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Abstract 

Background:  Faba bean is an important legume crop in the world. Plant height and yield are important traits for 
crop improvement. The traditional plant height and yield measurement are labor intensive and time consuming. 
Therefore, it is essential to estimate these two parameters rapidly and efficiently. The purpose of this study was to 
provide an alternative way to accurately identify and evaluate faba bean germplasm and breeding materials.

Results:  The results showed that 80% of the maximum plant height extracted from two-dimensional red–green–
blue (2D-RGB) images had the best fitting degree with the ground measured values, with the coefficient of determi-
nation (R2), root-mean-square error (RMSE), and normalized root-mean-square error (NRMSE) were 0.9915, 1.4411 cm 
and 5.02%, respectively. In terms of yield estimation, support vector machines (SVM) showed the best performance 
(R2 = 0.7238, RMSE = 823.54 kg ha−1, NRMSE = 18.38%), followed by random forests (RF) and decision trees (DT).

Conclusion:  The results of this study indicated that it is feasible to monitor the plant height of faba bean during the 
whole growth period based on UAV imagery. Furthermore, the machine learning algorithms can estimate the yield of 
faba bean reasonably with the multiple time points data of plant height.
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Background
Faba bean (Vicia faba L.) is a cool-season legume crop, 
planted worldwide as a protein source of food, live-
stock feed, vegetables and industrial raw materials [1, 2]. 
According to the FAO statistical data (FAOSTAT; http://​
www.​fao.​org/), there were 71 countries and regions in the 
world planting dry faba bean in 2019. The harvesting area 
was 2,577,201 square hectometers (hm2), and the total 
production reached 5,431,503 tons (t), while the harvest-
ing area of China was 839,618 hm2 and the production 
was 1,740,945 t, respectively. Therefore, China is the most 

important producer globally [3]. Faba bean is rich in pro-
tein, carbohydrates, minerals and vitamins [4]. Especially, 
the protein content of dry faba bean ranges from 20.3 to 
41%, with an average of 27.6%, which is higher than pea, 
mungbean, cowpea and other legumes [5].

Plant height is a vital growth indicator of crops, 
which is related to plant architecture, lodging resist-
ance and yield performance [6–8]. Early yield estimation 
is crucial for agricultural practices and it could provide 
farmers with field management decisions such as ferti-
lization, irrigation and pesticide application [9]. Using 
early-season data for yield estimation could not only 
reduce resource input and environmental pollution, but 
also increase crop yield and subsequent profits [10, 11]. 
Therefore, we need access to crop height and yield effi-
ciently and non-destructively [12–14]. The traditional 
method for plant height measurement through measur-
ing the vertical distance from the ground to the top of the 
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main stem in the natural state by the ruler [15] is labor-
consuming, low throughput, destructive and prone to 
errors in the sampling. Moreover, plant height obtained 
by sampling several single plants is insufficient to repre-
sent the variations of all plants within the field [16, 17].

With the development of unmanned aerial vehicle 
(UAV) platform and miniaturization of sensors, it pro-
vides an alternative approach for crop height measure-
ment [18]. UAV remote sensing technology is based on 
the platform of UAV and different sensors, which has 
the advantages of convenient operation, high flexibility, 
strong adaptability and low cost, therefore it is booming 
in agriculture research community [19–21].

RGB camera [22, 23], multispectral or hyperspectral 
camera [24], lidar [25, 26] and ultrasonic sensors [27, 
28] have been applied on the UAV platform. These high-
throughput phenotyping platforms have been imple-
mented in many crops such as maize [29, 30], wheat 
[31, 32], rice [33, 34], sorghum [35, 36], soybean [37] in 
terms of plant height study. However, there was no report 
for faba bean. In previous studies, Han et  al. [38] used 
the high-resolution RGB camera based on UAV plat-
form to access to the multi-temporal images of corn in 
the field. Then plant height data was extracted by three-
dimensional reconstruction point cloud model and they 
found that the extracted plant height was highly corre-
lated with that of manual measurement. Holman et  al. 
[39] developed a rapid and accurate method for extract-
ing plant height, and compared it to the standard field 
measurement (R2 ≥ 0.77, RMSE ≤ 0.07  m). Demir et  al. 
[40] filtered a digital surface model to derive the plant 
height, and compared the results with field measure-
ment (Mean = 4.66  cm, Median = 3.75  cm, Standard 
Deviation = 13.78 cm).

