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Abstract 

Background:  China has a unique cotton planting pattern. Cotton is densely planted in alternating wide and narrow 
rows to increase yield in Xinjiang, China, causing the difficulty in the accurate estimation of cotton yield using remote 
sensing in such field with branches occluded and overlapped.

Results:  In this study, unmanned aerial vehicle (UAV) imaging and deep convolutional neural networks (DCNN) 
were used to estimate densely planted cotton yield. Images of cotton fields were acquired by the UAV at an altitude 
of 5 m. Cotton bolls were manually harvested and weighed afterwards. Then, a modified DCNN model (CD-SegNet) 
was constructed for pixel-level segmentation of cotton boll images by reorganizing the encoder-decoder and adding 
dilated convolutions. Besides, linear regression analysis was employed to build up the relationship between cotton 
boll pixels ratio and cotton yield. Finally, the estimated yield for four cotton fields were verified by weighing harvested 
cotton. The results showed that CD-SegNet outperformed the other tested models, including SegNet, support vector 
machine (SVM), and random forest (RF). The average error in yield estimates of the cotton fields was as low as 6.2%.

Conclusions:  Overall, the estimation of densely planted cotton yields based on low-altitude UAV imaging is feasible. 
This study provides a methodological reference for cotton yield estimation in China.
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Background
Xinjiang is the most important cotton planting base in 
China and it occupies a pivotal position in the world’s 
cotton industry. In 2020, China’s total cotton output 
was 5.91 million tons, of which 87.3% (5.16 million tons) 
were produced in Xinjiang. Fast and reliable estima-
tion of cotton yield prior to harvest is essential for crop 
management, cotton trade, and policy making. At pre-
sent, farmers in Xinjiang widely adopt the dense plant-
ing pattern of “short-dense-early”. This pattern employs 

alternating wide (66 cm) and narrow (10 cm) rows, and 
the number of plants per hectare is between 240,000 
and 270,000. Although this pattern has obvious advan-
tages in withstanding natural disasters and increasing 
yield [1], the plant density is relatively high. Moreover, 
narrow rows of cotton plants are staggered and severely 
occluded, which poses certain difficulties for imaging-
based yield estimation.

The traditional cotton yield estimation methods are 
laborious and inefficient, and cannot meet the needs 
of the rapidly developing cotton industry [2]. Within a 
cotton field, there may be spatial differences in yields, 
which may introduce large errors in the estimates. 
With the continuous development of space technol-
ogy, crop yield estimation methods based on satel-
lite remote sensing technology have been widely used 
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[3–5]. Cotton yield can be accurately predicted by 
using yield estimation models constructed with remote 
sensing data as well as vegetation index [6]. However, 
satellite remote sensing images can be affected by tem-
poral and spatial resolution as well as cloud cover, so 
they are usually not enough to accurately estimate 
crop yields on the field scale. In contrast, unmanned 
aerial vehicles (UAVs) have quickly become ideal tools 
for precise crop monitoring due to their flexibility 
and low-altitude flight capability [7, 8]. UAV-based 
low-altitude remote sensing platform can obtain high 
spatial–temporal resolution images free from atmos-
pheric interference [9–11]. For example, Akash et  al. 
[12] developed a machine learning framework for 
estimating cotton yield using multi-temporal remote 
sensing data collected with unmanned aerial systems 
(UASs) to obtained more reliable crop yield estimates. 
Stroppiana et  al. [13] accurately estimated wheat and 
soybean yields using low-altitude UAV remote sensing.

Vegetation index is only suitable for estimating cot-
ton yield in the mid-growth stage, and has limited per-
formance in the mature stage. Due to the influence of 
boll opening and background objects such as branches 
and leaves in the later growth stages of cotton, obvious 
differences are always found in visual characteristics 
such as colour and morphology. However, cotton yield 
can be directly estimated by remote sensing images 
and background segmentation of deciduous cotton 
fields. For example, Huang et al. [14] used UAV images 
to estimate cotton yield based on cotton boll cover-
age and plant height. Feng et  al. [15, 16] comprehen-
sively evaluated the image characteristics at different 
growth stages of cotton when estimating yield, and 
it was found that plant height and cotton fiber index 
were important features for estimating cotton yield 
before harvest. Xu et al. [17] constructed a cotton yield 
estimation model based on UAV remote sensing data. 
However, in the above yield estimations, the density 
of cotton plants is lower than that in Xinjiang, China, 
and the interlacing between cotton plants is relatively 
inapparent. Xu et  al. constructed a model to predict 
single boll weight of densely planted cotton by using 
high resolution UAV remote sensing data, and it was 
found that the pixels ratio of opening bolls exhibited 
a strong correlation with the single boll weight in the 
upper layer. However, no conclusion was given on 
the yield estimates of the plot [18]. In addition, the 
above researches acquired orthomosaic images of the 
entire cotton field. Generating these types of images 
is complicated and time-consuming. Many scholars 
have tried to develop various ground-based sensing 
systems. For example, a digital camera installed on a 
robotic platform was used to estimate the number of 

