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Abstract 

Background:  In addition to heterogeneity and artificial selection, natural selection is one of the forces used to 
combat climate change and improve agrobiodiversity in evolutionary plant breeding. Accurate identification of the 
specific genomic effects of natural selection will likely accelerate transfer between populations. Thus, insights into 
changes in allele frequency, adequate population size, gene flow and drift are essential. However, observing such 
effects often involves a trade-off between costs and resolution when a large sample of genotypes for many loci is 
analysed. Pool genotyping approaches achieve high resolution and precision in estimating allele frequency when 
sequence coverage is high. Nevertheless, high-coverage pool sequencing of large genomes is expensive.

Results:  Three pool samples (n = 300, 300, 288) from a barley backcross population were generated to assess the 
population’s allele frequency. The tested population (BC2F21) has undergone 18 generations of natural adaption to 
conventional farming practice. The accuracies of estimated pool-based allele frequencies and genome coverage 
yields were compared using three next-generation sequencing genotyping methods. To achieve accurate allele 
frequency estimates with low sequence coverage, we employed a haplotyping approach. Low coverage allele fre-
quencies of closely located single polymorphisms were aggregated into a single haplotype allele frequency, yielding 
2-to-271-times higher depth and increased precision. When we combined different haplotyping tactics, we found 
that gene and chip marker-based haplotype analyses performed equivalently or better compared with simple contig 
haplotype windows. Comparing multiple pool samples and referencing against an individual sequencing approach 
revealed that whole-genome pool re-sequencing (WGS) achieved the highest correlation with individual genotyping 
(≥ 0.97). In contrast, transcriptome-based genotyping (MACE) and genotyping by sequencing (GBS) pool replicates 
were significantly associated with higher error rates and lower correlations, but are still valuable to detect large allele 
frequency variations.

Conclusions:  The proposed strategy identified the allele frequency of populations with high accuracy at low cost. 
This is particularly relevant to evolutionary plant breeding of crops with very large genomes, such as barley. Whole-
genome low coverage re-sequencing at 0.03 × coverage per genotype accurately estimated the allele frequency 
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Background
Next-generation sequencing (NGS) technology is rou-
tinely used in plant research to detect nucleotide 
polymorphisms between genotypes at genomic and tran-
scriptomic levels [1–3]. NGS can be applied for various 
tasks and has been promoted to be of tremendous use in 
pooled experimental designs. Especially when the num-
ber of samples to sequence becomes very high, pooling 
approaches can lead to a cost reduction of several mag-
nitudes. Pooling strategies have shown high reliability 
in the detection of rare variants [4] and SNP calling for 
multiple individual testing [5] and, furthermore were 
proposed to present an opportunity for genetic map esti-
mation [6]. Population studies, breeding process obser-
vation, evolution and adaptation detection, and allele 
mining approaches can capitalise from the application 
of pooled sequencing [7, 8]. Population pool sequencing 
approaches were already applied for small to medium-
sized genomes to identify gene-level variations between 
populations or treatments [9–13]. Studies published in 
the past couple of years validated different pool sequenc-
ing methods, including genotyping by sequencing [7, 8], 
transcriptome sequencing [14] and whole-genome re-
sequencing [15]. The pooled sample sizes were rather 
small, and the sequencing coverage of the pools was rela-
tively high for all these approaches. For crop species like 
barley or wheat, having a genome size of approximately 
5 GB [16] ⁠and 16 GB [17], respectively, doubling sequenc-
ing depth results in severe cost inflation.

However, pooled sequencing has undeniable disad-
vantages, as the information of haplotypes and het-
erozygosity is lost. Some approaches try to recover this 
information [18–20], where the haplotype information of 
single genotypes has to be derived, and reads need to be 
rather long to estimate the haplotypes correctly. On top, 
the identification of rare alleles might be challenging [21]. 
In addition, the workflow of pooling approaches is more 
prone to errors compared to single genotype sequencing. 
The first is the potential unequal contribution of individ-
uals to the pool. Non-uniformity of the individual con-
tribution of DNA or RNA leads to a biased minor allele 
frequency (MAF) estimation [22]. Tissue and genomic 
material pooling were reported to produce equivalently 
uniform pools. Therefore the point of pooling can be cho-
sen concerning cost and labour reduction [18]. Another 
error can occur from the sequencing depth, making it 

difficult to estimate the actual allele frequency, especially 
when an allele’s frequency is low. Recommendations on 
the minimum sequencing coverage range from 50 to 100 
reads per polymorphism [23].

In contrast to a static coverage level, Rellstab et al. [21] 
proposed a minimum coverage adapted to the number 
of individuals in a pool and the ploidy level. Another 
approach assesses the actual allele frequency on low cov-
erage levels with only 5 × per locus [24]. The third poten-
tial error derives from the sequencing, especially by the 
amplification step. PCR duplicates can cause a substan-
tial bias in the frequency estimation. This makes it nec-
essary to remove duplicates from the data, which is not 
always possible [25]. The last important source of error 
can be the pool size itself. Smaller pools with fewer indi-
viduals tend to have a more considerable variation of 
the individual contribution than bigger pools [18, 26]. 
The accuracy of pooling approaches has been reported 
to increase marginally with a sample size exceeding 200 
genotypes per pool [25]. However, sequencing techniques 
as a potential source of errors have not been reported. 
A further requirement to give a decent overview over a 
population is a high number of tracked polymorphisms, 
uniformly distributed over the whole genome with a deli-
cate coverage. Furthermore, the number of individuals 
pooled should be high to cover the population variation 
as precisely as possible.

Our goal was to make a reliable allele frequency esti-
mate in Hordeum vulgare L., a crop species with a large 
genome. This study evaluates three next-generation 
sequencing-based genotyping techniques on a low-level 
coverage to distinguish the most reliable method with 
the best costs and coverage trade-offs. Furthermore, 
four haplotyping approaches were established and com-
pared to precisely estimate the allele frequency of genes 
or small genomic regions on a low coverage sequencing 
level.

Results
A BC2F21 barley population, grown in conventional 
agriculture for eighteen generations, was used to test 
the hypothesis of accurate allele frequency estimation 
for an entire population (Fig.  1). The BC2F3 was the 
first generation growing in the field after two rounds 
of unbiased seed multiplication in a greenhouse. No 
intended artificial selection was performed, and the 

when a loci-based haplotyping approach was applied. The implementation of annotated haplotypes capitalises on 
the biological background and statistical robustness.

Keywords:  Pool sequencing, Genotyping, Allele frequency estimation, Single nucleotide polymorphisms, Haplotype, 
Hordeum vulgare
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plots were harvested as bulk to establish next year’s 
generations. Three pool samples of leaf tissue were cre-
ated (P1–n = 288; P2–n = 300, P3–n = 300), DNA and 
RNA extracted and genotyped by three low coverage 
sequencing strategies [whole-genome re-sequencing 
(WGS)–P1 and P2; genotyping by sequencing (GBS) 
P1-P3; Massive Analysis of cDNA Ends transcript 
sequencing (MACE) P1-P3]. For each of these three 
methods, the allele frequency was accessed on SNP and 
haplotype scales. We used three different haplotyping 
approaches [Gene-based (GH), Marker-based (MH), 
and Contigs] to estimate and improve a haplotype’s 
allele frequency in calculated genomic window sizes 
(HAF, Fig.  2). WGS, MACE, and GBS were compared 
on all four haplotype scales to illustrate the challenges 
and trade-offs of each approach. Furthermore, our 

goal was to validate each sequencing method × haplo-
type scales allele frequency estimation combination to 
an individual genotyping allele frequency (by KASP 
markers).

