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Abstract 

Background:  Wild rocket (Diplotaxis tenuifolia) is prone to soil-borne stresses under intensive cultivation systems 
devoted to ready-to-eat salad chain, increasing needs for external inputs. Early detection of the abiotic and biotic 
stresses by using digital reflectance-based probes may allow optimization and enhance performances of the mitiga-
tion strategies.

Methods:  Hyperspectral image analysis was applied to D. tenuifolia potted plants subjected, in a greenhouse 
experiment, to five treatments for one week: a control treatment watered to 100% water holding capacity, two biotic 
stresses: Fusarium wilting and Rhizoctonia rotting, and two abiotic stresses: water deficit and salinity. Leaf hyperspec-
tral fingerprints were submitted to an artificial intelligence pipeline for training and validating image-based classifi-
cation models able to work in the stress range. Spectral investigation was corroborated by pertaining physiological 
parameters.

Results:  Water status was mainly affected by water deficit treatment, followed by fungal diseases, while salinity did 
not change water relations of wild rocket plants compared to control treatment. Biotic stresses triggered discoloration 
in plants just in a week after application of the treatments, as evidenced by the colour space coordinates and pigment 
contents values. Some vegetation indices, calculated on the bases of the reflectance data, targeted on plant vitality 
and chlorophyll content, healthiness, and carotenoid content, agreed with the patterns of variations observed for the 
physiological parameters. Artificial neural network helped selection of VIS (492–504, 540–568 and 712–720 nm) and 
NIR (855, 900–908 and 970 nm) bands, whose read reflectance contributed to discriminate stresses by imaging.

Conclusions:  This study provided significative spectral information linked to the assessed stresses, allowing the iden-
tification of narrowed spectral regions and single wavelengths due to changes in photosynthetically active pigments 
and in water status revealing the etiological cause.
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Background
Plant diseases or abiotic stresses, such as water deficit or 
salinity, are key factors in the growth and yield of most 
vegetable crops [1–5]. The early detection and identifi-
cation of both biotic and abiotic stresses would provide 
an opportunity for early intervention to control, prevent 
spread of infection or change irrigation management 

Open Access

Plant Methods

*Correspondence:  alejandra.navarrogarcia@crea.gov.it
1 Council for Agricultural Research and Economics (CREA), Research 
Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 
84098 Pontecagnano Faiano, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-3406-7417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-022-00880-4&domain=pdf


Page 2 of 14Navarro et al. Plant Methods           (2022) 18:45 

practices before the whole crop is damaged and vast yield 
losses occur [6]. Imaging sensors can identify the onset of 
adverse stresses before visible symptoms appear. Among 
imaging techniques, hyperspectral imaging is preferable 
for the identification and categorization of early stages of 
plant foliar diseases and abiotic stresses from laboratory 
to field scale, since uses high-fidelity plant reflectance 
information over a large range of the light spectrum, 
beyond that human vision, capturing more than the usual 
three bands of coloured light found in traditional digital 
imaging.

Hyperspectral imaging has already been used in veg-
etable crops for detecting biotic or abiotic stress, such 
as water salinity in lettuce [7], water stress in potato [8] 
and in tomato [9], Sclerotinia disease on oilseed rape 
[10], downy mildew in cucumber [11], most important 
diseases in tomato, bell pepper, potato and squash [12]. 
In order to determine the best combination of reflec-
tance wavelengths sensitive for diagnosing water or saline 
stress as well as plant diseases, hyperspectral images can 
be studied and used on rocket leaves before visible dam-
ages create a high detriment value in the production of 
this vegetable primarily employed for the fresh consump-
tion of a ready-to-eat product, due to its unique taste.

Wild or perennial rocket [Diplotaxis tenuifolia (L.) 
D.C.], is a leafy vegetable, commonly also known as aru-
gula, roquette or rucola, belonging to the mustard family 
(Brassicaceae). It’s traditionally grown in the Mediterra-
nean region, widely consumed in Italy, but with increas-
ing popularity as green salad (mixed or alone) in other 
parts of the World thanks to its excellent nutritional 
properties and its antioxidant activity [13–17]. The major 
producer area of wild rocket in the European Union is 
the Southwest of Italy, with an annual cultivation area 
of about 4,800 hectares under protected cultivation with 
yields ranging between about 30–40 kg m−2 of fresh cut 
[18, 19]. Sustainability of the wild rocket productive pro-
cesses must be increased in terms of reduction of syn-
thetic fungicides applications for the effective soil-borne 
disease control, and to improve the water use efficiency. 
Moreover, water management, also regarding crop toler-
ance to salinity attributable to the concentration of salts 
in the highly fertigated soils or the use of low-quality irri-
gation water, is due. All these factors affect plant sap-flow 
efficiency, compromising plant vitality and then, yield.

Fusarium oxysporum f. sp. raphani Kendrick and Sny-
der is the causal agent of the wild rocket wilting [20], 
while Rhizoctonia solani Kühn [telomorph Thanatepho-
rus cucumeris (Frank) Donk] is a parenchymatic patho-
gen causing rotting on roots, crown and collar [21]. Both 
telluric pathogens provoke dramatic epidemics under 
favourable environmental conditions (i.e., inoculum 
accumulation, high humidity, and continuous cropping 

of susceptible cultivars) like those that occur in sick and 
intensively exploited soils [22] and are the major soil-
borne biotic adversities of the crop. Most Brassicas spe-
cies have been categorized as moderately salt tolerant, 
with, however, a significant interspecific and intraspe-
cific variation [23]. Contradictory findings exist regard-
ing the reaction of these species to salt stress at different 
plant developmental stages, while most authors indicate 
that these species maintain their degree of salt tolerance 
consistently throughout the plant ontogeny. Regarding 
drought tolerance, although Eruca vesicaria has been 
reported to be one of the most drought-tolerant spe-
cies in Cruciferae [24, 25] little is known about the ecol-
ogy and physiology of D. tenuifolia under water deficit. 
D. tenuifolia could be considered as moderately drought 
tolerant, according to the results obtained by [26], where 
D. tenuifolia plants could cope with drought of 4  days 
without having any consequences on its growth, and the 
application of moderate-deficit irrigation (plants received 
60% of the 100% crop evapotranspiration values) did not 
reduce plant growth and flower development.