cotton bolls based on images acquired by the 3D sen-
sor system, boll estimates, or lint obtained from point 
clouds [19]. With the calculation of the number of cot-
ton bolls in the field, accurate cotton yield prediction 
can be achieved [20]. However, the high density of cot-
ton makes the movement of ground sensing platform 
and image acquisition difficult, and affects the estima-
tion accuracy. Therefore, using low altitude UAVs as 
ground-based sensing platforms to acquire images may 
be a better choice.

In addition, significant advances in data collection 
and computing in recent years have facilitated the rapid 
development of deep learning (DL). As a powerful feature 
learning algorithm, DL outperforms traditional feature 
extraction methods in many fields. Li et  al. [21] used a 
full convolutional network (FCN) and interference region 
removal module to segment the remote sensing data of 
cotton in the field. Ma et  al. [22] proposed the EarSeg-
Net semantic segmentation method, which can achieve 
accurate segmentation of wheat ears from canopy images 
acquired during the flowering period. However, the 
images used in previous studies were all taken from fixed 
platforms, not UAVs.

In this study, a method based on DL and low-altitude 
UAV imaging was proposed to estimate the yield of 
densely planted cotton after defoliation. Low-altitude 
UAV imaging was used for image acquisition, and pixel-
level semantic segmentation was then applied to raw 
UAV images to acquire cotton boll pixels ratio. Finally, a 
yield estimation model was constructed based on the pix-
els ratio of cotton bolls. The specific objectives were to: 
(1) efficiently and accurately segment cotton bolls from 
the images collected using UAVs during the defoliation 
period; (2) construct and verify the constructed yield 
estimation model based on a single image feature; and (3) 
evaluate the yield estimation accuracy for multiple cotton 
fields.

Results
Performance evaluation
In this study, four segmentation models were 
recombined using the designed compilation and 
decoding blocks, namely, Model 1, Model 2, Model 
3, and Model 4. The trained models were used to 
test 800 images in the test set and the evaluation 
results of the selected segmentation approaches in 
terms of mIoU, Recall, Precision, and F1-Score were 
presented. Based on the results of test set (Table 1), 
Model 1 had the lowest accuracy, while its recall 
was the highest. Model 4 had the highest accuracy 
with average mIoU of 77.13%, recall of 84.71%, pre-
cision of 90.82%, and F1-Score of 87.93%. Under 
the same number of convolution blocks, the models 
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performed better after dilated convolution was 
added. The results for the training and testing of 
other algorithms on the same image data are shown 
in Table  2. The results showed that the modified 
model outperformed the original SegNet model and 
traditional machine learning algorithms (support 
vector machine (SVM) and random forest (RF)) in 
cotton field image segmentation. This may be due to 
that deep learning model has a series of convolution 
structure that can extract additional features with-
out manual design.

Figure  1 shows the segmentation results of the above 
models. Model 1 had the worst segmentation, in particu-
lar, a large area of field was incorrectly segmented. Model 
2 outperformed Model 1. However, there were still some 
errors in the segmentation at image edges. Both Model 3 
and Model 4 showed better segmentation. In particular, 
Model 4 achieved better performance for boll segmen-
tation under the reflective ground and occluded cotton 
leaves conditions. Thereby, it had a better segmentation 
logic. Therefore, Model 4 was selected as CD-SegNet.