Polymorphism and haplotype yields
The coverage levels and numbers of detected poly-
morphic loci varied with the genotyping approaches. 
MACE produced on average 8 million reads across the 
three pool samples, ranging from 17 to 68  bp length. 
The reads were trimmed before alignment by remov-
ing the ten bases on the head of each read. Additionally, 
all reads shorter than 40  bp were omitted. We identi-
fied 13,079 SNPs (average coverage, 25 reads per SNP) 
between the two parents. These SNPs were merged into 
5919 gene-derived haplotypes (GHs) and 3275 marker-
derived haplotypes (MHs). The average values of the 
SNP counts per haplotype were 2 and 3.5, respectively, 
yielding read coverages of 42 and 70 for GHs and MHs, 
respectively. We detected 7.06% (± 0.265 SD) genome-
wide wild-type donor allele frequency across the three 
pool samples (Table 1).

GBS produced 20 million paired-end reads across all 
three pool samples, which only required soft trimming. 
The removal of duplicate reads eliminated > 90% of 
reads. Therefore, we omitted this step. With an average 
coverage of 28 reads per locus, 82,435 SNPs were iden-
tified and aggregated into 17,026 GHs and 4,702 MHs. 
Compared with MACE, the average SNP count per GH 
doubled (4.2), and those for MH increased fourfold 
(14.33). The read count of MHs was approximately six-
fold higher for the GBS-derived haplotype compared 
with MACE (Table 1). The average genome-wide allele 
frequency of the replicates was 7.5% (± 0.45).

WGS produced 400 million high-quality reads for 
each of both pool samples, which did not require quality 
adjustments. We identified 3,991,259 SNPs with essen-
tially uniform coverage of 9.1 reads per locus, which clus-
tered to 34,344 GHs and 5946 MHs. Relative to the high 
number of identified polymorphic loci, the average SNP 
count per haplotype was 25-to-50-times higher than GBS 
and MACE (106 GHs, 598 MHs), respectively. The high 
saturation of haplotypes yielded high haplotype read cov-
erages of 963 and 5443 for GHs and MHs, respectively. 
The average genome-wide allele frequency measured over 
the two replicates was 6.5% (± 0.14) and was accordingly 
0.5% to 0.9% lower than GBS and MACE, respectively 
(Table  1). The genome coverage of these polymorphic 
loci is shown in Additional file 1: Fig. S1. MACE yielded 
a reduced coverage and expression profile in the pericen-
tromeric region of all chromosomes. A less pronounced, 
similar pattern was observed for GBS, i.e., lower coverage 

Fig. 1  workflow. A crossing and establishment of the spring barley 
population. B the field experiment with environmental factors, 
treatment, and generations. C Population genotyping procedure and 
comparison of different methods
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in the pericentromeric region, while relatively higher in 
the telomeres. In contrast to MACE and GBS, WGS uni-
formly tagged all regions (telomere and pericentromere) 
across all chromosomes.

Haplotype statistics
On the GH scale, coverages increased to 42, 137, and 963 
reads per haplotype for MACE, GBS, and WGS, respec-
tively. Compared with the single SNP coverage level, these 
values represent 2-, 4-, and 100-fold increases. The mean 
coverage values of MHs increased to 70, 450, and 5443 reads 
per haplotype for MACE, GBS, and WGS, respectively 
(Fig. 3). The haplotype window size is non-static, adjusted 
according to the distance between markers or annotated 
genes. Therefore, the dimensions of the haplotypes vary for 
GHs and MHs (Fig. 3). The mean and median sizes of GHs 
across all replicates were 216,129 bp and 158,233 bp, respec-
tively, vs. 1,152,370 and 3,944,288 for MHs.

To evaluate the benefits of the haplotyping approach 
based on genotyping strategies, we asked whether the 

sizes of constructed haplotypes affect the HAF precision. 
The extension of haplotypes does not follow a sliding win-
dow approach. The haplotype window size is relatively 
large (illustrated above), raising the question of whether 
the accuracy of the haplotype frequency depends on the 
extension size and the chromosomal position. To test 
this possibility, the deviation of the pool’s estimated fre-
quency from the actual frequency was tested using a lin-
ear regression analysis compared, where the extension 
size and chromosomal position were included as cofac-
tors. As a result of this test, the position did not influ-
ence the deviation for WGS and MACE haplotypes or 
the extension size of the WGS and marker MACE hap-
lotypes. For GHs of MACE, a regression with p = 0.0065 
(regression coefficient = 2.25 × 10−7) was determined. 
MACE only covers expressed 3′ ends of genes and is 
based on expressed genes. Therefore, the bias may be 
related to this biological background. For GBS, no regres-
sion could be calculated.

Fig. 2  Gene extension algorithm scheme of gene- and marker-based haplotype calculations. The raw SNP-based allele frequency (2nd row; “Raw 
Frequency”) for identified SNPs (1st row) are identified at a given read depth (3rd row; “Read depth”). Annotated genes (4th row; “Genes”) and 
markers (6th row; “Markers”) are extended in size up- and downstream (“Genes extended”; “Marker extended”) to associate SNPs in the particular 
region to the genes / markers. By the extension, more SNPs can be annotated to a gene/marker than without (dashed lines and arrows below the 
3rd row indicate relationships). Reported frequency in the last two rows of markers and genes are the calculated haplotype frequency for the wild 
donor parent in the population. The marker and gene-based haplotype calculation is illustrated in the methods section. The figure should only 
illustrate the model of SNP information aggregation and does not contain real data
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Validation of pool sequencing through single‑sample 
genotyping
One pool (P1) was individually genotyped for 21 loci to 
validate pool haplotype allele frequencies. KASP markers 
had a failure rate < 0.015 (19 of 21) and were compared 
with the corresponding pool of genotypes using the Pear-
son correlation, root-mean-square-error (RMSE), and 
a negative binomial zero-inflated linear model (Addi-
tional file 1: Table S1). We expected this would assess the 
authenticities of the identified pool allele and haplotype 
frequencies.

The Pearson correlation of the MACE-pool SNP allele 
frequencies compared with the KASP-derived allele fre-
quencies was 0.79, which increased to 0.9 and 0.93 for the 
GH and MH haplotypes, respectively (Additional file  1: 
Fig. S2). A similar pattern was observed for the WGS 
dataset, in which 11 SNPs, 17 MHs, and 15 GHs matched 
the KASP markers (r2 = 0.93, SNP; 0.97, GHs; 0.96, MHs) 
(Additional file 1: Fig. S3). Consistent with the increased 

correlation using haplotyping, the RMSE was lower for 
GHs and MHs in MACE and WGS (Table 2). The same 
was true for the negative binomial model in which hap-
lotyping compensated for low coverage sequencing. The 
deviation of the GH set was the smallest compared with 
the single genotyped reference set, followed by the MH 
set. On the scale of single SNPs, a significant difference 
with a probability threshold of 0.05 for the negative bino-
mial model was detected for WGS.