So, to limit reduction of yields and avoid unexpected 
loss of earnings in the presence of the stress factors, the 
time-effective application of plant protection as well as 
water management correction is desirable [27, 28] if only 
with the help of the digital sensing. Actually, the soil-
borne diseases, the water deficit and exceeding water 
salinity, in different way in the long run, may produce at 
canopy level, similar symptoms related to sap-flow defi-
ciency, which could hardly be discriminated with a quick 
visive inspection, especially on large scale.

Precision farming principles require to connect as 
much information as possible derived from sensing sys-
tems to develop support tools for farmer’s decisions on 
the base of high throughput non destructive monitoring 
capability applicable on large cultivated surfaces [29–31].

The goal of this experiment was to early detect and 
identify, through the hyperspectral image analysis, the 
biotic (Fusarium wilt and Rhizoctonia rot) and abiotic 
(water and saline) stressors causing symptoms on wild 
rocket, to extend its application in the future to most of 
leafy vegetables. Direct measurements of water status, 
leaf colour and pigment contents were performed to 
ascertain the sensibility of wild rocket to such biotic and 
abiotic stress sources and to bear out the effectiveness of 
hyperspectral image technique.

Materials and methods
Plant pathogens
The phytopathogens used in this study were R. solani 
(AG-4) and F. oxysporum f. sp. raphani isolated from 
symptomatic cabbage and wild rocket plants, respec-
tively. Both fungal strains are maintained on potato 
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dextrose agar (PDA, Oxoid) slants at 20 °C and each iso-
late was preliminarily tested for pathogenicity on wild 
rocket cv Tricia. Pathogen inoculum preparation fol-
lowed procedures described by Pane et  al. [32, 33] to 
obtain R. solani infected millet and F. oxysporum conidial 
suspension, respectively.

Plant material and experimental conditions
The in planta experiment was carried out in a glasshouse 
of the CREA-Research Centre of Vegetable and Orna-
mental Crops (Pontecagnano Faiano, Italy). Wild rocket 
(cv Tricia) seedlings were transplanted on 13 May 2019 
in 20  cm plastic pots (five per each) filled with auto-
claved soil-peat. Pots were arranged on bench and sup-
plied manually with a basal NPK mix nutritive solution 
at three-day intervals. At 2  weeks after transplanting 
(28 May 2019), plants were subjected to five treatments 
during 1  week: plants watered to 100% water holding 
capacity (leaching 20% of the applied water and electri-
cal conductivity (EC) of the irrigation solution of 1.53 dS 
m−1) (Control, C); infection by drenching 100 mL pot−1 
of F. oxysporum f. sp. raphani strain conidial suspension 
(1.0 × 105 conidia mL−1) (Fusarium stress, F); infection 
by amending 10  g pot−1 of R. solani colonized millet 
(Rhizoctonia stress, R); plants received 50% of water than 
the control (well-watered) plants (Water stress, W); 
plants irrigated at holding capacity, with EC of the irriga-
tion solution of 3.7 dS m−1, after addition of NaCl (saline 
stress, S). This research was executed in a randomized 
complete block design with ten replications, and each 
replicate represented a pot with 5 plants.

In the greenhouse, climatic data were monitored: air 
temperature and relative humidity were registered and 
checked by the Agricontrol’s MCX Climate Control Sys-
tem. (Agricontrol Srl., Albenga, SV, ITALY) and radiation 
by a solar radiation sensor (model 6450, David instru-
ments, Hayward, CA, USA, USA). The temperature 
ranged between 12 °C and 34 °C and the relative humidity 
between 29 and 90%. The maximum global radiation was 
730 W m−2.

Water status
The plant water status of rocket accessions was deter-
mined by the leaf relative water content (RWC​l; %), the 
plant water potential (Ψpl; MPa), the osmotic potential 
at full turgor (Ψ100  s; MPa), the electrolyte leakage (EL; 
%) and the dry matter content (DM; %). The RWC​l was 
measured in excised leaves harvested at midday (10:30–
12:30 h solar time) using one leaf per plant of three plants 
per pot, providing an average pot RWC​l, for five pots per 
treatment, according to the equation [34]:

Where FW, DW, and TW are the fresh, dry, and turgid 
weights (g), respectively, of the whole leaf.

Leaves were weighed immediately after collection to 
determine the fresh weight (FW). The cut end of each 
leaf was placed in distilled water and kept in dim light 
at 4  °C for 24–48  h till the turgid weight (TW) was 
reached and recorded. The dry weight (DW) was meas-
ured after air-drying the leaves at 70 °C for 48 h.

The determination of the Ψpl was estimated according 
to the method described by Scholander et al. [35], using 
a pressure chamber (Model 600 EXP Super Chamber, 
PMS Instrument Company, Albany, OR, USA) in five 
plants per treatment. The rocket plant was pulled out 
from the soil and the soil was carefully washed away 
from the roots, which were immediately submerged in 
a container of water and placed in the pressure cham-
ber. The upper part of the plant was detopped with a 
razor blade, sealed in the chamber and pressurised. 
The pressure in the pressure chamber was raised using 
nitrogen gas at a rate of 0.02 MPa s−1 [36].