Sampled image segmentation
The CD-SegNet was used to segment 20 images to 
calculate the pixels ratio of cotton bolls. The results 
were then compared with the manually measured 
results. Figure 2a shows the correlation between the 
ground truth value and the CD-SegNet segmenta-
tion results. The coefficient of determination (R2) 
was 0.97. Figure  2b shows that the relative errors of 
boll pixels ratio obtained by using CD-SegNet for 
the image were in the range of 0.27–14.35%, and 
the average relative error was 4.77%. Figure  2b also 

Table 1  Comparison of results of different encoder and decoder methods

Segmentation model mIoU (%) Recall (%) Precision (%) F1-score (%)

Model 1 74.63 88.36 81.35 84.45

Model 2 74.85 88.77 83.84 85.29

Model 3 73.48 84.52 86.61 85.35

Model 4 77.13 84.71 90.82 87.93

Table 2  Segmentation results comparing CD-SegNet with 
SegNet, SVM, and RF

Model mIoU (%) Recall (%) Precision (%) F1-score (%)

CD-SegNet 77.13 84.71 90.82 87.93

SegNet 74.52 81.36 89.71 85.47

SVM 64.27 78.28 73.42 75.58

RF 58.63 66.84 78.51 72.16

Fig. 1  Segmentation results of complex background images with different models
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shows that when cotton boll pixels ratio was less than 
25%, the relative error was larger, and the ground 
truth value was less than the segmentation value; 
when the cotton boll pixels ratio was greater than 
25%, the relative error decreased, and the ground 
truth value was greater than the segmentation value. 
By reviewing the segmented image, we found that 
this phenomenon was caused by the misalignment of 
the exposed ground and boll boundaries. Therefore, 
the CD-SegNet method can accurately segment the 
cotton boll pixels to calculate area ratio. However, in 
some cases, its performance may be limited by the 
light and background conditions.

Yield estimation of cotton field
Regression relationship between cotton boll pix-
els ratio and measured yield was y = 38.6x + 34 (y: 
yield of the sample area (g/2.3 m2); x: cotton boll 
pixels ratio), with R2 of 0.91. Using the cotton boll 
pixels ratio calculated by CD-SegNet segmentation, 
the yield of each cotton field was estimated, and 

the estimates were compared with the measured 
yield. As shown in Table 3, the relative errors of the 
yield estimates were in the range of 0.67–10.5%, and 
increased with the measured yield. The UAV images 
obtained in this study were orthophoto images. 
In the vertical view, the lower cotton bolls may be 
obscured by the upper bolls, branches and leaves. In 
the same area, a higher yield means that more cot-
ton bolls were obscured.

Discussion
In this research, the images were collected after the cot-
ton was defoliated, which is different from the time in 
previous studies [6, 12, 17, 23, 24]. In cotton fields, not 
only the environment is unstructured and the illumina-
tion is changeable, but there are also mutual occlusion 
of cotton branches and clustering of cotton buds. These 
factors can complicate the background of the acquired 
images, which brings challenges to cotton boll pixel seg-
mentation and yield estimation. In this study, a modi-
fied SegNet algorithm was proposed. The results showed 

Fig. 2  Comparison of CD-SegNet segmentation results with the measured area ratio of cotton bolls in the images. a Correlation between the 
measured data and the CD-SegNet segmentation results; b Relative error analysis

Table 3  Estimation of cotton yield in different fields using the area ratio of cotton bolls

Cotton field Measured yield (kg 
ha−1)

Estimated yield (kg ha−1) Difference between measured and 
estimated yield (kg ha−1)

Relative error of 
yield estimation 
(%)

1 5090 5124 34 0.67

2 6480 7158 678 10.5

3 5350 5116 234 4.4

4 5843 6391 548 9.4

Average error 6.2
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that the proposed CD-SegNet model performed well for 
cotton boll pixel identification in dense planting mode 
(Fig. 2), and the relative errors lowered as the cotton boll 
pixels ratio increased. Furthermore, the yield predic-
tion based on cotton boll pixels ratio was more accurate 
(average relative error of 6.2%) than conventional meth-
ods. The cotton boll pixels ratio of each cotton field was 
the average of 5 sampling points. Compared with previ-
ous studies, the image acquisition efficiency was greatly 
improved [15–17], but there were sampling errors. By 
stitching the images to get complete information of the 
cotton field, sampling errors can be greatly reduced. But 
the amount of data is large to process, and can also be 
affected by the altitude, speed, and spatial resolution of 
the drone.

Although the proposed method in this study per-
forms well in cotton boll pixel segmentation and yield 
prediction, there are several aspects that can be further 
improved and explored. First of all, the images obtained 
by the drone are orthophotos, and vertical cropping of 
information may cause some loss. Therefore, we plan to 
experiment with layered images in the future to reduce 
information that cannot be displayed because of occlu-
sion. Second, the proposed yield prediction model 
employs a single input variable and does not consider 
additional features such as soil type, weather infor-
mation, and geographic location. Therefore, in future 
research, more input features will be combined to 
improve the generalization ability of the model. Overall, 
this study proposed a new method for yield estimation in 
densely planted cotton fields based on low-altitude UAV 
imaging and deep learning, which provides a new idea for 
cotton yield estimation. Timely and accurate estimation 
of cotton yield can provide important reference informa-
tion for cotton producers and agricultural management 
departments to reasonably determine the storage scale 
and planting plan, and to assess relevant policies.