While MACE and WGS showed constant overlaps with 
KASP results regarding similar allele frequencies, GBS 
indicated higher deviations. A correlation could not be 
calculated on the SNP scale because only a single SNP 
matched the KASP markers. A correlation (− 0.0035) 
was not observed for GHs, whereas the correlation was 
0.834 on the MH scale (Additional file 1: Fig. S4). Gen-
erally, RMSE values decreased for all pool sequencing 
methods by implementing haplotypes (Table 2). The lin-
ear model revealed that all haplotyping scales were equal 

Table 1  Descriptive statistics for the three sequencing methods genotyping by sequencing (GBS), MACE transcriptome sequencing 
(MACE), and whole-genome re-sequencing (WGS)

Haplotyping levels are: SNP—single nucleotide polymorphism (single data point); GH—gene-based haplotype (origin gene annotation model); MH—marker-based 
haplotype (origin from 9KiSelect genotyping chip); Contig – Contig haplotypes, in the text referred to as CH, windows of 100 kb size

Values indicate the average across all replicates per sequencing method

Stats Haplotyping level GBS MACE WGS

Number of identified haplotypes SNP 82,435 13,079 3,991,259

GH 17,026 5919 34,344

MH 4702 3275 5946

Contig 483 460 485

Median read count per haplotype SNP 6 11 9

GH 39 21 494

MH 234 36 2440

Contig 2645 238 74,134

Average read count per haplotype SNP 28 25 9.1

GH 137 42 963

MH 450 70 5443

Contig 4837 520 74,855

Variance read count over haplotypes SNP 3329 348 14.91

GH 62,413 4,109 2 × 106

MH 4,30,575 9,482 1.46 × 108

Contig 2,9*107 4,69,851 1.03 × 109

Genome wide allele frequency SNP 7.48% 7.06% 6.54%

GH 7.48% 7.09% 6.56%

MH 7.43% 7.02% 6.56%

Contig 7.48% 7.06% 6.54%

Median SNP count per haplotype GH 3 1 55

MH 8 2 272

Contig 142 2 8250

Mean SNP count per haplotype GH 4 2 106

MH 14 4 598

Contig 154 26 8216
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to the KASP markers. This was not true for the SNP scale 
of the WGS dataset. In summary, the precision achieved 
by gene-based HAF was superior to the single SNP allele 
frequency in each genotyping method (Fig. 4).

Although allele frequencies of KASP highly corre-
late with haplotype-based frequencies, comparing a 
higher number of loci would be preferred. For this pur-
pose, the allele frequencies of 300 genotypes of a BC2F3 
population were simulated for all markers included in 
the 9KiSelect chip array [27]. The population was con-
structed according to markers with a unique physical 
location (4929 markers). Subsequently, a pool sequenc-
ing sample was generated to validate the observations 
of the experimental populations. The simulated pooled 
sample was generated on a sequencing depth similar to 
the WGS approach (10 × coverage per SNP). Additional 
pseudo SNPs were added to the marker linkage window 
(MLW) surrounding the chip markers so that the HAF 
estimation could be carried out analogously to the exper-
imental data sets, applying the model illustrated in Fig. 2. 

Therefore, we found in MLW 43 SNPs (median), which 
led to median read coverage of 515 reads per haplotype. 
Generally, we identified 245,732 SNPs after quality filter-
ing (Qual > 100), including 4,003 SNPs from the 9KiSe-
lect chip. The SNP’s allele frequencies of SNPs located in 
the same MLW were aggregated to derive a HAF value 
for each MLW. Additionally, we compared the simulated 
individual genotyping against the simulated pool geno-
typing allele frequency. We found a low correlation in the 
direct comparison of SNPs (r2 = 0.28) while haplotyping 
in the MLW to a HAF value increased the Pearson corre-
lation (Fig. 5). Depending on the minimal read coverage 
threshold, we observed correlations up to 0.96. We found 
that haplotypes with > 200 read coverage correlated 
with > 0.9, while lower read depth indicated decreased 
correlations. Similarly, the RMSE decreased from 0.12 
(SNP) to 0.021 (haplotype, ≥ 500 read coverage). The 
maximum correlation, accompanied by the lowest RMSE, 
was found for haplotypes with a minimum coverage of 
500 reads (r2 = 0.959, RMSE = 0.021).

Fig. 3  Read count per haplotype for the three applied sequencing methods with their mean value as a vertical line and the distribution of the 
haplotype window size for gene-based (GH) and marker-based (MH) haplotypes. Mean value across all pool samples. A Count of reads per GH for 
the three applied sequencing methods. B same as for (A), but based on MH. C Size of the GH in base pairs. The dotted line indicates the median 
value; the dashed line represents the mean value. D same as C for MH
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Comparisons of contig‑based haplotype allele frequency 
estimations
A simplified contig-based haplotyping approach (CH) 
[24] was compared with MHs and GHs for relevant 
deviations of the HAFs. CH yielded 12-to-31-fold higher 
coverage compared with the MH method. The higher 
coverage per CH is attributed to a 10-to-83-fold lower 
count in haplotype objects (485 contig haplotypes vs. up 
to 35,000 gene haplotypes) (Table 1). The CH allele fre-
quency was compared with the KASP markers, revealing 
correlations of 0.94, 0.88, and 0.95 for GBS, MACE, and 
WGS, respectively. The linear model did not show vari-
ation between the allele frequencies of KASP and CH, 
indicating the CH achieved an adequate fit, equivalent to 
those of MH and GH.

Nevertheless, a marginally higher RMSE of the CH was 
observed compared with MACE and WGS. Similarly, the 
correlation to individual genotyping was slightly lower 
compared with GHs and MHs. A relevant improvement 
over MHs and GHs was observed only for the GBS pools 
(Table  2). These findings emphasise that increased cov-
erage and larger haplotyping windows do not necessarily 
achieve higher precision.

Reproducibility
According to Antonovics [28], we assumed that 300 
genotypes in a pool sufficiently represent the entire 
population of 25,000 genotypes. Therefore, we hypoth-
esised that biological replicates of the same population 

Table 2  Individual genotyping of selected KASP markers compared to pool sequencing (P1)

Genotyping by sequencing (GBS), MACE transcriptome sequencing (MACE), and whole-genome re-sequencing (WGS) (P1 sample). Haplotyping levels are: SNP—
single nucleotide polymorphism (single data point); GH—gene-based haplotype (origin gene annotation model); MH—marker-based haplotype (origin from 
9KiSelect genotyping chip); Contig – Contig haplotypes, in the text referred to as CH, windows of 100 kb size. RMSE = root mean square error of pool to individual 
genotyping on different haplotyping levels for three different genotyping approaches. Stat test rows present the probability value, where p < 0.05 indicates significant 
variations between individual and pool genotyping. Pearson residual width—average deviation of pool haplotype allele frequency estimate to individual genotyping. 
Pearson correlation—correlation of pool to individual genotyping, for each haplotyping level and genotyping approach

Haplotyping level GBS MACE WGS

RMSE SNP level – 0.07 0.15

GH level 0.11 0.04 0.03

MH level 0.06 0.04 0.03

Contig level 0.03 0.04 0.03

Stat test negative binomial level SNP level – 0.67 0.02

GH level 0.35 0.99 0.57

MH level 0.47 0.94 0.39

Contig level 0.59 0.28 0.46

Stat test zero inflated level SNP level – 0.68 0.09

GH level 0.15 0.64 0.64

MH level 0.62 0.67 0.63

Contig level 0.44 0.62 0.53

Pearson Residual width SNP level – 3.85% 3.37%

GH level 3.78% 3.70% 3.49%

MH level 3.77% 3.89% 3.40%

Contig level 3.60% 3.92% 3.95%

Pearson correlation SNP level – 0.79 0.93

GH level 0 0.9 0.97

MH level 0.83 0.93 0.96

Contig level 0.94 0.88 0.95

Median read coverage of haplotypes in pool sample per 
KASP marker

SNP level 41 51 7

GH level 51 82 607

MH level 575 158 7749

Contig level 10,122 917 81,186

Count of matched KASP markers to pool seq SNP level 1 19 11

GH level 15 16 15

MH level 17 17 17

Contig level 19 19 19
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will highly correlate if genotyping does not introduce 
a significant error. This hypothesis generally held true 
for WGS, in which the correlations between the rep-
licates were 0.91 and 0.96 for GHs and MHs, respec-
tively (Table 3). However, the correlations of replicates 
in MACE and GBS were 0.64 and 0.59 for GHs and 
0.75 and 0.67 on the MH scale. MACE and GBS 
revealed significant variations between the replicates 
on the negative binomial scale of the model, where 
MACE < GBS. The zero-inflated model showed signifi-
cant variation of the GH scale of WGS but was not sig-
nificant at the MH scale (p = 0.2) (Table 3). Each pool 
genotyping method indicated a reduced sample cor-
relation at the single SNP scale, likely associated with 
limited read coverage.

