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High‑throughput phenotyping allows 
the selection of soybean genotypes for earliness 
and high grain yield
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Abstract 

Background:  Precision agriculture techniques are widely used to optimize fertilizer and soil applications. Further-
more, these techniques could also be combined with new statistical tools to assist in phenotyping in breeding 
programs. In this study, the research hypothesis was that soybean cultivars show phenotypic differences concerning 
wavelength and vegetation index measurements.

Results:  In this research, we associate variables obtained via high-throughput phenotyping with the grain yield and 
cycle of soybean genotypes. The experiment was carried out during the 2018/2019 and 2019/2020 crop seasons, 
under a randomized block design with four replications. The evaluated soybean genotypes included 7067, 7110, 
7739, 8372, Bonus, Desafio, Maracai, Foco, Pop, and Soyouro. The phenotypic traits evaluated were: first pod height 
(FPH), plant height (PH), number of branches (NB), stem diameter (SD), days to maturity (DM), and grain yield (YIE). 
The spectral variables evaluated were wavelengths and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI, and 
MSAVI). The genotypes Maracai and Foco showed the highest grain yields throughout the crop seasons, in addition 
to belonging to the groups with the highest means for all VIs. YIE was positively correlated with the NDVI and certain 
wavelengths (735 and 790 nm), indicating that genotypes with higher values for these spectral variables are more 
productive. By path analyses, GNDVI and NDRE had the highest direct effects on the dependent variable DM, while 
NDVI had a higher direct effect on YIE.

Conclusions:  Our findings revealed that early and productive genotypes can be selected based on vegetation 
indices and wavelengths. Soybean genotypes with a high grain yield have higher means for NDVI and certain wave-
lengths (735 and 790 nm). Early genotypes have higher means for NDRE and GNDVI. These results reinforce the impor-
tance of high-throughput phenotyping as an essential tool in soybean breeding programs.
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Background
Soybean (Glycine Max (L.) Merrill) is the most impor-
tant oilseed crop and a major commodity worldwide. The 
crop complex in Brazil [a combination of grains and main 
derivatives (oil and bran)] surpassed that of the USA in 
the 2019/2020 crop season [1]. Due to large-scale world 
population growth combined with unstable product 
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prices, the demand for quality raw materials and fair 
prices has increased [2], requiring highly productive cul-
tivars and increasingly efficient farming systems.

In this sense, Brazilian soybean breeding programs 
have sought cultivars that combine high grain yield and 
earliness. Earliness has been a target because it allows 
farmers to grow corn or cotton in the off-season, after 
soybean cultivation (in-season). Furthermore, early-cycle 
genotypes remain less time in the field and are subject 
to less disease pressure [3]. However, plant cycle char-
acterization is a time and labor-demanding task since it 
requires on-field counting of the number of days from 
emergence until flowering or maturation of each geno-
type. This is because hundreds of soybean genotypes are 
evaluated annually in the breeding programs, and the 
cycle monitoring for each plot must be performed daily. 
To overcome these difficulties, the use of remote sensing 
techniques emerges as a high potential tool, providing 
specific and large-scale information for crop assessment 
[4–7].

Remote sensing-based high-throughput phenotyp-
ing (HTP) is a reliable and fast approach to real-time 
and large-scale plant trait measurements [8–10]. Adopt-
ing this approach is essential to achieve greater effi-
ciency of plant breeding, as it provides monitoring and 
decision support with applications in several scenarios, 
such as monitoring the plant status [8, 11–13], dis-
criminating cultivars [4, 6], predicting crop yield [7, 14, 
15], and selecting genotypes for traits of interest [9, 16, 
17]. Unmanned Aerial Vehicles (UAVs) are essential for 
remote sensing-based HTP since they provide fast real-
time data via remote sensors. These tools are required for 
obtaining Vegetation Indices (VIs), which are mathemati-
cal models for different wavelengths [7, 10, 18]. UAVs can 
estimate the spectral component of vegetation through 
combinations between red and near-infrared spectral 
bands [19] and can be assembled to assess the growth 
vigor, nutrient status, and photosynthetic activity of the 
plants in the field [20–22]. Thus, the use of spectral vari-
ables obtained by UAV imaging shows to be a promising 
approach for reliable, faster, and cost-effective measure-
ments of the cycle and yield-related traits in soybean.

Santana et  al. [11] assessed the relationship between 
VIs obtained from UAV multispectral imagery and leaf N 
content and yield-related traits in corn varieties grown in 
different N topdressing levels, and they verified a positive 
relationship between NDVI and NDRE and grain yield 
under adequate N levels. Da Silva et  al. [7], in a study 
aiming at identifying which VIs can be used in soybean 
grain yield prediction by using UAV and remote mul-
tispectral sensor, verified that NDVI and SAVI had the 
higher direct effect on grain yield. However, further stud-
ies assessing the relationship between VIs and cycle and 

yield-related traits in soybean cultivars are still needed. 
Identifying the cause-and-effect relationship between 
spectral and agronomic variables provides an easier and 
faster phenotyping process in breeding programs since 
efforts can be directed only to the wavelengths and VIs 
showing the highest cause-and-effect relationship with 
cycle and yield. Additionally, genotypes with better 
means for these spectral variables should be identified to 
achieve an efficient selection for yield and earliness.

