 11  Process flow of image processing steps used in the extraction of plant’s projected chlorophyll content from the fluorescence images
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image data. PLSR is constructed to illustrate the vege-
tation indexes’ effect from different imaging techniques 
on the chlorophyll content. The variables, including 
hue, saturation, intensity, R, G, B, fluorescence, NDVI, 
RVI, MCARI. To find out the model with the best per-
formance, fivefold cross-validation is applied to the 
training dataset, and therefore, the model with mini-
mum mean square error is preferred. The following sta-
tistics were evaluated for model performance: R2, root 
mean squared error (RMSE, Eq. 7), and ratio of perfor-
mance to deviation (RPD, Eq. 8) between the lab-meas-
ured and model-estimated plant chlorophyll content.

N is the number of plants in the calibration or validation 
set (300); yi and ŷi are the lab-measured and model-pre-
dicted values, respectively; SD and mean are the standard 
deviation and mean of the lab-measured values.
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