Genome‑wide allele frequency variations
Pool sequencing can be used to identify the rate of gene 
flow, random drift, and natural selection. The applied 
pool genotyping approaches’ reliabilities were tested by 

calculating the average allele frequency distance between 
two neighbouring haplotypes.

A given BC2-derived population of self-pollinating 
barley depends on the history of BC2 families. For exam-
ple, BC2F1 possesses approximately 25% heterozygous 
regions, organised through recombination between 
distinct blocks during crossing. These heterozygous 
regions are integrated into the remaining homozygous 
regions. During subsequent generations, these heterozy-
gous blocks will follow the degradation of heterozygo-
sity through selfing as well as through a putative effect of 
selection or other forces that alter allele frequency [28]. 
The linkage blocks corresponding to founder subfami-
lies should therefore be large. Consequently, the allele 
frequencies between neighbouring haplotypes are often 
identical or marginally different, as these haplotypes 
are smaller than the linkage blocks. Single haplotypes 
with a deviated allele frequency, compared with their 
neighbours, are likely false-positive hits and therefore 

Fig. 4  The pool obtained allele frequency (P1) for three tested sequencing strategies (WGrS, GBS, MACE) correlated to individual genotyping 
(KASP). Three different methods were compared on their accuracy for pool sequencing of large pools. A SNP-based pool AF compared to the KASP 
assay detected allele frequency for WGrS. B Gene haplotype-based pool AF compared to KASP assay for WGrS. C SNP-based pool AF to KASP for 
GBS. D Gene haplotype-based pool AF compared to KASP assay for GBS. E SNP-based pool AF to KASP for MACE RNAseq. F Gene haplotype-based 
pool AF compared to KASP assay for MACE RNAseq. The dotted line indicates the optimal match of the individual (KASP assay) and pool sequencing. 
Each point represents a single locus—for (A, C and E), a locus is a SNP; for B, D and F, a locus is a gene, related to a KASP marker. The colour of the 
points presents the read coverage of the locus. The red line is a regression through all points
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should be disregarded, as a double crossing-over event is 
doubtful.

Most haplotypes with a high allele frequency deviation 
compared to their neighbours were observed for GBS 

(25.97% of haplotypes, median HAF deviation 1.87%), 
followed by MACE (21.57%, median = 2.4%) and WGS 
(13.3%, median 1.14%). These results are supported by the 
observation that GBS (8.7% per haplotype) and MACE 

Fig. 5  The correlation of simulated individual allele frequency to the simulated pool allele frequency in a simulated BC2F3 population. The y-axis 
presents the pooled sample allele frequency on different levels, while the x-axis shows the ‘true’ individual genotyping derived allele frequency. 
The dashed line indicates the optimal fit, while the color illustrated the read coverage level per SNP/ haplotype. A comparison of SNP-based pool 
sample allele frequency against the individual genotyping allele frequency. B Comparing HAF without a minimum threshold for read coverage per 
haplotype (min reads observed—12). C Comparing HAF to the individual genotyping allele frequency. on a minimum coverage level of 200 reads 
per haplotype. D Comparing HAF on a minimum coverage level of 500 reads per haplotype
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(8.9%) yielded the highest mean variation between two 
haplotypes compared with WGS (Additional file  1: Fig. 
S5).

Mapping the HAF on a genetic (Fig. 6) and a physical 
map (Additional file 1: Fig. S6) highlight selected regions 
as well as likely allele frequency call errors. The three 
genotyping strategies indicate similar success associated 
with the detection of macro-window allele frequency pat-
terns. Such windows include multiple haplotypes (doz-
ens to hundreds). A HAF deviating from the initial allele 
frequency of the population (12.5%) (Additional file  1: 
Fig. S6) was observed for most regions. The above initial 
donor allele frequencies were observed on the short arms 
of chromosomes 1H, 4H, and 6H, as well as on the long 
arms of chromosomes 2H, 3H, 5H, and 6H (Fig. 5).

Further, an increase in the donor HAF was observed 
in the pericentromeric region of chromosome 5H. Thus, 
peaks identify selection sweeps with a high fitness advan-
tage at some of these regions. Conversely, the donor allele 
frequencies of multiple regions decreased to 0 or close to 
0. These patterns were observed in all eight sequencing 
libraries. Nevertheless, the qualities of GBS and MACE 
decayed, indicating that the most consistent picture was 
achieved using WGS.

To validate the precision of the three pool genotyp-
ing methods, we examined the brittleness locus on 

chromosome 3H [29]. The donor parent is character-
ised by the physiological trait of ear brittleness, which is 
likely negatively selected by combine harvesting. Further, 
phenotyping of the population revealed no measurable 
brittleness alleles in the population (BC2F21). Barley is a 
self-pollinating crop that should be highly homozygote 
in the tested generation. Therefore, dominance effects 
should not mask the donor phenotype. Additional file 1: 
Fig. S7 shows that the donor allele frequencies of this 
region determined using WGS, GBS and MACE were 
0.01286, 0.0317, and 0.0205, respectively, indicating 
adverse selection within this region, most likely attrib-
uted to the brittleness locus.

Discussion
Here we compared three pool genotyping methods (GBS, 
MACE, WGS) for their suitability for application to 
pooled genotyping. Our immediate goal was to achieve 
a median sequencing coverage of 10 reads per locus for 
each pool genotyping strategy. Our overall goal was to 
precisely estimate the allele frequencies of a population 
on a gene scale while limiting sequencing depth. This 
goal was ultimately achieved by a median coverage per 
genotype in the pooled sample of approximately 0.03 
reads per genotype per variant.

Pooled sequencing allows genotyping a larger popula-
tion size without increased costs associated with sample 
size. For the population sample size analysed here, using 
a genotyping chip compared with the pool sequencing 
strategy would have incurred 30-fold higher genotyping 
costs (compared with WGS), accompanied by a reduction 
of detected polymorphic loci by approximately 99%. We 
sought further cost reductions through the application of 
targeted sequencing approaches. We found that the GBS 
and MACE genotyping strategies were 3- and twofold 
less expensive, respectively. Moreover, we conclude that 
WGS was by far the most economical approach ($0.18 
per 1,000 variants). In contrast, GBS, MACE, and a 
potential genotyping chip would cost $2.8, $27, and $354 
per 1,000 variant loci, respectively. Nevertheless, indi-
vidual genotyping may provide information beyond the 
population allele frequency, useful to address additional 
hypotheses.