The research hypothesis was that soybean cultivars 
show phenotypic differences concerning the measure-
ments of wavelengths and VIs. Thus, the objective of this 
study was to identify variables obtained by UAV-based 
HTP that are related to the grain yield and cycle of soy-
bean genotypes.

Methods
Field trials
During the 2018/2019 and 2019/2020 crop seasons, two 
experiments were carried out at the experimental field 
of the Federal University of Mato Grosso do Sul, campus 
of Chapadão do Sul (18° 46′  26″  S, 52° 37′  28″ W, mean 
altitude of 810  m). According to the Köppen classifica-
tion system, the climate is classified as tropical savanna 
(Aw). The soil of the experimental area is classified as 
dystrophic Red Latosol with a clay texture [23], and has 
the following chemical characteristics in the 0–20  cm 
layer, according to International System of Units: pH 
(CaCl2) = 5.0; H + Al = 35.0 mmolc dm−3; Ca = 26.0 
mmolc dm−3; Mg = 6.0 mmolc  dm−3; K = 55.0 mg dm−3; 
P = 16.0 mg dm−3; S = 24.0  mg  dm−3; B = 0.46  mg  dm−3; 
Cu = 0.7 mg dm−3; Fe = 25.0 mg dm−3; Mn = 10.4 mg dm−3; 
Zn = 5.2 mg dm−3; OM = 24.0 g dm−3; CEC = 68.0  mmolc 
dm−3; and base saturation = 48.8%.

The experimental design consisted of randomized 
blocks with four replications. The evaluated soybean gen-
otypes included 7067, 7110, 7739, 8372, Bonus, Desafio, 
Maracai, Foco, Pop, and Soyouro. The main phenotypic 
traits of the cultivars are shown in Table 1. The plots con-
sisted of five rows (4  m long) with a spacing of 0.45  m. 
The sowing density was 15 plants m−1. The climatic 
conditions during the experiments are shown in Fig.  1, 
respectively.

Evaluated variables
During both crop seasons, the high-throughput pheno-
typing measurements were performed at 60  days after 
emergence (DAE). On this date, soybean cultivars were 
in R1 and R2 according to phenological scale of Fehr and 
Caviness [24], showing the highest vegetative peak and 
maximum physiological development [25]. For spectral 
data acquisition, we used a Sensefly eBee RTK fixed-
wing unmanned aerial vehicle (UAV), with autonomous 
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take-off control, flight plan, and landing. The overflights 
were performed with 75% lateral and 80% longitudinal 
overlap of the taken images. The overflight was performed 
at 100 m altitude, allowing a spatial image resolution of 
0.10 m. The aircraft can fly between 50 and 400 ha field 
per flight (at a fully charged battery and dependent of the 
needed spatial resolution, wind speed and flight altitude). 
The flight autonomy depends on the image’s desired spa-
tial resolution and the overlap of the passes or flight lines, 

which can be up to 45  min. The aircraft has 0.96  m of 
wingspan, and the weight without a camera and battery is 
0.46 kg. The nominal take-off weight with camera e bat-
tery is 0.73 kg. The nominal cruise speed is between 40 
and 90 km h−1 (wind dependent).

SenseFly eBee RTK was equipped with a luminosity 
sensor and the Parrot Sequoia multispectral camera, with 
1280 × 960 pixels and pixel size of 3.75 × 3.75 µm (Focal 
Length of 3.98 mm). The Parrot Sequoia includes a sun-
shine sensor at the top of the equipment, which registers 
the sun’s total spectral irradiance at-sensor level and, 
thus, facilitates the automatic determination of the at-
sensor reflectance. The assumed Full-Width Half Maxi-
mum (FWHM) provided in the specification sheet, by 
guessing the shape of the relative spectral response func-
tion [26], are: Green 530–570 nm; Red 640–680 nm; Red-
edge 730–740 nm; and NIR 770–810 nm. The overflights 
were carried out near the zenith due to the minimization 
of the shadows of the trees, at 11 a.m., given that the mul-
tispectral sensor is passive type, that is, dependent on the 
solar luminosity.