Conclusion
In this work, we proposed and evaluated a cotton yield 
estimation model, which used DL image processing 
technology to segment cotton field images acquired 
by low-altitude UAVs, and the segmented cotton boll 
pixels ratio was calculated as an input variable for cot-
ton yield estimation. This model could segment cotton 
boll pixels with a relative error of 0.27–14.35% and an 
R-square of 0.97, and accurately estimate cotton yield of 
four fields (38 hectares) with an average error of 6.2%. 
This study verified the feasibility of estimating cotton 
yield using low-altitude UAV imaging. The proposed 
method helps to achieve cotton yield estimation on the 
field scale while improving the efficiency of cotton yield 
statistics in Xinjiang. This will provide agricultural 

scientists, agricultural management departments, and 
cotton producers with more accurate crop informa-
tion, enabling them to make scientific decisions. In the 
future, we will try to apply an approach of layered yield 
to reduce yield estimation errors in high-density cotton 
fields.

Methods
Data acquisition and experimental platform
The experimental fields are located at Tuanjie Farm (44° 
13′ 09.3″ N, 88° 16′ 27.3″ E) in Fukang City, Xinjiang 
Uygur Autonomous Region, China. Four cotton fields 
(738  m × 516  m) were randomly selected (Fig.  3). The 
dense planting pattern (alternating wide (66 cm) and nar-
row (10 cm) rows) (Fig. 4), is widely adopted in Xinjiang, 
combined with plastic film mulching and drip irrigation. 
The planting density was 263,000 plants/ha. Field No. 1 
was used for model training and testing, and Field No. 
2–4 were only used for yield estimation. Images were col-
lected by an industry-grade quadcopter (MATRICE200 
V1, DJI Inc., Shenzhen, China) equipped with a cloud 
platform ZENMUSE X4S and a FC6510 camera. The 
camera has a fixed focal length of 8.8 mm, F/208-11 focal 
ratio, and field of view (FOV) of 84°. The image resolution 
is 5472 × 3078 pixels (JPG format). Data was acquired 
from October 11 to 18, 2020, after cotton defoliation.

In natural conditions, to maximize the proximity 
to cotton while avoiding the interference of the UAV 
rotor airflow to cotton plants, the flying height was set 
to 5 m. The image resolution was 0.15 cm/pixel. Equi-
distant sampling method [25] (Fig.  5a) was used to 
acquire Field No. 1 images along the designed flight 
route (Fig. 3b), and a sampling area (230 cm × 100 cm) 
was set at each point. Four coloured flags were used to 
determine the boundary. To make the images in each 
sampling area correspond accurately to the yield data, 
cotton in each sampling area was manually harvested 
and measured with an electronic scale. The images 
and yield data for this section are represented in data 
set 1. Five sampling points [26] (Fig. 5b) were selected 
to acquire images for Fields No. 1–4. Five images were 
collected for each cotton field, and a total of 20 images 
were obtained for yield estimation. Cotton was har-
vested by a cotton harvester (John Deere CP690, USA) 
and weighed. The images and yield data for this section 
are represented in data set 2. The complete data acqui-
sition information is shown in Table 4.

Constrained by computer power, drone images were 
too large to train deep learning models directly. In this 
study, the images of data set 1 were processed accord-
ing to the cropping guide in Fig. 6a, and a total of 4000 
sub-images with 300 × 300 pixels were obtained (Fig. 6b). 
Eighty percent were used as training set and 20% as 
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test set. All image data was tagged interactively using 
Python’s Labelme application. Each image was tagged 
into two categories: cotton and background, and tagged 
images were binary images.

Image feature analysis
Image segmentation is a specific computer vision task 
which cannot be simply based on shape, texture, color, 
and pattern recognition [21]. The background of a cot-
ton field image is complex mainly due to three issues. 