Various methods have been proposed and applied 
to crop yield estimation, such as crop growth models, 
remote sensing data, and crop growth models coupled 
with environmental factors. Jin et  al. [41] developed a 
winter wheat yield estimation method by combining 
AquaCrop model with optical and radar imaging data 
using the position and orientation system algorithm, 
which resulted in highly correlations between pre-
dicted and measured yield. Tao et al. [42] estimated the 
yield of winter wheat by using three regression methods 
with variables of spectral indices, plant height extracted 
from UAV hyperspectral images and the ground-meas-
ured plant height. Gilliot et  al. [43] showed the poten-
tial of predicting maize yield based on the plant height 
extracted from UAV imagery, which would be better 
for variability analysis in the field trials. Feng et  al. [44] 
performed an in-season alfalfa yield estimation using 
an ensemble machine learning model, and the results 
demonstrated the efficacy of the proposed ensemble 

model. Sun et al. [45] developed six mainstream machine 
learning models to estimate the potato tuber yield and 
obtained satisfactory estimation results, which demon-
strated the potential of combining hyperspectral imagery 
with machine learning in yield estimation.

These studies explored the application of different 
sensors to obtain plant height data. Few of them com-
pared the accuracy of extracting plant height from 
two-dimensional red–green–blue (2D-RGB), two-dimen-
sional multispectral (2D-MS) and three-dimensional 
red–green–blue (3D-RGB) images. Furthermore, to our 
knowledge, the detection of estimating the faba bean 
yield based on machine learning algorithms has not been 
investigated so far in the literatures. Therefore, the aims 
of the current study were to (1) evaluate the relationship 
between the ground measured plant height and digital 
features extracted from UAV imagery, (2) explore the 
correlation between plant height and yield of faba bean 
in different time points, (3) evaluate the accuracy of faba 
bean yield estimation based on plant height by using 
three machine learning algorithms (SVM, RF and DT).

Results
Results of plant height extracted from UAV imagery
The faba bean plant height values extracted from three 
types of UAV imagery were compared with the ground 
measured values, and the results were shown in Fig. 1.

From Fig. 1, it showed that the plant height extracted 
based on 2D-RGB were all higher than the ground 
measured value (R2 = 0.9915, RMSE = 8.05  cm), and the 
plant height extracted based on 2D-MS were almost all 
lower than the ground measured value (R2 = 0.9521, 
RMSE = 10.17  cm), while the most of plant height 
extracted based on 3D-RGB were higher than the 
ground measured value, and a few were lower than it 
(R2 = 0.9369, RMSE = 7.52 cm). The R2 between the plant 
height extracted from these three types of UAV imagery 
and the ground measured values were all greater than 0.9, 
which showed that the plant height extracted from the 
UAV imagery had a strong correlation with the ground 
measured value, and this method can be used to measure 
plant height in V. faba.

The correlation of plant height between the ground 
measurement and extraction from 2D-RGB UAV imagery 
was the strongest among these three types of UAV 
imagery, and the spatial distribution map of faba bean 
plant height in different time were shown in Fig. 2.

Calibration of plant height values extracted from 2D‑RGB, 
2D‑MS and 3D‑RGB
By comparing the plant height extracted from three types 
of UAV imagery with those measured on the ground, it 
was found that the maximum value of R2 was 2D-RGB 
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(0.9915), followed by 2D-MS (0.952) and 3D-RGB 
(0.9399). The smallest value of RMSE was 3D-RGB 
(7.52  cm), followed by 2D-RGB (8.05  cm) and 2D-MS 
(10.17  cm). The smallest value of NRMSE was 3D-RGB 
(20.30%), followed by 2D-MS (26.97%) and 2D-RGB 
(28.05%). According to these evaluation indicators, it 
could be found that the extracted data with high coef-
ficient of determination (R2) had relatively large errors 
(RMSE, NRMSE), while the data with small errors had 
relatively low coefficient of determination, so it was dif-
ficult to judge which type of UAV imagery was the most 
appropriate one for extracting the faba bean plant height 
in this study. Therefore, the plant height values extracted 
from three types of UAV imagery were calibrated in pro-
portion of 70% ~ 100% (Table 1).