The Ψ100s was measured in excised leaves harvested 
at midday (10:30–12:30 h solar time) using one leaf per 
plant in five plants per treatment. Leaves were placed 
by their petiole into flasks of distilled water and kept 
overnight in dim light at 4  °C to reach full saturation. 
After that, leaves were dried by filter paper to eliminate 
surface water, wrapped in aluminium foil and imme-
diately frozen in liquid nitrogen (− 170 °C) and stored 
at −  30  °C. Before the measurements, samples were 
thawed and leaf sap was extracted for immediate deter-
mination of osmolality (mOsmol kg−1) using a freezing 
point osmometer (Osmomat 3000, Gonotec GmbH, 
Berlin, DE). The Ψ100s in MPa was obtained by multi-
plying the osmolality with − 2.479 (conversion factor at 
25 °C; [37, 38]).

Electrolyte leakage (EL) was determined as described 
by Lutts et  al. [39]. Briefly, 10 pieces of leaves 
(10 × 10 mm) collected from four plants per plot were 
placed in individual vials containing 10 mL of distilled 
water. Samples were incubated at room temperature 
(25 °C) on a shaker (100 rpm) for 24 h. The initial elec-
trical conductivity (EC1) of the bathing solution was 
measured using a conductivity meter (model Metrohm 
6.0915.100, Metrohm Herisau, Switzerland). To meas-
ure total electrolytes released from leaf tissues, vials 
were then autoclaved at 120  °C for 20  min. The same 
samples were then autoclaved at 120 °C for 20 min and 
cooled at 25 °C to obtain the final electrical conductiv-
ity (EC2). The EL was calculated as:

(1)RWCl =
FW − DW

TW − DW
× 100
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The dry matter content (DM) of the plant was 
expressed as weight percentage in 3 plants per pot and 
5 pots per treatment and was calculated as dry weight 
(DW)/fresh weight (FW) × 100. In order to determine 
the DW, fresh plant material was dried in a thermo-
ventilated oven at 70  °C until it reached a constant 
mass.

Leaf color and pigments content
CIELAB (L*a*b*) leaf color coordinates were measured 
using a CR-210 Chroma Meter (Minolta Corp., Osaka, 
Japan) on leaf per plant of three plants per pot and ten 
pots per treatment. Measurements were done in dupli-
cate, on mature and developed leaves of a similar age 
randomly chosen, on the two opposite lobes exclud-
ing the central rib and expressed as L*, a*, b* values. L* 
indicates lightness/darkness (0 = black, 100 = white), 
a* describes intensity in green − red (where a posi-
tive number indicates redness and a negative number 
indicates greenness), and b* describes the intensity in 
blue − yellow (where a positive number indicates yel-
lowness and a negative number indicates blueness). 
Chroma (C) and hue angle (h) were estimated by the a* 
and b* values using the following equations:

Chroma indicates colour saturation, while hue is a 
measure of the angle in the CIELAB colour chart (0° 
or 360° indicates red hue, while angles below 270°, 
180°, and 90° indicate blue, green, and yellow hue, 
respectively).

SPAD index was measured at the midpoint of one leaf 
per plant of three plants per pot and 20 pots per treat-
ment, using a Minolta SPAD-502 chlorophyll meter 
(Konica-Minolta, Japan).

Chlorophylls (µg g−1 fresh weight) were extracted by 
homogenization of fresh leaf tissues (0.5  g) in acetone 
(80%). The resulting extracts were centrifuged at 4800 ×g 
for 15 min and the absorbance of solutions was measured 
at 662 and 647 for chlorophyll a and b, respectively, by a 
UV‐Vis spectrophotometer (model UV-1800, Shimadzu, 
Canby, US). Formula and extinction coefficients used 
for the determination of chlorophylls were described by 
Lichtenthaler and Wellburn [40]. The total chlorophyll 
content was calculated as the sum of chlorophyll a and b.

(2)EL(%) =
EC1

EC2
× 100

(3)C =

[

(

a
∗
)2

+
(

b
∗
)

]1/2

(4)h = tan−1 b∗

a∗

Hyperspectral imaging
Hyperspectral images were immediately acquired, once 
rocket leaves were detached, using the SPECIM IQ cam-
era (SPECIM, Spectral Imaging Ltd., Oulu, FI), working 
in the range of 400–1000 nm. A total of 204 wavelengths 
were considered along this range, with a probe spectral 
resolution of 7 nm. The camera carries a complementary 
metal–oxide–semiconductor (CMOS) sensor with a spa-
tial sampling of 512 pixels and an image spatial resolution 
of 512 × 512 pixels [41]. Reflectance value was calculated 
automatically by the camera software. Two 46 W halogen 
lamps pointing at each corner of the object were used for 
stable lighting conditions of the scene. One image per 
replicate, containing 5 leaves, one for each treatment, was 
acquired, obtaining 30 images for a total of 150 leaves.

Samples were scanned by acquiring the entire surface of 
the leaf creating a hypercube dataset. Relative reflectance 
hyperspectral images were simultaneously computed by 
the camera software. White reference and dark frame 
and raw data were acquired during the measurement.