Compared with individual genotyping, collecting sam-
ple tissues and preparing DNA are more complex and 
error-prone. The contribution of DNA from each individ-
ual in the pool is a crucial factor that must be regarded 
throughout the entire sampling procedure, including 
high-precision tissue homogenisation. Nevertheless, 
the total workload was comparable. The overall costs 
for cultivation, sampling, and DNA extraction are lower 
because there is less space occupied in the greenhouse, 

Table 3  Comparison of the replicates for each sequencing 
method

Genotyping by sequencing (GBS), MACE transcriptome sequencing (MACE), 
and whole-genome re-sequencing (WGS). Haplotyping levels are: SNP—single 
nucleotide polymorphism (single data point); GH – gene-based haplotype 
(origin gene annotation model); MH—marker-based haplotype (origin from 
9KiSelect genotyping chip); Contig—Contig haplotypes, in the text referred 
to as CH, windows of 100 kb size. Pearson correlation—correlation of the pool 
genotyping replicates (P1-P3) to each other, for each haplotyping level and 
genotyping approach. Negative binomial/zero inflated—probability values 
from a generalized linear model, based on a negative binomial and zero inflated 
distribution. Both distributions are necessary to cover the entirety of the allele 
frequency distribution per locus

Replicate 
comparison

Haplotyping level GBS MACE WGS

Pearson correlation SNP level 0.55 0.5 0.13

GH level 0.64 0.59 0.91

MH level 0.75 0.67 0.96

Contig level 0.75 0.9 0.99

Negative Binomial SNP level  < 0.001  < 0.001  < 0.001

GH level  < 0.001 0.007 0.67

MH level 0.17 0.35 0.52

Contig level 0.91 0.46 0.35

Zero inflated SNP level  < 0.001 0.01  < 0.001

GH level  < 0.001 0.01  < 0.001

MH level  < 0.001 0.76 0.2

Contig level 0.48 0.06 0.03
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and fewer chemicals and disposable laboratory supplies 
are necessary to produce a pooled sample.

WGS, MACE, and GBS pool genotyping were com-
pared with 19 KASP assay-designed SNPs. The latter 
technique was used to determine individual genotypes 
to assess the accuracy of the pool allele frequency [21]. 
The transcriptome and whole-genome re-sequenc-
ing approaches highly correlated without significant 
deviations between the pool and individual genotyp-
ing methods. The RMSE and linear model indicated an 
improvement by applying the haplotyping approach, 
particularly for WGS. Further, a reduced correlation 
was associated with MACE and GBS between replicated 
pools and a significant deviation of the gene-haplotyping 
scale (p < 0.01) using the negative binomial linear model.

The deviation from transcriptomic data may be 
explained by variations in the transcription of single gen-
otypes in the pool. Similarly, the inability to remove PCR 
duplicates unbalanced the accurate estimation of allele 
frequency using GBS. By applying restriction enzymes, 
all reads of the same locus started and ended at the iden-
tical base, making it impossible to remove duplicates 
without eliminating > 90% of the sequences. Variant call-
ing is sensitive to duplicate removal [30, 31]. Therefore, 
the observed deviation likely originated from PCR dupli-
cates. Further, the three methods indicate loss of donor 
alleles in the population throughout selfing. Starting 
from an initial expected genome-wide value of 12.5%, the 

global allele frequencies of the wild type decreased to 7%, 
7.5%, and 6.5%, respectively, in the 21st generation tested, 
depending on the applied sequencing technique. Besides 
this overall loss, we observed some regions with a posi-
tive selection of the wild allele, which indicates a positive 
fitness effect of these alleles in the agriculture environ-
ment. Some of these are characterized as peaks, which 
underlines that wild barley can add beneficial alleles to 
modern cultivars to enhance its fitness under variable cli-
matic conditions, like exemplary drought [32].

The variations in the genome-wide donor allele fre-
quencies between methods may be explained by varying 
genome coverage achieved by each genotyping method. 
For example, GBS and MACE yielded substantially fewer 
reads in the pericentromeric regions than WGS. The 
0.5%–1% discrepancy in the genome-wide allele fre-
quency may be attributed to reduced recombinational 
events in the centromere [33], which ultimately results in 
larger linkage blocks and lower chances for positive wild 
donor allele selection. Extending the haplotypes from a 
point or location to a region increased the accuracies of 
analyses of this inbreeding crop. However, the window 
size might need to be reduced for outcrossing species, 
as the mean linkage equilibrium is expected to be lower. 
Reducing the gene boundary extension or incorporating 
recombination rates into the extension algorithm [34] 
may solve these problems.

Fig. 6  Genome-wide allele frequency on a genetic map for MH. The average donor allele frequency across all replicates (P1-P3) is plotted in % 
(y-axis) against the genomic position (x-axis), split by chromosome and illustrated in cM. Each dot represents an MH, and the color is related to the 
read coverage. The orange line indicates the expected allele frequency in the BC2F3. A MACE RNA sequencing output, B WGrsS, C GBS. Values are 
the average across all replicates
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Moreover, the establishment of contig haplotypes pro-
vided equally robust HAF estimates compared with GH 
and MH. Nevertheless, the precision of contig haplotypes 
did not outperform GH or MH and was associated with 
the cost of haplotyping large blocks. Annotation-based 
haplotyping benefits from a more flexible window-sizing 
approach, in which the average haplotypes are smaller. 
This helps directly link functional annotations to haplo-
types and prevents errors introduced by recombination 
within the haplotype. Further, these large area spanning 
blocks hinder the identification of a causal reason for the 
variations in allele frequency.

The haplotyping approach presented here was further 
validated through a simulation, which yielded identical 
results compared with the biological data. These results 
emphasise the superior precision of the proposed hap-
lotyping method compared to a restriction to single 
nucleotides at the given sequencing level. The high single 
SNP’s allele frequency variation in each haplotype block 
(Error bars in Additional file 1: Fig. S2–4) supports these 
observations. A single SNP allele frequency is, randomly, 
any value between 0 and 1 in a heterogeneous sample 
with a low coverage level. When we combined the reads 
of multiple SNPs in the same recombination block, sta-
tistical power increased as a function of the number of 
aggregated SNPs.

In summary, the HAF estimation approach achieved 
precision benefits when applied to the three pool-gen-
otyping methods. The cost–benefit of MACE, accom-
panied by the advantage that only SNPs in intergenic 
regions were expressed, was negated by the lowest level 
of observed SNPs and a potential bias introduced by the 
expression level. Similarly, GBS provided a cost-efficient 
platform, which identified sufficient numbers of variant 
loci on the genome scale. Unfortunately, these SNPs were 
usually distributed among intergenic regions, and the 
enzyme-based design of the method was inappropriate 
for pooling approaches because duplicates could not be 
removed. WGS, the costliest approach, delivered the best 
price ratio per capita according to the observed variants. 
Further, this approach did not introduce transcriptional 
bias or duplicate removal complications and identified 
variants affecting the reading frame of transcripts.

The allele frequency estimation was based on SNP call-
ing, a highly complex task [35, 36]. Not all SNPs identi-
fied as such by a variant caller are true polymorphisms. 
For example, SNP detection is quite challenging, particu-
larly because it invariably generates a fraction of false-
positive SNPs [35]. We addressed this problem by only 
using SNPs included in the Ensemble Hordeum vulgare 
SNP database [37]. After this adjustment, we obtained an 
overall alternative-base to reference-base ratio in pools 
of approximately 0.45 for WGS and MACE, which is 

consistent with the expectation of unbiased SNP calling 
[38]. The results are supported by a study [31] showing 
that the applied pipeline for read alignment and variant 
calling is best suited for the genomes of large crops. Fur-
ther, the sampling error minimisation was accomplished 
by following previously proposed sampling strategies 
[23]. We used an equal amount of leaf tissue per plant 
to avoid bias introduced by the unbalanced template 
amounts.