As presented in Table  1, the R2 between UAV meas-
urement and ground measurement did not increase. 
However, calibration did significantly reduce the RMSE 
and NRMSE. In 2D-RGB, 80% of plant height was the 
most optimum result, with the R2 of 0.9915, RMSE of 
1.44 cm, NRMSE of 5.02%, and the fitting equation was 
y = 0.9796x + 0.4909. In 2D-MS, 100% plant height was 
the most optimum result, with R2 of 0.952, RMSE of 
10.17 cm, NRMSE of 26.97%, and the fitting equation was 
y = 1.0624x  −  11.662. In 3D-RGB, 90% of plant height 
was the most optimum result, with R2 of 0.9399, RMSE of 
5.23 cm, NRMSE of 14.12%, and the fitting equation was 
y = 1.1934x − 7.8951. In this study, from the comparison 

of these three optimal results, 80% of plant height values 
extracted from 2D-RGB UAV imagery was the most suit-
able for monitoring plant height during the whole growth 
period of faba bean.

Comparison of the most suitable plant height and ground 
measurement
The 80% of plant height values extracted from 2D-RGB 
UAV imagery was compared with the ground measured 
values, which was represented by box-plot (Fig. 3).

As Fig.  3 showed, during the whole growth period of 
faba bean, the average plant height extracted from UAV 
imagery was almost consistent with that of the ground 
measured. Meanwhile, the dynamic changes of plant 
height were well represented by UAV measured. This 
implied that the 2D-RGB UAV imagery was effective in 
estimating the plant height in V. faba.

Correlation analysis between plant height and yield in faba 
bean
Pearson’s correlation coefficients were initially estimated 
to verify the association between yield and the optimal 
plant height values at seven time points, and the results 
were shown in Fig. 4.

As presented in Fig. 4 that there was a strong correla-
tion between plant height and yield at seven time points, 
ranged from 0.3 to 0.87. Among them, D4 (20190622) 
had the highest correlation with yield, reaching 0.77, and 

Fig. 1  Results of extracting faba bean plant height from three types of UAV imagery
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D7 (20190812) had the lowest correlation with yield, only 
0.38. Through the comparisons, it was found that the cor-
relation coefficients between the two adjacent time points 
were higher than those between the cross-time points, 
among which the correlation coefficients between D3 
(20190617) and D4 (20190622) were the highest (0.87), 
while the correlation coefficient between D1 (20190605) 
and D7 (20190812) was the lowest (0.3).

Construction and validation of yield estimation model 
for faba bean
The plant height data at different time points and 
combinations of different time points were selected 
to estimate the yield of faba bean by using SVM, RF 
and DT machine learning algorithms. The results 
were shown in Additional file 1: Table S1. In the SVM-
based algorithm, the range of R2, RMSE and NRMSE 
was 0.1441 ~ 0.7238, 823.54 ~ 1387.26  kg  ha−1 and 

18.38% ~ 30.96%, respectively. The best estimation 
result was based on D1 + D2 + D4 + D7 sample, and the 
obtained R2 was 0.7238, RMSE was 823.54 kg ha−1 and 
NRMSE was 18.38%. In the RF-based algorithm, the 
range of R2, RMSE and NRMSE was 0.1257 ~ 0.6573, 
877.06 ~ 1636.73  kg  ha−1, and 19.57% ~ 36.53%, 
respectively. The best estimation result was based on 
D1 + D4 + D6 sample, and the obtained R2 was 0.6573, 
RMSE was 877.06 kg ha−1 and NRMSE was 19.57%. In 
the DT-based algorithm, the range of R2, RMSE and 
NRMSE was 0.1403 ~ 0.5971, 923.24 ~ 1368.67 kg  ha−1 
and 20.60% ~ 30.54%, respectively. The best estimation 
result was based on D1 + D4 sample and D1 + D4 + D6 
sample, and the obtained R2 was 0.5971, RMSE was 
923.24 kg ha−1 and NRMSE was 20.60%.