The equation for the computation of the Reflectance by 
the SPECIM IQ Camera is:

The extraction of the spectral signature from each leaf 
was performed using the plugin of Quantum GIS soft-
ware, called Point Sampling Tools that allowed a random 
sampling, from three regions of interest (ROIs) designed 
on the upper leaf surface on both sides and at the apex, 
of 10 pixel-point each, for a total of 30 spectral signature 
per leaf. The resulting dataset including 4500 spectra 
was submitted to the successive elaboration in “Artificial 
intelligence modelling” section.

Vegetation indeces were calculated by computing the 
spectral data according to the formulas reported in Addi-
tional file 1: Table S1.

Statistical analyses
Differences among treatments for parameters of “Water 
status” sections and “Leaf color and pigments content” 
sections were analysed by one-way ANOVA test (at 
P ≤ 0.05 level) followed by a Duncan pairwise compari-
son test using Statgraphics Plus 5.1 (StatPoint Technolo-
gies Inc., Warrenton, VA, US).

Artificial intelligence modelling
The hyperspectral images aforementioned, “Hyperspec-
tral imaging” section, were analysed by means of an 
artificial intelligence approach aiming at classifying the 
spectra associated with the single pixel of the image. For 

(5)Reflectance =
Raw_data

t1
− Dark

t1

Raw_data
t2
− Dark

t2
×

t2

t1
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each leaf, mean spectral values of the 204 wavelengths 
were calculated, and the dataset submitted for the arti-
ficial intelligence modelling was composed by 150 obser-
vations (i.e. 30 leaves for each class) × 204 wavelengths. 
To do this, a single layer feed forward artificial neural 
network (SLFN; [42]) was designed using a one-hidden 
layer architecture with 40 nodes and sigmoid activa-
tion functions and 5 SoftMax output neurons associated 
respectively with the following classes: control, Fusarium, 
Rhizoctonia, salinity stress and water stress. The artificial 
neural network (ANN) was trained with Scaled conjugate 
gradient backpropagation algorithm [43] as implemented 
in the deep learning MATLAB toolbox. The dataset was 
partitioned using 70% of the samples (105) as training set 
and 30 per cent of the data set as test set (45). The test 
set was used to validate the model. This partitioning was 
optimally chosen with the Euclidean distances calculated 
by the algorithm reported by Kennard and Stone [44], 
selecting parameters without a priori knowledge of a 
regression model. The cost function was minimized using 
the mean squared normalized error (MSE) error perfor-
mance function with a 10–10 threshold on the gradient.

The confusion matrix of the percentages of pixel clas-
sification for each leaf was produced and an ANOVA test 
(H0: same mean) was performed to test the significance 
of differences among classified pixels into classes.

In order to understand which frequency values, among 
the 204 considered in the absorbance spectra, resulted 
to be more important in revealing the effects due to the 
presence of the different stresses, a variable impact anal-
ysis was also conducted. The variable impact �k for the 
k-th frequency of the absorbance spectrum, was calcu-
lated in the following way. The complete data set (train-
ing set + test set) was considered made of m absorbance 
spectra. Each spectrum can be thought as a row vector x 
with n columns. The m spectra of the data set were stored 
in a matrix X having m rows and n columns. As a result, a 
generic element of that matrix is Xn

m . The spectra belong 
to 5 classes represented by a vector y. The output y is 
indeed a column vector with m rows obtained by apply-
ing the operator N to the matrix X:

In particular, y = NXk is a row number representing the 
class of the k-th element of the data set and Xk is the row 
vector representing the k-th row of the X matrix (i.e., the 
k-th spectrum of the data set). In this study N is a nonlin-
ear operator and can be expressed as the tensor product 
of several linear and nonlinear operators. It represents, 
indeed, the converged SLFN. As a first step the first row 
X1 of the matrix X was considered and the operator N 
was applied m times to X1, choosing each time a different 
value of X1

1 among the values of X1, the latter being the 

(6)y = NX

first column of the matrix X. The 1-case dependent vari-
able impact of the first variable �1

1 was then defined as:

This procedure was repeated for all the n variables over 
all the data set. The i-case dependent variable impact of 
the k-variable �k

i
 was then defined as:

Finally, the variable impact of the k-th frequency of the 
spectra was then obtained by averaging �k

i
 over all the m 

cases of the data set:

The procedure described above is similar to that imple-
mented in the Palisade software. The model was devel-
oped by using the MATLAB 9.7 R2019b Deep Learning 
Toolbox.

Once the network has been trained, the artificial intel-
ligence model was applied on each hyperspectral image, 
classifying pixel by pixel each entire image. The result of 
this operation was quantitative (i.e., counting the pixels 
belonging to each class).

Results
Water status of plants
Plant water status of wild rocket was determined at the 
end of the experimental period in the five treatments 
(Fig. 1). There were noticeable differences in water rela-
tions parameters, together with dry matter and SPAD 
index of wild rocket plants due to both abiotic and biotic 
stress sources applied (Table 1).

RWC and Ψpl behaved in a similar way, showing C 
plants the highest values of these parameters (90% and 
−  0.58  MPa), while plants under water deficit showed 
the lowest RWC values (72%) and the most negative Ψpl 
(−  1  MPa). For plants exposed to the other treatments 
(F, R, and S) intermediate values were found. Ψpl was 
not measured in plants infected with R. solani due to its 
stem weakness didn’t allow its determination by the pres-
sure chamber. The lowest values of Ψ100s were obtained 
in plants infected with R. solani, (−  0.93  MPa) fol-
lowed by abiotic stresses and control plants (on average 
−  0.83 MPa), while highest values were found in plants 
infected with F. oxysporum f. sp. raphani (−  0.68  MPa) 
(Table 1).