First, the strong sunlight during the day in Xinjiang 
overexposes the background of the film (Fig.  7a) and 
soil (Fig. 7b), which makes cotton bolls look very simi-
lar to the background and difficult to be distinguished 
by a single feature (colour, shape, and texture). Sec-
ond, backgrounds such as cotton leaves (Fig.  7c), cot-
ton hulls (Fig. 7d), cotton branches (Fig. 7e), and weeds 
(Fig. 7f ) partially occlude cotton bolls, and the occluded 
area becomes part of the background. Third, ortho-
graphic imagery leads to the lower cotton bolls (Fig. 7g) 
and the ground (Fig. 7h) blocked by the upper layer of 
cotton plants, resulting in uneven illumination. Accord-
ing to the above analysis, the cotton feature extraction 
method needs to meet the following requirements:

(1)	 Shallow feature information and high-level seman-
tic information can be extracted simultaneously;

(2)	 Multiscale local information is included;
(3)	 Extracted features are insensitive to changes in light 

intensity.

Usually, manual extraction of brightness, edges, tex-
ture, colour, and other shallow visual features from 
images cannot meet these requirements very well. 

Fig. 3  Location of cotton fields. a Study area; b image acquisition design

Fig. 4  Dense planting pattern of cotton with alternating wide and 
narrow rows in Xinjiang, China
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Therefore, this study used semantic segmentation to 
resolve this issue.

SegNet network architecture
Segnet is a pixel-level semantic segmentation architec-
ture based on convolutional neural network (CNN), 
which is a symmetrical network composed of an encoder 
and a decoder [27]. The encoder comprises 5 coding 
blocks, and each coding block includes a convolutional 

block and a pooling layer. The convolutional block is 
composed of a convolutional layer, a batch normaliza-
tion (BN) layer, and a rectified linear unit (ReLU) layer. 
Each encoder layer corresponds to a decoder layer. The 
decoder upsamples the feature images. The upsampled 
part has more feature channels. The network is used to 
transfer the context feature information to the higher 
resolution layer, and ultimately, the feature map size is 
consistent with the original image size. The Softmax layer 

Fig. 5  Sampling method. a Equidistant sampling method; b five-point sampling method

Fig. 6  Image cropping. a Cropping guide on the original images; b cropped image (300 × 300 pixels)
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is the layer that normalizes the input vector to the prob-
ability distribution (Fig. 8).

CD‑SegNet network
The cotton boll dilated convolution SegNet (CD-Seg-
Net) structure used in this study is shown in Fig.  9. The 

CD-SegNet redesigned and combined the encoding and 
decoding blocks based on the original SegNet framework. 
Four new model (Model 1, Model 2, Model 3, and Model 
4) were proposed (Table 5). The number of convolutional 
blocks in the encoding block and decoding block was 

Table 4  Data acquisition information

Cotton field Number of images 
collected

Methods for image 
collection

Applications Yield acquisition method Data set

1 20 Equidistant sampling 
method

Model training Manually harvested and 
weighed

Data set 1

5 Five-point sampling 
method

Yield estimation Harvested by a cotton 
harvester and weighed

Data set 2

2 5 Five-point sampling 
method

Yield estimation Harvested by a cotton 
harvester and weighed

Data set 2

3 5 Five-point sampling 
method

Yield estimation Harvested by a cotton 
harvester and weighed

Data set 2

4 5 Five-point sampling 
method

Yield estimation Harvested by a cotton 
harvester and weighed

Data set 2

Fig. 7  Backgrounds in segmentation: a film, b soil, c cotton leaves, d cotton hulls, e cotton branches, f weeds, g cotton bolls in the lower layer, h 
ground

Fig. 8  SegNet network

Fig. 9  CD-SegNet network
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reduced, and dilated convolution was adopted. The reduc-
tion in the number of convolutional blocks could effec-
tively reduce the parameters and improve segmentation 
efficiency. However, the corresponding receptive field was 
reduced. Based on a traditional CNN, dilated convolution 
can expand the feature receptive field without lowering fea-
ture spatial resolution. The dilation rate (r) is an important 

parameter in dilated convolution and represents the degree 
of expansion [28]. In this model, 3 × 3 convolution blocks 
were used to replace 7 × 7 and 5 × 5 convolution kernel 
blocks to save memory (Fig.  10). When r = 1 (Fig.  10a), 
the receptive field of the input image corresponding to the 
feature map was 3 × 3 without dilation. When r = 2, the 