The estimated yield based on three machine learn-
ing algorithms were compared with measured yield, 
and the results were shown in the 1:1 line diagram 

Fig. 2  Spatial distribution of faba bean plant height in different time
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of measured and estimated values (Fig.  5). It could 
be found that the estimated values of faba bean yield 
based on plant height was in good agreement with 
the measured values. The R2 between the estimated 
and measured yield based on SVM algorithm was 
0.6474, RMSE was 838.61  kg  ha−1 and NRMSE was 
18.71%. The R2 between the estimated yield and meas-
ured yield based on RF algorithm was 0.5777, RMSE 
was 917.64  kg  ha−1 and NRMSE was 20.48%. The R2 
between the estimated yield and measured yield based 
on DT algorithm was 0.5097, RMSE was 990.01 kg ha−1 
and NRMSE was 22.09%.

The yield estimation in different number of time points
By comparing the estimation results of the three machine 
learning algorithms for faba bean yield under different 
number of time points (Table  2), it can be found that 
in the SVM-based algorithm, when the number of time 
points was 7, the average R2 was the highest (0.5776) and 
the corresponding RMSE, NRMSE was 981.26  kg  ha−1, 
21.90%, respectively. In the RF-based algorithm, when 
the number of time points was 5, the average R2 was 
the highest (0.5004) and the corresponding RMSE, 
NRMSE was 990.55 kg ha−1, 22.11%, respectively. In the 

DT-based algorithm, when the number of time points 
was 4, the average R2 was 0.5004 and the corresponding 
RMSE, NRMSE was 1026.93  kg  ha−1, 22.92%, respec-
tively. Therefore, in the study of faba bean yield estima-
tion based on different machine learning algorithms, the 
appropriate number of time points should be selected to 
obtain the best estimation results.

Discussion
Extraction of imaged‑based plant height feature in faba 
bean
In recent years, the research of extracting crop plant 
height based on UAV remote sensing data has been 
widely used, and its applicability and accuracy have 
also been recognized by a large number of agricultural 
researchers. Lidar is an active sensor, which uses the laser 
pulse in the 600 ~ 1000 nm region to determine the dis-
tance to the object [46]. Compared with other sensors, 
laser radar is less affected by environmental conditions 
and has relatively high estimation accuracy for several 
crop phenotyping traits [47]. However, the price of lidar 
is generally high. In contrast, the RGB camera is afforda-
ble and easy to operate. Therefore, many researchers tend 
to use consumer-level sensors, but most of the previ-
ous studies were based on a single sensor data to extract 
plant height [30, 32]. In this study, 2D-RGB, 2D-MS and 
3D-RGB UAV imagery were collected respectively based 
on RGB camera and multispectral sensors, and it was 
found that the average plant height values of each plot 
extracted from these UAV imagery was lower than the 
ground measured values, which was consistent with the 
previous studies [48, 49]. In view of the fact faba bean 
has branches, easy to lodging, and the plant height per-
formance of each branch is quite different. Therefore, the 
maximum plant height of each plot and the percentage 
were used to compare and analyze with the ground meas-
ured values in this study. It was found that 80% of plant 
height extracted from 2D-RGB images was the most ideal 
for estimating the plant height, indicating that the plant 
height extracted by this method can be reasonably used 
to estimate the actual plant height of faba bean. In addi-
tion, by comparing these three types of data, it was found 
that the accuracy of plant height data was determined by 
the image resolution. Some previous studies have shown 
that high resolution images can improve the accuracy of 
the plant height model [50, 51].

Yield estimation using UAV measurement of plant height 
in faba bean
Plant height is one of the important agronomic traits in 
crop research, which can reflect crop growth status and 
is closely related to yield [52]. Yin et al. [53] took corn 
as the research object, collected plant height data from 

Table 1  Statistical results of plant height in different proportion

PH plant height, R2 coefficient of determination, RMSE root-mean-square error, 
NRMSE normalized root-mean-square error. The best result in terms of R2, RMSE 
and NRMSE values were boldfaced

Type PH% R2 RMSE 
(cm)

NRMSE 
(%)

Fitting equation

2D-
RGB

70% 0.9915 4.45 15.51 y = 0.8571x + 0.4299

75% 0.9915 2.62 9.12 y = 0.9184x + 0.4606

80% 0.9915 1.44 5.02 y = 0.9796x + 0.4909
85% 0.9915 2.34 8.15 y = 1.0408x + 0.522