C and S treatment plants showed the lowest percent-
ages of DM and EL (on average 50%) and the high-
est SPAD values (Table  1). The opposite happened for 

(7)�1
1 = max

X
1
1∈X

1

NX1 − min
X
1
1∈X

1
NX1

(8)�k
i
= max

Xk
i
∈Xk

(NXi)− min(
Xk
i
∈Xk

NXi)

(9)�k
=

∑

m

i=1�
k
i

m
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the biotic stressors and W treatments, which showed 
the highest EL percentages (on average 81% and 72% 
for biotic and W treatments, respectively) and the low-
est SPAD values. The response of dry matter differed 
between biotic and W treatments, since plants under 
water stress showed the highest value of this parameter 
(15%), and in plants under biotic stressors this significant 
increase was only significative for plants infected with R. 
solani (≈ 14%) and not for those infected with F. oxyspo-
rum f. sp. raphani (11%) (Table 1).

In Fig. 2 the colour coordinates, lightness, chroma, and 
hue angle which characterized leaf colour are showed. 
Lightness was increased with biotic stresses, although 
more pronounced in plants infected with F. oxysporum f. 
sp. raphani, compared control and abiotic stressors ones 
(Fig.  2a). For Chroma, the highest values were found in 
plants with F treatment and the lowest with S one, the 
other treatments showing intermediate values (Fig.  2b). 
Hue angle decreased with biotic stresses in compari-
son with abiotic stresses and C treatments, and these 

values were statistically equal for the two fungal infec-
tions (Fig. 2c).

Chlorophyll a, b and carotenoids content showed a sig-
nificant decrease only in plants infected with Fusarium 
compared to the other treatments, where values of these 
parameters were statistically equal (Fig. 3a, b, c). Reduc-
tions were on average of 60, 15, and 25μg g−1 for chloro-
phyll a, b and carotenoids, respectively.

VIS–NIR reflectance patterns and vegetation indices
Means of all pixel-wise spectral data from stressed and 
reference samples is showed in Fig. 4, where an increased 
reflectance is highlighted around the photosynthetically 
active wavelengths in the VIS region for the Fusarium 
and Rhizoctonia samples compared to the other treat-
ments. Forty-nine out of 54 hyperspectral vegetation 
indices considered in this study provided significant 
(P ≤ 0.05) differences among treatments, in at least one 
case (Additional file  1: Table  S2). Twenty-four indices 
distributed along the various target categories of plant 

Fig. 1  Wild rocket at the end of exposure period to stresses sources, Fusarium oxysporum f.sp. raphani (F), Rhizoctonia solani (R), salinity (S) and water 
deficit (W) compared to a healthy control (C)

Table 1  Effects of the abiotic and biotic stresses sourced by Fusarium oxysporum f.sp. raphani (F), Rhizoctonia solani (R), salinity (S) and 
water deficit (W) compared to a healthy control (C), on the relative water content (RWC; %), plant water potential (Ψpl; MPa), osmotic 
potential at full turgor (Ψ100π; MPa), electrolyte leakage (EL; %), dry matter (DM; %) and SPAD index (SPAD) in wild rocket seedlings at 
the end of the experimental period

a ** and *** denote statistical significance at the 0.01 and 0.001 levels of significance, respectively.
b Different letters in the same line indicate significant differences among treatments, according to the Duncan’s test (P < 0.05).
c Ψpl was below detection level (bdl) under R treatment

Treatments Pa

C F R S W

RWC (%) 89.29 ± 0.60 ab 83.60 ± 1.41 b 84.40 ± 2.24 b 78.51 ± 0.84 b 71.92 ± 2.66 c ***

Ψpl (MPa) − 0.58 ± 0.03 a − 0.69 ± 0.02 b bdlc − 0.72 ± 0.02 b − 1.0 ± 0.04 c ***

Ψ100π (MPa) − 0.82 ± 0.02 b − 0.68 ± 0.02 a − 0.93 ± 0.04 c − 0.84 ± 0.02 b − 0.84 ± 0.03 b ***

EL (%) 52.19 ± 7.06 bc 83.22 ± 3.21 a 79.07 ± 6.84 a 47.88 ± 8.58 c 72.08 ± 10.94 ab **

DM (%) 9.95 ± 0.54 b 11.15 ± 0.40 ab 13.81 ± 0.96 a 10.63 ± 0.23 b 15.43 ± 0.75 a ***

(SPAD) 50.85 ± 1.24 a 44.72 ± 1.67 b 45.01 ± 1.64 b 50.48 ± 1.40 a 47.26 ± 1.40 ab **
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Fig. 2  Colour parameters (Lighness; A, CHROMA; B and HUE; C) in 
wild rocket seedlings at the end of the exposure period to stresses 
sourced by Fusarium oxysporum f.sp. raphani (F), Rhizoctonia solani (R), 
salinity (S) and water deficit (W) compared to a healthy control (C). 
Boxplots are based on mean values of 30 repetitions. The solid line 
in the box indicates the median and the short dash line the mean. 
Boxplots show the 25 and 75% quantiles as the lower and upper limit 
of the box. The lower and upper whiskers represent the 5 and 95% 
percentile