Table 5  Four components of the segmentation model

Model 1 Model 2 Model 3 Model 4

Coding block a b c d

Decoding blocka b c d

Fig. 10  Coding blocks

Fig. 11  Decoding blocks

Table 6  Training-related parameters of deep learning segmentation model

GSD Image size Epoch Learning rate Batch size Sample number of 
training set

Sample number of 
validation set

0.15 300 × 300 50 0.001 64 3200 800

Table 7  Confusion matrix

Confusion matrix True value

Positive Negative

Predicted value Positive True positive (TP) False positive (FP)

Negative False negative (FN) True negative (TN)
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receptive field increased to 5 × 5 (Fig.  10b), and had the 
same receptive field size (Fig.  10c). However, the number 
of parameters was reduced by half. For image segmenta-
tion, since it is necessary to predict the pixels, the feature 
map must be upsampled to obtain a feature map with the 
same size as that of the original image. This process inevi-
tably results in the loss of some information. Therefore, the 
dilated convolution was added to reduce information loss 
in this study (Fig. 11).

Model training
This experiment was conducted using the Windows 10 
desktop operating system on an Intel(R) Gold6126 CPU 
processor, with a default frequency of 2.60 GHZ and 
memory of 64 GB. The graphics card used was an NVIDIA 
GeForce RTXTM2060 (with 6G video memory), and the 
Python version was 3.6, compiled on Jupyter in Anaconda. 
The Pytorch was used as the DL framework, and a combi-
nation of Cuda 10.0 and cudnn 7.4.1.5 was used for GPU 
acceleration to improve the model training speed. The 
model gradient descent adopted the adaptive momentum 
stochastic optimization method (Adam). The learning rate 
was 0.001, and the beta first-order and second-order atten-
uation coefficients were set to 0.9 and 0.98, respectively. 
The training-related parameters are shown in Table 6.

Evaluation metrics
In this study, the pixel accuracy (PA), recall, mean intersec-
tion over union (MIOU), and F1 score (F1-score) were used 
to evaluate the segmentation accuracy. All the evaluation 
indicators used were calculated from the parameters in the 
confusion matrix (Table  7). In the model accuracy evalu-
ation, the confusion matrix was mainly used to compare 
predicted values with measured values, and was calculated 
by comparing the position of each measured pixel with the 
position of the predicted pixel.

PA refers to the ratio of correctly classified pixels in the 
total pixels (Eq. 2). Recall score represents the model’s abil-
ity to correctly predict the positives out of actual positives 
(Eq. 4). The intersection ratio (intersection over union, IOU) 
is a standard metric used to evaluate the accuracy of semantic 
segmentation (Eq. 1). MIOU refers to the average of all cat-
egories of IOU (Eq. 5). F1-score is the harmonic mean of the 
precision and recall, which is used in statistics and as indica-
tor to measure the accuracy of a binary classification (Eq. 3).

(1)IOU =
TP

TP + FP + FN

(2)CPA =
TP

TP + FP

where TP and TN stand for the number of pixels cor-
rectly classified for the cotton and non-cotton classes, 
and FP and FN stand for the number of misclassified 
pixels.

Coefficient of determination (R2) was used to quantify 
the accuracy of model segmentation.

where ti and ci are the number of pixels of cotton bolls 
segmented by the model and the measured number of 
pixels of cotton bolls in the image, respectively, and ti is 
the average value of the measured number of pixels of 
cotton bolls in the image.

Yield estimation analysis
Regression analysis is a statistical analysis method for 
determining the interdependent quantitative relation-
ship between two or more variables. Linear regression is 
one of the most widely used regression analysis methods, 
and it is also the preferred regression analysis method. 
In this study, linear regression analysis model with SciPy 
computing library was used to analyse the relationship 
between cotton boll pixels ratio in the sampling area 
and the measured yield of the sampling area. A total of 
20 samples were used. Once the regression model was 
obtained, the yield per hectare of the cotton field was 
calculated through the regression model, and the relative 
error was calculated by comparing with measured yield. 
The cotton boll pixels ratio of the whole cotton field was 
the average of five images in data set 2. Equation 7 was 
used for calculating the pixels ratio of cotton bolls.
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(3)F1Score =
2CPA ∗ Recall

CPA+ Recall

(4)Recall =
TP

TP + FN

(5)MIOU =
1

k + 1

k∑

i=0

TP

TP + FP + FN

(6)R
2
= 1−

∑
n

i=1
(ti − ci)

2

∑
n

i=1

(
ti − tl

)2

(7)
Cotton boll pixels ratio

=
Number of cotton boll pixels in the image

Total number of pixels in the image
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