90% 0.9915 4.13 14.39 y = 1.102x + 0.5527

95% 0.9915 6.07 21.15 y = 1.1633x + 0.5834

100% 0.9915 8.05 28.05 y = 1.2245x + 0.6141

2D-MS 70% 0.952 18.54 49.17 y = 0.7437x—8.1637

75% 0.952 17.02 45.12 y = 0.7968x—8.7468

80% 0.952 15.53 41.16 y = 0.85x—9.3299

85% 0.952 14.08 37.32 y = 0.9031x—9.913

90% 0.952 12.68 33.63 y = 0.9562x—10.496

95% 0.952 11.37 30.16 y = 1.0093x—11.079

100% 0.952 10.17 26.97 y = 1.0624x—11.662
3D-
RGB

70% 0.9399 9.49 25.62 y = 0.9282x—6.1406

75% 0.9399 7.69 20.78 y = 0.9945x—6.5793

80% 0.9399 6.20 16.76 y = 1.0608x—7.0179

85% 0.9399 5.28 14.26 y = 1.1271x—7.4565

90% 0.9399 5.23 14.12 y = 1.1934x—7.8951
95% 0.9399 6.07 16.40 y = 1.2597x—8.3337

100% 0.9399 7.52 20.30 y = 1.326x—8.7723
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2008 to 2010 at three time points V6, V10 and V12 
respectively, and estimated annual corn yield based on 
the collected data. The obtained R2 range was 0.32–
0.87, among them, V10 (R2 ≥ 0.54) and V12 (R2 ≥ 0.69) 
were considered to be able to estimate the corn yield. 

Other prior studies have addressed the importance of 
plant height in yield estimation [54, 55], but most of 
them were based on single time point plant height data 
to estimate yield and analyze the accuracy of its esti-
mation. In this study, the yield of faba bean was esti-
mated not only based on single time point plant height 
data, but also based on multiple time points combina-
tion of plant height data. The results showed that the 
single time point plant height could be used for esti-
mation of faba bean yield, but its estimation effect was 
poor. When estimating faba bean yield based on multi-
ple time points plant height, it was found that the esti-
mation effect would be significantly improved, and the 
R2 of the best estimation model increased by 0.1252, 
RMSE and NRMSE decreased 126.83  kg  ha−1 and 
2.83%, respectively. The results also showed that the 
correlation coefficients between the plant height and 
yield at early growth stage (D1, D2) and middle growth 
stage (D3, D4, D5) were higher than the late growth 
stage (D6, D7) in this study. It could be attributed to the 
fact that the plant main stem height at the late growth 
stage tended to be stable, but the yield was still in the 
accumulation process, leading to its estimates of the 
effect was not ideal. Therefore, in the process of esti-
mating crop yield based on remote sensing data, the 
selection of model independent variables was crucial. 
In this study, only one year plant height data was used 

Fig. 3  Comparison of plant height between ground measurement and UAV measurement

Fig. 4  Correlation map between yield and plant height in different 
time. GY: Grain yield; D1: Date 1 (20,190,605); D2: Date 2 (20,190,611); 
D3: Date 3 (20,190,617); D4: Date 4 (20,190,622); D5: Date 5 
(20,190,701); D6: Date 6 (20,190,712); D7: Date 7 (20,190,812)
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to construct the yield model. In the future, it is nec-
essary to further analyze and use the data of multiple 
years and multiple locations to obtain a more universal 
yield estimation model of faba bean.

Performance of machine learning algorithms in faba bean 
yield estimation
Machine learning algorithms has been widely used in 
crop yield estimation research, and the methods used in 
this study were in accordance with the previous applica-
tions where the machine learning algorithms were suc-
cessfully applied and conducted [56]. In this study, three 
machine learning algorithms of SVM, RF and DT were 
respectively used to estimate the yield of faba bean. By 
comparing the estimation results generated using three 
machine learning algorithms (Additional file 1: Table S1), 
it could be found that the yield estimation effect of SVM 
was the best, followed by RF and DT. Guo et  al. [57] 
found that SVM algorithm can improve the accuracy of 
crop yield estimation, which is consistent with the results 
of this study. RF method is suitable for large data sets and 
maintains high accuracy, but it usually leads to over-fit-
ting phenomenon, resulting in slightly worse prediction 
results [58]. DT has poor predictive performance for data 
with time sequence or large data sets [59], which can 
explain its unsatisfactory estimation result of faba bean 
yield in this study. Multiple types of remote sensing data 
and advanced machine learning algorithms can be used 
to estimate the yield of faba bean in the future.