Fig. 3  Chlorophyll and carotenoids content (Chl a; A Chl b; B, and 
carotenoids; C) in wild rocket at the end of the exposure period to 
stresses sourced by Fusarium oxysporum f.sp. raphani (F), Rhizoctonia 
solani (R), salinity (S) and water deficit (W) compared to a healthy 
control (C). Boxplots are based on mean values of 30 repetitions. The 
solid line in the box indicates the median and the short dash line 
the mean. Boxplots show the 25 and 75% quantiles as the lower and 
upper limit of the box. The lower and upper whiskers represent the 5 
and 95% percentile
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vitality and vegetation, pigment content and photochem-
ical activity, were able to differentiate samples based on 
treatments. Interestingly, Modified Soil Adjusted Veg-
etation Index (mSAVI), Simple Ratio R550-to-R670 (G), 
Lichtenthaler indices 3 (LIC3), Ratio Analysis of Reflec-
tance Spectra (RARS), Normalized Difference Vegeta-
tion Index (NDVI) and Green NDVI (gNDVI) displayed a 
treatment rank ordering in agreement with physiological 
findings: Fusarium positioned at the opposite end of the 
control. Water index (WI) was the lowest under Rhizoc-
tonia, whereas DVI, Soil Adjustment Vegetation index 
(SAVI), Transformed Soil Adjustment Vegetation index 
(TSAVI) and Red-Edge Position Linear Interpolation 
were it for Fusarium. Simple Ratio Pigment Index and 
Modified Chlorophyll Absorption in Reflectance Index 
were lower for S and W stresses, respectively, compared 
to the other treatments.

Artificial intelligence modelling based on VIS–NIR spectral 
data
The ANN trained model has a hidden layer size of 40 
nodes and the algorithm converged after 955 iterations 
(3  s). Table  2 reports the characteristics and principal 
results of the ANN model used to predict the stress from 
the 150 (VIS–NIR) spectral data. All the 105 spectra in 
the training set were correctly classified. In testing, there 
were 12 misclassified spectra. The most misclassified 
stress was W (5 misclassified samples) followed by F (3 
misclassified samples), R and S (2 misclassified samples). 
This was probably due to the spectral modification asso-
ciated with the biological consequences induced by the 
4 stresses (stoma enclosure and temperature enhance-
ment). The trained ANN model was used as a pixel clas-
sifier on the multispectral images shown in Fig. 5 where 
different colors refer to the different classes.

The confusion matrix of the percentages of pixel classi-
fication for each leaf is reported in Table 3. The results of 
the ANOVA test (H0: same mean) showed how percent-
ages of correctly classified pixels (positioned on the main 
diagonal of the Table  3) are always significantly higher 
than those wrongly classified.

Discussion

Wild rocket baby-leaf is currently grown in very inten-
sive greenhouses than are essentially conditioned by 
relative humidity, fertigation, coastal soil and climatic 
conditions, high seeding density, and continuous recul-
tivation in monoculture, which potentially expose the 
crop to various biotic and/or abiotic stressors [45, 46]. 
The success of management strategies aimed at ensur-
ing the best growth settings to achieve expected yields 
and earns, relies on early identification and targeted 
control of etiological factors. Hyperspectral imaging 

Fig. 4  Hyperspectral reflectance signature in VIS–NIR spectral region of leaves from wild rocket collected 1 week after the exposure period to 
stresses sourced by Fusarium oxysporum f.sp. raphani (F, green), Rhizoctonia solani (R, blue), salinity (S, yellow) and water deficit (W, pink) compared 
with healthy control (C, red)

Table 2  Characteristics and principal results (number of cases, 
training time, number of trials, percentage of bad predictions) 
of the SLFN model (training and internal test) in predicting the 
classification of the different treatments: control, Fusarium, 
Rhizoctonia, salinity and water deficit

Training (70%)

 Number of cases 105

 Number of hidden layers 1

 Number of nodes 40

 Training time 00:00:03

 Number of trials 955

 % bad predictions 0.0

Testing (30%)

 Number of cases 45

 % bad predictions (N) 26.7 (12)
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has been proposed, in recent years, for the rapid, non-
destructive and object-oriented classification of plant 
physiological changes induced by the harmful pathogens 

pressure and/or adverse environmental conditions to 
plant growth [47]. Digital monitoring of the plant stress 
onset can improve the effectiveness of control methods 

Fig. 5  Example of single pixel classification. Original image (in RGB; A) and classified image (B) through the trained ANN model used as a pixel 
classifier on the multispectral images of leaves collected 1 week after the treatment application. In B the colors refer to the different classes, i.e. wild 
rocket exposed to stresses sourced by Fusarium oxysporum f.sp. raphani (F, green), Rhizoctonia solani (R, blue), salinity (S, yellow) and water deficit (W, 
pink) compared with healthy control (C, red)

Table 3  Confusion matrix of the percentages of pixel classification for each leaf class, i.e. stresses sourced by Fusarium oxysporum f.sp. 
raphani (F), Rhizoctonia solani (R), salinity (S) and water deficit (W) compared to control (C) treatment

ANOVA test (H0: same mean) results are reported using letters. Horizontally reading, equal letters correspond to no significant differences

Observing the variable impact of spectral values, the most informative ones ranged within the following frequencies: 492–504 nm, 540–568 nm, 712–720 nm, 855 nm, 
900–908 nm and 970 nm (Fig. 6)

Treatments Output

C F R S W

C 0.34 ± 0.10a 0.14 ± 0.07bc 0.12 ± 0.06c 0.19 ± 0.09b 0.21 ± 0.10b

F 0.05 ± 0.06c 0.56 ± 0.18a 0.16 ± 0.10b 0.06 ± 0.08c 0.18 ± 0.09b

R 0.08 ± 0.11c 0.22 ± 0.13b 0.45 ± 0.19a 0.08 ± 0.09c 0.18 ± 0.11b

S 0.16 ± 0.11bc 0.15 ± 0.08c 0.14 ± 0.08c 0.34 ± 0.08a 0.20 ± 0.09b

W 0.10 ± 0.07c 0.21 ± 0.14b 0.20 ± 0.13b 0.12 ± 0.09c 0.37 ± 0.12a

Fig. 6  Mean VIS–NIR spectral data (left side axis) for wild rocket at the end of the exposure period to stresses sourced by Fusarium oxysporum f.sp. 
raphani (F, green), Rhizoctonia solani (R, blue), salinity (S, yellow) and water deficit (W, pink) compared with healthy control (C, red). Variable impact 
(right side axis) evidenced with dark blue line
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by supporting farmer decisions and quickly advising pre-
cise intervention.