Low coverage pool sequencing of a population with a 
low donor allele frequency is challenging. Therefore, we 
proposed a statistical test based on two distributions, 
in which a linear model was based on zero-inflated and 
negative binomial distributions. When the overall minor 
allele frequency of a haplotype is low (< 0.05) and com-
prises multiple SNPs with low coverage, it is very likely 
to include a substantial number of SNPs when the minor 
allele frequency is zero. The zero-inflated model can 
accommodate such false-negative observations. This dis-
tribution is commonly used in human resource studies, 
which show similarities to the problem encountered in 
these sequencing data [39] and achieves high sensitiv-
ity for haplotypes with low SNP coverage. The negative 
binomial model accommodates loci with donor allele fre-
quencies > 0 [37].

As a source for variant detection in population genet-
ics, pool sequencing was used to analyse model species 
with small genomes [9, 11, 34]. The chosen sequencing 
coverage levels in these studies exceed reasonable lev-
els in terms of costs and computational time for large 
genomes. The method proposed here serves as a valu-
able extension to close the gap between analyses of large 
and small genomes. For example, 5 × coverage may suf-
fice [24]. Generally, sequencing coverage can safely be 
reduced if high numbers of polymorphisms are detected. 
These are aggregated to a haplotype, and the higher res-
olution of variants compensates for further decreased 
sequencing depth. Haplotypes are constructed by incor-
porating parental information and annotated genes or 
markers, thereby allowing the direct calculation and 
estimation of the haplotype frequency of a target gene. 
This enables linkage of allele frequency variations with 
selection causality and increases sequence coverage and 
reliability.

The proposed method is limited to the core indica-
tors’ availability: parental haplotypes, reference genome, 
and a biparental system. However, the implementation 
of linked reads may overcome such limitations, thereby 
minimising the requirement for biparental systems [40, 
41]. Thus, the combination of genotype pooling, low cov-
erage linked-read sequencing, and the estimation of hap-
lotype allele frequencies may represent key features for 
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investigating the evolutionary genetics of populations at 
moderate expenses. Furthermore, the best estimates of 
HAF are reached when the read coverage exceeds values 
beyond 200 reads.

Alternative approaches [42–44] estimate haplotypes 
from ultra-low coverage of individual genotypes and pre-
dict missing locus information through imputation. Such 
methods provide information about an individual hap-
lotype and allele for each genotype, facilitating genomic 
prediction and marker-assisted selection. The imputation 
approach and pooled sequencing target a comparable 
sequencing depth per genotype. The costs of both strate-
gies should therefore be equal, despite library preparation 
costs. Nevertheless, the barley genome is characterised 
by a high degree of repetitiveness [45], which challenges 
generating alignments and detecting variants at such low 
sequencing levels. The limitation of ultra-low coverage is 
the difficulty in detecting variants [46], particularly when 
variants missing from available databases are detected 
[47], which may lead to false-positive or false-negative 
calls. Although pooled sequencing operates at a similar 
sequencing depth, the higher coverage in a single sam-
ple will improve the accuracy of these calls, particularly 
when multiple pooled samples are called in the same run 
[43, 44]. Further, in contrast to the imputation method, 
pooled sequencing is sufficient for MAF < 0.05, and 
remaining heterozygosity does not require phasing.

Conclusions
Our analyses employing three genotyping approaches 
provide compelling evidence that whole-genome re-
sequencing at low coverage serves as the most powerful 
tool. All three methods are suitable for detecting large 
allele frequency variations in large genomic blocks. Still, 
only whole-genome re-sequencing allowed the robust 
estimation of large and subtle differences in allele fre-
quency variations in small genomic windows.

Parental haplotypes, a reference genome, and anchors 
for haplotype construction, e.g., a gene annotation model, 
are required to retain high-quality haplotype allele fre-
quencies. Compared to single SNP allele frequency esti-
mation, the proposed haplotyping improves reliability by 
magnitudes. The peaks resulting from selection, evolu-
tion, drift, or migration identify relevant alleles and selec-
tion sweeps.

Methods
Population
The comparison of sequencing strategies and the vali-
dation of the proposed pipeline was performed using a 
spring barley population, generated by a double back-
cross population. The cultivar Golf was used as the 
recurrent, and the wild-type ISR 42–8 [Hordeum vulgare 

subsp. spontaneum (K. Koch) Thell] as donor parent. 
The population was established according to [48]. After 
two generations of seed multiplication, the population 
was grown for 18 consecutive generations in a 15 × 9 m 
plot, using seed material from the previous generation 
to establish next year’s population (Fig.  1A, B). A sow-
ing density of 330 kernels/m2 comprised approximately 
45,000 genotypes per population per year. The center part 
of the plot was harvested as bulk to generate the follow-
ing generation (about 25,000 genotypes). This population 
size was expected to marginalise random selection effects 
such as genetic drift. According to the crossing scheme, 
the expected genome-wide donor allele frequency of the 
BC2F3 population was 12.5%. Variations over the 18 gen-
erations from this value may be attributed to adaptation 
to the environment.

Sample size estimation of pools
The major problem for uncovering the total genetic 
diversity of a population lies in testing a sufficient sam-
ple size. We aimed to achieve a precision level of 0.05 
with a narrow confidence interval of 0.99. To calculate 
the required minimum sample size, we applied Cochran’s 
Formula [49]

where n0 is the sample size, Z is the z-value in the Z table 
for a given confidence level, p is the preliminary infor-
mation about the donor parent’s initial population-wide 
allele frequency, and e is the desired level of precision. 
The expected genome-wide donor allele frequency of 
12.5% requires pool samples with 291 genotypes per gen-
eration and environment. Three pools were created for 
MACE and GBS and two for WGS.

Sampling genotypes
One set of 288 genotypes (P1) and two sets of 300 geno-
types (P2, P3) were prepared, representing three repli-
cates comprising 888 different genotypes sampled for 
the population. The first pool contained 12 fewer geno-
types (n = 288) because DNA was additionally extracted 
for each genotype separately (3 × 96 per plate) to validate 
the pool allele frequency estimation by individual KASP 
genotyping of selected loci. A hole punch was used for 
the pool samples to collect leaf material to avoid sam-
pling bias caused by differences in tissue size and geno-
type differences. After vigorously homogenising the leaf 
tissue, DNA and RNA were extracted using a Peqlab 
Plant DNA/RNA Mini Kit. As a reference, the two found-
ers were individually analysed using the three methods, 
applying the same sequencing depth.

n0 =
Z2pq

e2
,whereq = 1− p
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Genotyping approaches
We compared the performance of three different Illumina 
sequencing strategies to estimate the allele frequencies 
in pooled samples. The advantages and disadvantages 
of the sequencing strategies associated with coverage, 
costs, and polymorphism yield are illustrated in Table 4. 
RNA sequencing (MACE; GenXPro GmbH, Frankfurt 
am Main, Germany) [50], genotyping by sequencing 
(GBS; LGC Genomics GmbH, Berlin, Germany) [51] and 
whole-genome re-sequencing (WGS, Novogene Co., Ltd., 
Beijing, China) [52] approaches were selected as genotyp-
ing methods. The GBS approach utilises a combination of 
restriction enzymes that recognise few or numerous sub-
strate sites to fragment DNA before library preparation 
to 145 bp paired-end reads. In addition, another nonspe-
cific DNA sequencing approach was applied using WGS 
to generate 150 bp long paired-end reads.