Conclusions
In the present study, three types of UAV imagery were 
used to extract the plant height of faba bean. The most 
optimum plant height values were used to estimate the 
yield of faba bean by using machine learning algorithms 

(SVM, RF and DT). Overall, the results of this study pre-
sented that UAV imagery could provide accurate estima-
tion of faba bean plant height and yield. This study will 
aid in finding a high-throughput and non-destructive way 
to estimate plant height and yield for faba bean, which 
would accelerate screening of germplasm and breeding 
materials.

Methods
Research area and test design
The research area was located in Guyuan Experimen-
tal Station of Institute of Crop Sciences (ICS), Chinese 
Academy of Agricultural Sciences (CAAS), Zhangjiakou 
city (41° 14′ 33"—41° 56′ 55" N, 114° 50′ 38 "—116° 04′ 
09" E, with average altitude 1,536 m) in Hebei Province, 
China. It belongs to temperate continental grassland 
climate, annual average temperature is 1.6℃, annual 
sunshine duration is 3,246 h, the shortest sunshine dura-
tion is 2,616  h, annual precipitation is 426  mm and the 
annual average frost-free period is 117 d. The geographi-
cal location and UAV sampling sites of the research area 
was shown in Fig. 6. The research area was divided into 
two experimental parts, each of them has five varieties, 
GF13, GF22, GF44, GF45 and Maya. Three replicates 
were used with completely randomized trial design and 
each plot area was 4 m × 2 m = 8 m2. All cultivars were 
planted on April 18, 2019 at a depth of 5 ~ 8 cm. 40 seeds 
were planted in each row, and six rows in each plot. After 
emergence, manual weed extraction were conducted as 
needed, and no fertilizers were used during this study. 
In order to improve the accuracy of image stitching and 
plant height extraction, six ground control points (GCPs) 
were located in the field for later geometric correction 
and image registration.

Fig. 5  Comparison of estimated yield and measured yield by machine learning algorithms. a Support Vector Machines; b Random Forests; c 
Decision Trees
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Acquisition of ground data
The ground data collected in this study included plant 
height and yield, and the acquisition time of plant height 
was consistent with UAV flight date, the acquisition time 
of yield was August 22, 2019. Ground-based plant height 
was obtained as follows: 12 representative plants were 
randomly selected in each plot. The ruler was used to 
measure the distance from the top to the ground of each 
plant under the natural state. And the average value of 12 
plants was taken as the ground measured plant height for 
each plot. Ground-based yield was obtained as follows: 
all plants in each plot were harvested and dry grains were 
weighed as the yield for each plot.

Acquisition and processing of UAV remote sensing data
The acquisition and processing of UAV remote sensing 
data (Fig. 7) in this study mainly includes two stages: (1) 
Acquired UAV imagery based on flight planning software 
(DJI GS Pro, DJI Pilot, Pix4Dcapture); (2) Mosaiced UAV 
imagery in the structure from motion (SfM)-based soft-
ware (Pix4DMapper) and then automatically generated 

digital surface model (DSM), digital terrain model (DTM) 
and Orthomosaic.

DJI Inspire 1 (SZ DJI Technology Co., Shenzhen, 
China), DJI Matrice 210 (SZ DJI Technology Co., Shenz-
hen, China) and DJI Phantom 4 (SZ DJI Technology Co., 
Shenzhen, China) were used to acquire UAV images of 
the experimental plots. The detailed parameters of three 
UAVs were shown in Table 3.