The current study focused on deficiencies in wild rocket 
caused by two soil-borne pathogens, F. oxysporum f. sp. 
raphani and R. solani, and two sources of abiotic stresses 
attributed to water deficit and salinity. Related above-
ground symptoms may not be properly distinguishable 
by visual detection, and, especially in the early stages of 
their evolution, may be confused with each other, delay-
ing the application of the most appropriate remedies. 
The root system is the main target of salt and drought in 
the soil and can modulate physiological responses in the 
aerial part of the plant, resulting in non-specific symp-
toms as a result of the nutrient flux and water relations 
involved [48].

In the current study, water relations of wild rocket 
plants, were mainly affected by abiotic stress, as shown by 
decreases in RWC and Ψpl, but with a greater impact for 
water deficit, where higher EL and DM were also found. 
Rates of passive ion leakage from stress damaged plant 
tissues are used as a measure of alterations in membrane 
permeability, and to characterise plant cell membrane 
stability [49], suggesting that plant cell membranes were 
damaged under water deficit in this study. The higher dry 
matter content of wild rocket plants under water deficit 
conditions suggests an improvement of their shoot dry 
weight. Instead, plants under salinity conditions showed 
the same EL and DM values as control plants, and lower 
RWC and Ψpl values than control plants but statistically 
higher than those of the water-stress treatment, due on 
the one hand to short-term exposure to sodium chloride 
and on the other hand to the known tolerance of rocket 
plants to salinity. Barbieri et  al. [50], established an EC 
of 5 dS m−1 in the nutrient solution for an improvement 
in dry matter content, visual appearance, carotenoids 
and phenols of E. sativa, while Bonasia et  al. [51] give 
an EC threshold of 3.5 dS m−1 in the nutrient solution 
for growing wild rocket, which enhances leaf texture, 
visual quality, and antioxidant compounds, and reduces 
nitrate content, without a decrease in dry weight. Indeed, 
saline stress has been applied by other authors [52, 53] to 
improve vegetable quality by increasing the production 
of secondary metabolites and sensory characteristics and 
reducing anti-nutritional factors.

At the beginning of the Rhizoctonia basal rotting and 
Fusarium wilting, wild rocket plants decreased their 
RWC and Ψpl, although it was not possible to deter-
mine the values of the latter parameter in the leaves of 
diseased plants by Rhizoctonia, as it happened under 
abiotic stresses. However, the Ψ100s highlights a vari-
able response among biotic factors, likely related to the 
specificity of stressors mechanisms in damaging plant. 
The lower values of Ψ100s found in plants infected with 

R. solani, compared to other treatments, are indicative 
of osmotic adjustment, which involves the net accumula-
tion of solutes in a cell in response to stress. Pérez-Pérez 
et al. [54] stated that, consequently, the osmotic potential 
decreases, which in turn attracts water into the cell and 
allows turgor to be maintained, although it was not pos-
sible to know the extent of the plant stress as it was not 
possible to measure Ψpl in plants infected with R. solani. 
F. oxysporum f. sp. raphani enters the host through the 
root and then develops endophytically to invade the 
xylem vessels, not externally as happens with R. solani. 
Plants under Fusarium infection use as defence reaction 
the production of physical barriers (i.e. gums) to block 
the progression of the pathogen. Nevertheless, the occlu-
sion of the vessels prevents the mycelium spreading, but 
also drastically reduces the entry of solutes and water 
from the root medium. As consequence, their Ψ100s did 
not decrease, nay values were even higher than in the 
control plants, suggesting a decrease in turgor potential. 
Ψpl reflects the symptoms of a water stress in the plant, 
but the relative contribution of the two main compo-
nents, osmotic and turgor potential to leaf water poten-
tial can experience significant differences depending on 
the species and/or treatment (stress) applied. Increased 
resistance of water flow from the substrate to the plant 
has been observed in several species, especially under 
water stress conditions [55–57] and, in our case this phe-
nomenon may have reduced water transport to the leaves 
due to the gradual closure of the xylem vessels by the 
Fusarium mycelium. Furthermore, both fungi strongly 
increased electrolyte leakage suggesting that stress-
induced injury of cell membrane due to oxidative dam-
age, could be related to the turgor loss.