We compared the transcript sequencing approach 
(MACE) with DNA sequencing approaches for estimat-
ing allele frequencies. MACE RNAseq generated single-
end reads of varying lengths and was chosen instead of 
classic RNAseq because of claims that it delivers higher 
coverage rates at the expense of fewer loci [50] and is 
based on the TRUEQuant method that identifies PCR 
duplicates. We chose these three methods because they 
vary in cost (GBS < MACE < WGS). Generally, we per-
formed three GBS or two MACE analyses for the price 
of one WGS. Further, the two parents of the population 
were sequenced using the three methods to generate a 
reference haplotype.

Haplotype construction
First, we constructed the haplotypes of two parents, and 
this information was incorporated to infer the allele fre-
quency in the pool sequencing of the population (Fig. 2). 
Second, within 200 kb and smaller windows, we assumed 

that recombination was infrequent in a self-pollination 
species such as barley.

Tilk et al. [24] proposed a sliding window approach to 
generate contigs, which ultimately generates the bound-
aries of haplotypes. The allele frequency information 
observed for variants in the sliding window was aggre-
gated into a haplotype frequency. We applied this method 
as a comparative approach, in which contig windows of 
100  kb were defined across the barley genome. Further, 
two locally anchored techniques were introduced and 
tested for precision.

The first, gene-based haplotypes (GH), is based on the 
gene annotations derived from the IPK database [53] for 
low- and high-confidence genes. These were used as an 
anchor to generate haplotypes directly linked to a func-
tion. The 80,554 low- and high-confidence genes listed 
[50] were utilised as the potential origins of haplotypes. 
We used 39,735 high-confidence genes for haplotype 
construction.

The second, marker-based haplotypes (MH), uses the 
unique physically annotated markers from the 9KiSe-
lect chip as haplotype anchor. As both the GH and MH 
have a limited genomic coverage, the sequence termini 
were extended at their 3′ and 5′ ends to create haplo-
type blocks (Fig. 2). We included SNPs mapped within a 
block to calculate an haplotype allele frequency (HAF). 
The extension algorithm extended the gene by 45% of 
the size of the intergenic region, assuming the latter 
was > 1000  bp. For overlapping genes, an extension in 
the direction of the overlap was not performed, and a 
gap of 10% of the size of the intergenic region was not 
annotated to neighbouring genes. For example, gene Q, 
positions 200–560, and gene W, positions 800–850, were 
expanded. Ten percent of the 240  bp intergenic region 
was removed, leaving 216  bp, which was divided by 2 
(= 108  bp). Therefore, the new end position of haplo-
type Q was 560 + 108 = 668, and the new start position 
of haplotype W was 800 − 108 = 692, thereby closing 
the gap between these two haplotypes to 24 bp. Thus, a 
SNP at position 590 was considered part of haplotype Q. 
Without this extension, the information for this particu-
lar SNP would have been lost and therefore not available 
to improve haplotype frequency. Further, markers in the 
9KiSelect SNP chip [54] were mapped against the refer-
ence genome to define a haplotype region analogous to 
the algorithm presented for the gene model (Fig. 2). This 
analysis mapped 6,080 markers to the reference genome.

All reads within a haplotype were used to calculate the 
HAF,

Table 4  Overview of strengths and weaknesses of the applied 
methods on different levels

MACE transcriptome sequencing, GBS enzyme-based genotyping by sequencing, 
WGS whole-genome resequencing (med = medium)

MACE GBS WGS

Costs Med Low High

Genes covered Yes Partly Yes

Level RNA DNA DNA

SNP count Low Med High

Coverage Varying Med Low

Genome representation Biased Biased All

Sampling error High Low Low
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where p represents the allele of a specific parent, and k is 
the SNP for the coverage rd and frequency freq of the kth 
SNP. Marker information was utilised to plot the donor 
allele frequency on a genetic map.

We used Julia (version 1.3.0) [55] to run the workflow. 
This included the haplotype construction and the allele 
as well as haplotype frequency estimation. For the SNPs, 
a minimum coverage level of one read was set, and the 
minimum SNP quality score of samtools mpileup [56] 
was required to exceed 30 for each polymorphism. The 
source code for the haplotype frequency estimation is 
deposited at https://​github.​com/​mischn-​dev/​HAFca​ll.

Pool accuracy estimation
Twenty-one SNP-specific competitive allele-specific 
PCR (KASP) assays (SGS TraitGenetics, Gartersle-
ben, Germany) were selected and designed according 
to the MACE results to determine the precision of pool 
sequencing. The P1 set, comprising 288 genotypes, was 
sequenced genome-wide as a pool and individually for 
the 21 KASP markers. The KASP markers were homo-
geneously distributed across the genome with three 
markers on each chromosome. Pool sequencing allele 
frequencies of GBS, MACE, and WGS sequencing for 
a single SNP as well as gene-based, marker-based, and 
contig-based haplotype approaches were compared to 
the KASP markers for the P1 pool. In some cases, we 
were unable to detect the same KASP SNP by the pool 
sequencing. Therefore, linked SNPs in the haplotype 
windows of MH, GH, and CH surrounding the KASP 
marker were constructed to a HAF and compared to the 
corresponding KASP marker. A linear model was applied 
to compare pools and sequencing methods based on a 
zero-inflated negative binomial distribution. For this pur-
pose, we used the pscl package [57] in R. The extension 
of a negative binomial model by a zero-inflated model 
was required because many SNPs within a haplotype may 
randomly fail to produce a read. Further, we calculated 
the Pearson correlation and the RMSE between individu-
ally genotyped and pool-genotyped samples and between 
replicates.

The RMSE illustrates the actual deviation to pool esti-
mated allele frequency values and therefore is utilised to 
elaborate the pooling strategy’s accuracy [24]. To inves-
tigate the potential unintended influence of bias on the 

HAFp =

∑

rdk ∗ freqpk
∑

k rd

RMSEestimated =

√

∑

((pestimated| − ptrue))2

n

chromosomal position and the extension size, we applied 
a linear model, where

Simulation of pool sample to validate haplotype frequency
Additional simulations were performed to exclude the 
possibility that the observed correlation on shallow cov-
erage level was not artefactual. First, a BC2F3 popula-
tion was simulated according to the crossings when the 
experiment was designed. Second, we used the AlphaSim 
R package to generate a population of 96,000 individuals 
with genotypic information for 4929 loci [58]. AlphaSim 
requires a genetic map as input to estimate recombi-
national events. Therefore, we used the 9KiSelect chip 
markers with annotated genetic and physical posi-
tions. We randomly selected 300 genotypes to generate 
a pool sample with 10 × coverage. The read simulation 
was performed using SubreadR, which required a refer-
ence genome, and an additional file indicated the relative 
sequencing depth of this window, according to the simu-
lated allele frequency of the given haplotype by AlphaSim 
[59]. Consequently, we created an alternative reference 
genome with a variant base in each of the 4929 loci and 
added an alternative base at every 1500th base genome-
wide. These additional SNPs will occasionally lie in the 
MLW and, therefore, should have the same allele fre-
quency as the markers themselves. These additional SNPs 
improved the MLW’s HAF estimate by aggregating the 
SNPs allele frequency to one HAF value for each MLW.