This study collected three types of UAV image data: 
2D-RGB, 2D-MS and 3D-RGB. Zenmuse X3 camera 
carried by DJI Inspire 1 and Zenmuse X7 camera car-
ried by DJI Matrice 210 were used to collect 2D-RGB 
images. RedEdge-MX sensor carried by DJI Matrice 210 
was used to collect 2D-MS images. Phantom camera 
carried by DJI Phantom 4 was used to collect 3D-RGB 
images. The size of Zenmuse X3 camera is 1/2.3" and 
the effective pixel is 12 million. The size of Zenmuse 
X7 camera is 151  mm × 108  mm × 132  mm and the 
effective pixel is 24 million. The size of Phantom cam-
era is 1/2.3" and the effective pixel is 12.4 million. The 
RedEdge-MX sensor has a weight of 232  g and a size 
of 87  mm × 59  mm × 45.4  mm. It contains five bands: 

Table 2  Results of yield estimation in different number of time points

Number of 
Time Points

SVM RF DT

R2 RMSE (kg ha−1) NRMSE (%) R2 RMSE (kg ha−1) NRMSE (%) R2 RMSE (kg ha−1) NRMSE (%)

1 0.3296 1261.56 28.15 0.3683 1222.19 27.28 0.4018 1144.99 25.55

2 0.3873 1175.28 26.23 0.4453 1092.13 24.37 0.4629 1068.64 23.85

3 0.4785 1100.34 24.56 0.4877 1029.59 22.98 0.4937 1036.40 23.13

4 0.5236 1052.76 23.49 0.4951 1003.83 22.40 0.5004 1026.93 22.92

5 0.5512 994.17 22.71 0.4989 990.55 22.11 0.4975 1027.21 22.92

6 0.5744 958.9 21.40 0.4955 984.11 21.96 0.4912 1031.83 23.03

7 0.5776 981.26 21.90 0.4710 1008.70 22.51 0.4815 1038.23 23.17

Fig. 6  The geographical location and UAV sampling sites of the research area
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blue (475  nm), green (560  nm), red (670  nm), red-edge 
(720 nm) and near-infrared (840 nm), with the resolution 
of 1280 × 960.

The flights planning (Table  4) were applied under the 
conditions of cloudless and low wind speed.

The Pix4DMapper 4.4.12 software (Pix4D SA, Laus-
anne, Switzerland) [60, 61] was used to optimize the 
interior and exterior parameters of the images. A sparse 

dense cloud based on the structure-from-motion (SfM) 
technique and point clouds based on the multi-view ste-
reo (MVS) with multiple control points collected were 
used. For 2D-RGB and 3D-RGB images, we imported 
the images into Pix4Dmapper, which would automati-
cally read the position and orientation system (POS) 
data and the camera configuration information. Then, we 
set the number of matching feature points and the type 

Fig. 7  Acquisition and processing of UAV remote sensing data

Table 3  Detailed parameters of three UAVs

Items DJI inspire 1 DJI matrice 210 DJI phantom 4

Size/mm 438 × 451 × 301 883 × 886 × 398 196 × 289.5 × 289.5

Body weight/g 2935 4800 1380

Wheelbase/mm 581 643 350

Endurance/min 18 24 28

Max speed/(m/s) 22 17 20

Flight planning software DJI GS Pro DJI Pilot Pix4Dcapture
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of output images in the process of stitching. Finally, the 
DSM, DTM and Orthomosaic were outputted in differ-
ent files. For 2D-MS images, its processing steps were 
consistent with RGB images. Moreover, the stitching of 
multi-spectral images needs to use the calibrated reflec-
tance panel image taken before UAV takeoff to carry out 
reflectance calibration.

Extraction of plant height
The DSM and DTM output files from Pix4DMapper soft-
ware were used in Equation One to obtain crop surface 
model (CSM). Then CSM was used to extract the plant 
height data in each plot by using the ROI tool in the 
ENVI 5.3 software (ITT Visual Information Solutions, 
Boulder, CO, USA) [62], and the maximum plant height 
of each plot was selected for subsequent data process-
ing. The calculation equation for Equation One was as 
follows:

Machine learning algorithms
SVM [63] is a widely used machine learning method for 
classification and regression analysis, which is based on 
the key concepts of statistical learning theory. The basic 
SVM model is a linear classifier, and the maximum inter-
val is defined in the feature space. The maximum interval 
refers to those sample points closest or furthest from the 
hyperplane in the two types of sample points, whether 
the sample is low-dimensional or high-dimensional. 

(1)CSM = DSM − DTM

Since SVM can use kernel functions to convert highly 
nonlinear data into linearly separable data, so as to per-
form well on different data set. Overall, the SVM algo-
rithm has great advantages in solving nonlinear, small 
sample and high dimensional problems. We conducted 
grid search based on radial basis kernel to determine the 
optimal values of hyperparameters C and γ, which influ-
ence the accuracy and generalisation capabilities of the 
SVM [64].