The values of colour space coordinate suggested that 
the leaves of plants under biotic stresses were more yel-
lowish green (decreased in hue angle), lighter (increased 
in lightness) and gained in saturation (increased in 
chroma) than the leaves of the control plants and those 
of the abiotic stresses. This indicates that leaf colour is 
modified by biotic stresses, and that, the discoloration 
resulting from both pathogens could be due to chloro-
phyll breakdown as also suggested by the lower SPAD 
values. However, spectrophotometric pigment evalua-
tions revealed a significant reduction in the chlorophyll 
a and b, and carotenoids content only in Fusarium dis-
eased plants compared to the other treatments. As it has 
been demonstrated on tomato, decline in the xylem flux 
due to Fusarium wilting is very detrimental to the pho-
tosynthetic system deprived of active pigments as early 
as 6–8 days after infection is started [58]. In contrast, R. 
solani did not affect chlorophyll concentration, as it was 
previously observed on Chinese cabbage over a compara-
ble period [59].
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Some vegetation indices, calculated on the bases of 
reflectance data targeted on plant vitality and chlorophyll 
content (NDVI and G), healthiness (mSAVI), and carot-
enoid content (LIC3 and RARS), agreed with the patterns 
of variations observed for the physiological parameters. 
Vegetation indices have already been proposed as a reli-
able method to classify plant diseases and stresses by syn-
thetizing hyperspectral outputs for the purpose of early 
identification [60]. They elaborate in narrower spectrum 
data ranges that carry biological meanings. In the current 
study an artificial intelligence model based on hyperspec-
tral reflectance of leaves was developed for the first time, 
achieving very good performance (only 26.7% of bad pre-
dictions). The dataset was further mined, and promising 
insights were obtained to perform an accurate classifica-
tion of the source of the symptoms. ANN modelling using 
a pixel classifier was able to separate wild rocket treat-
ments on the basis of the significant differences occur-
ring in the leaf hyperspectral signatures by assigning 
higher discriminant weight to narrow wavelength ranges 
492–504  nm, 540–568  nm and 712–720  nm, which fall 
within the VIS blue, green and red ranges and to 855 nm, 
900–908  nm and 970  nm of the NIR spectrum. These 
ANN filtered reflectance regions, which were previ-
ously identified to refer about plant stresses, as they were 
related to leaf pigments and changes in cell structures. 
Narrowed blue and red ranges were previously found to 
be indicative of shifts in leaf pigment absorption [61] and 
chlorophyll content [62] due to ongoing plant stresses. 
Recently, a trained Random Forest model was applied to 
explore non-redundant bands falling in the violet-blue 
light region that can classify powdery mildew-affected 
wild rocket leaves [63]. Reflectance wavebands within 
green pigment indices selected from a wavelet-based 
optimal regression model as a predictor of active chlo-
rophyll quantification [64]. Gitelson et al. [65] exploiting 
the high sensitivity of the VIS green channel to chloro-
phyll a concentration adapted the green-NDVI index 
to monitor photosynthetic activity and related plant 
stresses. Indeed, in this study, the gNDVI values proved 
to be gradated on the stress magnitude of the treatments 
as well as the G index, calculated as R550-to-R670 simple 
ratio, LIC3 (R440/R730) and RARS (R746/R513). Instead, the 
Photochemical Reflectance Index (PRI), calculated on 
R531 and R570, clearly separated stressed and non-stressed 
samples at very early stages of the present experimental 
conditions. The PRI was proposed by Meroni et al. [66] 
for early remote detection of incipient ozone stress on 
white clover, while on barley, it detected drought stress at 
8 days after the complete water deprivation [67].

On the other hand, reflectance in the 950–970  nm 
region was found to be indicative of plant water status in 
gerbera, while, on the same crop, the R970-to-R900 ratio 

closely followed shifts in relative water content [68]. As 
matter of fact, PRI and WI were found to be among the 
most sensitive hyperspectral indices for assessing the 
water status of tomato under different irrigation regimes 
[69] and wheat under genetic selection for drought resist-
ance [70].

Similar findings were previously observed on sugar 
beet, where nematode-induced posterior drought and 
Rhizoctonia wilting were significantly classified by can-
opy imaging with the carotenoids/chlorophyll a depend-
ent Structural Independent Pigment Index, Simple Ratio 
Pigment Index, and WI indices [71]. Analogously, Susič 
et  al. [72] used a partial least square-support vector 
machine approach to individuate wavebands in the highly 
discriminatory shortwave infrared spectral regions of the 
tomato canopy response to root-knot nematodes and soil 
water deficiency. In this regard, the experimental pipe-
line capable of classifying stresses as early as 12 days after 
initiation was described by Žibrat et al. [73]. Applying a 
linear regression analysis, Manganiello et al. [74] recently 
found the interactive combination of hyperspectral veg-
etation indices TSAVI + SAVI and Triangular Vegetation 
Index able to predict baby-leaf infection levels of three 
different soil-borne pathogens, including R. solani on 
wild rocket, as modulated by treatments with biocontrol 
agents Trichoderma spp.

Conclusion
This study provided significative spectral informa-
tion related to the evaluated stresses as corroborated 
by the physiological measurements. Fusarium wilting 
strongly affected water relations in the infected wild 
rocket plants, which showed the poorest cell integ-
rity, chlorophyll content and greenness. Rhizoctonia 
disease proved to be the second most impactful stress 
under the experimental conditions as a result of root 
and collar rot, while abiotic stresses, especially salin-
ity barely showed the effects induced by the water 
stress in the substrate. The reflectance-based findings 
of the present work constitute a valuable collection of 
data on the identification of putative bands that can be 
used for monitoring multiple stresses in wild rocket, 
to be employed prospectively as an input light-filter of 
cheaper and more feasible devices for precision stress 
assessment in this species, and extendable to other 
leafy vegetables. The potential of hyperspectral tech-
nology for innovative and high-performing detection 
tools is here enhanced by a model based on artificial 
neural network that allowed the identification of nar-
row spectral regions and single wavelengths highly sen-
sitive to early shifts in reflectance profiles of stressed 
wild rocket due to changes in photosynthetically active 
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pigments (VIS: 492–504, 540–568 and 712–720  nm) 
and water status (NIR: 855, 900–908 and 970  nm). 
This information can be used in the field of techno-
logical innovation for the design of new optoelectronic 
probes to support farmers in their choices, e.g. guiding 
both phytosanitary and irrigation treatments through 
machine vision.
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