Additionally, markers were removed if the haplotype 
window was < 500 bp or > 1 M bp. We limited the haplo-
type block size to a maximum of 1  Mb to reduce com-
putational time. Subsequently, 100-bp paired-end reads 
in the proportion of the simulated allele frequency of the 
BC2F3 population for each locus were generated.

Similar to the analysis of the experimental pool sam-
ples, the reads were aligned to the barley reference 
genome, quality-filtered, and variants were called. Vari-
ants with a quality higher than 100 were selected to con-
struct single SNP allele frequency and HAF estimates 
and compare the individual genotyped to the pooled 
sample. Generally, the HAF of the 300 genotype subsam-
ple and the entire population across the entire genome 
were equal (ANOVA p = 0.89), consistent with a Pearson 
correlation = 0.96.

Mapping and polymorphism detection
All reads were mapped to the Hordeum vulgare reference 
genome toplevel v2 [60] using bwa mem (version 0.7.1 
[61]), and sequence quality was assessed using fastqc [62]. 

pestimated − ptrue = lm(extension+ position)

https://github.com/mischn-dev/HAFcall
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Sequences were trimmed as required [63]. Stringent fil-
tering of aligned reads was applied using sambamba view 
(version 0.6.6 [64]), only retaining single mapped reads 
with a mapping quality > 30 as follows:

sambamba_v0.6.6 view -h -f bam -p -F "mapping_qual-
ity >  = 30 and not (unmapped or secondary_alignment) 
and not ([XA]! = null or [SA]! = null)"

Next, duplicates were removed from MACE seq and 
WGS datasets through sambamba makrdup and then 
sorted using sort. Variant calling employed samtools 
mplieup and bcftools call (version 1.8 [56]) on minimum 
variant base quality (Phred quality score = 25). Fur-
ther, the flags -t AD and –positions were specified. AD, 
the allelic depth format, generated information about 
read calls for each allele and sample. The positions flag 
was used to restrict the pileup to sites where the parents 
had different homozygote alleles, and the position was 
reported as a variant locus in the Ensemble variant refer-
ence database [65]. Finally, the bcftools options -v and -m 
were used to generate a vcf file. Only SNPs were called, 
and indels were omitted from the calls. As previously 
described [31], the proposed method is the best routine 
for the variant calling of large plant genomes because of 
its superior specificity and sensitivity.
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 Additional file 1: Figure S1. Distribution and coverage of detected poly-
morphisms over the barley chromosomes. A whole-genome sequencing; 
B MACE transcriptome sequencing; C genotyping by sequencing. Values 
illustrate the average across the replicates (P1–P3). Figure S2. KASP 
individual genotyping allele frequency results against the measured allele 
frequency in P1 pool sample for the MACE transcriptome. The dashed 
line indicates the optimal match, where pool obtained values match the 
individual genotyping ideally. The read curve is a regression smooth curve 
using all points. The color of the points indicates the coverage per locus, 
which ranges from 1 to several thousand. Error bars highlight the entire 
margin of single SNP allele frequency that contributed to the overall allele 
frequency of the haplotype. If no error bar is visible, there is only one SNP 
contribution information to the haplotype. A the single SNP comparison. 
Only one SNP is detected having the exact same position as the KASP 
markers. B the gene-based haplotype allele frequency compared to the 
individual genotyping. C marker-based haplotype pool allele frequency 
in comparison to true allele frequency (measured by KASP). D contig 
haplotype-based comparison to the individual genotyping. The pool 
sequenced sample contains the same 288 genotypes that have been 
tested individually for the 21 KASP loci. As two KASP markers did not 
meet the quality threshold, they were omitted from the analysis. Figure 
S3. KASP individual genotyping allele frequency results against the 

measured allele frequency in P1 pool sample for the GBS data. The dashed 
line indicates the optimal match, where pool obtained values match the 
individual genotyping ideally. The red curve is a regression smooth curve 
using all points. The color of the points indicates the coverage per locus, 
which ranges from 1 to several thousand. Error bars highlight the entire 
margin of single SNP allele frequency that contributed to the overall allele 
frequency of the haplotype. If no error bar is visible, there is only one SNP 
contribution information to the haplotype. A The single SNP compari-
son. Only one SNP was detected having the exact same position as the 
KASP markers. B The gene-based haplotype allele frequency compared 
to the individual genotyping. C Marker-based allele frequency. D Contig 
haplotype-based comparison to the individual genotyping. The pool 
sequenced sample contains the exact same 288 genotypes that have 
been tested individually for the 21 KASP loci. As two KASP marker did not 
meet the quality threshold, they were omitted from the analysis. Figure 
S4. KASP individual genotyping allele frequency results against the meas-
ured allele frequency in P1 pool sample for the WGS data. The dashed 
line indicates the optimal match, where pool obtained values match the 
individual genotyping ideally. The read curve is a regression smooth curve 
using all points. The color of the points indicates the coverage per locus, 
which ranges from 1 to several thousand. Error bars highlight the entire 
margin of single SNP allele frequencies that contributed to the overall 
allele frequency of the haplotype. If no error bar is visible, there is only one 
SNP contribution information to the haplotype. A The single SNP com-
parison. 10 SNP are detected to have the exact same position as the KASP 
markers. B The gene-based haplotype allele frequency compared to the 
individual genotyping. C Marker-based haplotype pool allele frequency 
comparison to true allele frequency. D Contig haplotype-based compari-
son to the individual genotyping. The pool sequenced sample contains 
the exact same 288 genotypes that have been tested individually for the 
21 KASP loci. As two KASP marker did not meet the quality threshold, 
they were omitted from the analysis. Figure S5. Median haplotype allele 
frequency (HAF) difference of two neighbouring haplotypes (blue) and 
the share of haplotypes being highly different to their physical neighbours 
(> 5 times median, yellow). All tested pool genotyping approaches are 
illustrated with their replicates. Figure S6 Genome-wide allele frequency 
on a physical map for gene-based haplotypes. The donor allele frequency 
is plotted in % (y-axis) against the genomic position (x-axis), split by 
chromosome and illustrated in base pairs. Each dot represents a gene 
haplotype and the color is related to the read coverage. The orange 
line indicates the expected allele frequency in the BC2F1. A MACE RNA 
sequencing output, B WGreS, C GBS. Values are the average across all 
replicates. Figure S7. Donor allele frequency in the region of brt1 and brt2 
brittleness genes. The donor allele frequency is illustrated for each gene-
based haplotype. The color illustrate the coverage per haplotype, while 
the shape separated the pool genotyping approaches. For each pool 
genotyping approach, all pools sequenced are illustrated. Phenotypic data 
of the population indicates unmeasurable levels of brittleness alleles in 
the population. All three pool genotyping approaches highlight similar 
observations on haplotype allele frequency levels 

Additional file 2. Table S2 Information on the 21 CASP markers used for 
validation of pool sequencing. Column ’Marker’ gives the unique naming 
of the CASP; Allel e 1 & Allel 2 denote how many of the 288 homozygote 
genotypes were observed to carry the respective allele. (’Allel 1’ count 
refers to column ’Ref’, while ’Allel 2’ refers to ’Alt’). ’failed’ indicated for how 
many genotypes the allele identification failed. ’heterozygot’ presents 
the number of genotypes being heterozygote. The ’ratio’ illustrated the 
allele frequency of the ISR42-8 alleles for each CASP marker. ’Chr’ and ’Pos’ 
describe the physical position of the CASP markers on the barley reference 
genome. ’Quality’ denotes the observed SNP calling quality from MACE 
RNAseq sequencing
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