RF [65] could be regarded as a machine learning model 
that combines a large number of regression trees. In 
regression modeling tasks, the main advantages of ran-
dom forests are to minimize the risk of overfitting. At 
the same time, the importance of all predictive variables 
could be divided to evaluate the contribution of each pre-
dictive variable to the model, and then eliminate redun-
dant variables. The key step to construct RF is to split the 
regression tree and take the average value of all trees as 
the prediction result of the final output. As Yang et  al. 
[66] set in the research, we defined and optimized two 
hyperparameters in the random forest algorithm: one is 
the number of trees (ntree is 500), the other is the num-
ber of different variables for tree node splitting (mtry is 
one-third of the total number of variables).

DT [67] is a tree structure applied to classification 
and regression. A decision tree contains one root node, 
several internal nodes and several leaf nodes. The root 
node contains a full set of samples. Each internal node 
represents a test on an attribute, each branch rep-
resents a test output, and each leaf node represents a 

Table 4  Flights planning parameters for UAV imagery system

Flight data Type Altitude Forward overlap Side overlap UAV Sensor

2019/6/5 2D-RGB 25 m 85% 80% DJI Matrice 210 Zenmuse X7

2019/6/11 2D-RGB 25 m 85% 80% DJI Matrice 210 Zenmuse X7

2019/6/17 2D-RGB 25 m 85% 80% DJI Matrice 210 Zenmuse X7

2019/6/22 2D-RGB 10 m 85% 80% DJI Inspire 1 Zenmuse X3

2019/7/1 2D-RGB 10 m 85% 80% DJI Inspire 1 Zenmuse X3

2019/7/12 2D-RGB 25 m 85% 80% DJI Matrice 210 Zenmuse X7

2019/8/12 2D-RGB 25 m 85% 80% DJI Matrice 210 Zenmuse X7

2019/6/11 2D-MS 25 m 80% 75% DJI Matrice 210 RedEdge-MX

2019/6/18 2D-MS 25 m 80% 75% DJI Matrice 210 RedEdge-MX

2019/7/12 2D-MS 25 m 80% 75% DJI Matrice 210 RedEdge-MX

2019/8/6 2D-MS 25 m 80% 75% DJI Matrice 210 RedEdge-MX

2019/8/12 2D-MS 25 m 80% 75% DJI Matrice 210 RedEdge-MX

2019/6/10 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera

2019/6/23 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera

2019/6/30 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera

2019/7/11 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera

2019/7/30 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera

2019/8/12 3D-RGB 10 m 90% 85% DJI Phantom 4 Phantom camera
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category. The decision-making process of the decision 
tree needs to start from the root node of the decision 
tree. The measured data are compared with the feature 
nodes of the decision tree, and the next comparison 
branch is selected according to the comparison results 
until the leaf node is used as the final decision result to 
complete the regression. We combined cross validation 
and grid search to select hyperparameters of DT.

Statistical analysis
Pearson correlation and machine learning algorithms 
(SVM, RF, DT) were calculated to check relationship 
and estimation between the plant height and yield, 
which were completed by RStudio 4.0.2 (RStudio, Inc. 
Boston, USA). In cross validation, the plant height val-
ues of a single time point or a combination of multi-
ple time points were randomly divided into five parts. 
Four-fifths of the samples (n = 24, plant height or yield 
of faba bean) were randomly selected as the modeling 
data set, and the other one-fifths of the samples (n = 6, 
plant height or yield of faba bean) were used as the vali-
dation data set. The yield estimation model was veri-
fied by the sample data of validation set, and the final 
results were shown by the 1:1 plot of measured and 
estimated values.

To evaluate the model performance, three evaluation 
indicators were used to determine the accuracy of the 
yield estimation, namely the coefficient of determination 
(R2), root-mean-square error (RMSE), and normalized 
root-mean-square error (NRMSE) [48]. The calculation 
equations for these parameters are given as follows:

Where xi is plant height or plant yield of faba bean, x is 
the average plant height or yield, yi is the plant height or 
yield predicted by the model, and n is the number of data 
points.
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