The following wavelengths were evaluated: green 
(550  nm), red (660  nm), near-infrared (735  nm), and 
infrared (790  nm). The information acquired in these 
wavelengths allowed calculating the different vegetation 
indices, as shown in Table 2. The aerial survey was car-
ried out using Real-Time Kinematics (RTK) technology, 
which was used to estimate the position of the camera at 
the time of image collection, with an accuracy of 2.5 cm. 
The images were mosaiced and orthorectified using the 
Pix4Dmapper software package. The positional accuracy 
of the orthoimages was verified using ground control 
points (GCP), obtained via data surveys in combination 

Table 1  Characterization of evaluated soybean cultivars

RGM relative maturity group

Genotypes RMG Growth habit Other observations

7067 6.7 Semideterminate Resistant to asian rust (Phakopsora pachyrhizi), stem canker (Diaporthe phaseolorum) and bacterial pustule 
(Xanthomonas axonopodis pv. glycines)

7110 6.8 Indeterminate Resistant to bacterial pustule (Xanthomonas axonopodis pv. glycines), frog eye leaf spot (Cercospora sojina), 
macrophomina (Macrophomina phaseolina)

7739 7.7 Semideterminate Resistant to lodging and races 1 and 3 of the soybean cyst nematode (Heterodera glycines)

8372 8.3 Determinate Resistant to races 1 and 3 of the soybean cyst nematode (Heterodera glycines) and bacterial pustule (Xan-
thomonas axonopodis pv. glycines)

Bonus 7.9 Indeterminate Resistant to stem canker (Diaporthe phaseolorum)

Desafio 7.4 Indeterminate Resistant to lodging and stem canker (Diaporthe phaseolorum)

Maracai 7.7 Indeterminate Resistant to races 3, 6, 9, 10 and 14 of the soybean cyst nematode (Heterodera glycines) and stem canker 
(Diaporthe phaseolorum)

Foco 7.2 Indeterminate Resistant to races 3 and 14 of the soybean cyst nematode (Heterodera glycines) and stem canker (Diaporthe 
phaseolorum)

Pop 6.4 Indeterminate Resistant to stem canker (Diaporthe phaseolorum)

Soyouro 7.1 Indeterminate Resistant to lodging and stem canker (Diaporthe phaseolorum)

Fig. 1  Weather conditions during the 2018/2019 and 2019/2020 
crop seasons
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with RTK. A calibration reference plaque (calibration 
target) is also used, in the Pix4DMapper software, to 
convert the digital number of the pixels into reflectance 
values.

From each plot, five plants were randomly selected to 
evaluate the following agronomic traits: first pod height 
(FPH, cm), plant height (PH, cm), main stem diameter 
(SD, cm), hundred grain mass (HGM), days to maturity 
(DM), and grain yield (YIE). A measuring tape was used 
to evaluate both the FPH and PH. The SD was assessed 
with the aid of a digital caliper. The DM corresponded to 
the number of days between the emergence and maturity 
of the plants. The HGM was assessed using an analytical 
precision balance and corrected to 13% humidity. The 
central row of each plot was manually harvested to evalu-
ate the YIE, which was then corrected for 13% humidity 
and extrapolated to kg ha−1. Figure 2 demonstrates a dia-
gram of ground data collection.

Statistical analysis
The data were submitted to individual analyses of vari-
ance, considering all effects as fixed. After verifying that 
the ratio between the largest and smallest mean squared 
errors did not exceed 7.0, a joint analysis was performed 
in accordance with the model described in Eq.  1. The 
Scott–Knott test [27] was used for grouping the means.

where Yijk is the observation for the k-th block evaluated 
in the i-th cultivar during the j-th crop season; Bk is the 
fixed block effect; Gi is the fixed genotype effect; Sj is the 
random crop season effect; G × Sij is the random inter-
action between genotypes and crops; and εijk is the error 
associated with observation Yijk.

Pearson’s correlations (r) between the evaluated trait 
pairs were estimated according to Eq. 2:

(1)Yijk = µ+ Bk + G + Sj + G × Sij + εijk ,

where COV(XY) is the covariance between traits X and Y; 
σ̂ 2
x  is the variance of trait X; and σ̂ 2

y  is the variance of the 
YIE.

The graphical expression was performed using the 
functional relationship between the correlation coef-
ficient estimates of the different environments, using a 
correlation network generated using Rbio software [28], 
in which the proximity between the nodes (traces) was 
proportional to the total value of the correlation between 
these nodes [29]. The thickness of the edges was con-
trolled by applying a 0.60 cut-off value, in which only 
|rij| ≥ 0.60 have their edges highlighted. Thus, positive 
correlations were highlighted in green, while negatives 
correlations were highlighted in red.

The path analysis, considering YIE or DM as the prin-
cipal dependent variable and the wavelengths and VIs as 
explanatory variables, was conducted according to the 
model described in Eqs. 3 and 4:

where β1, β2, · · · β11 are the direct effects for the variables 
550, 660, 735, 790, NDVI, SAVI, GNVDI, NDRE, SCCCI, 
EVI, and MSAVI; and pε is the residual effect. All statis-
tical analyses were performed using Genes [30], Sisvar 
[31], and Rbio software, following the criteria recom-
mended by Cruz et al. [32].

Results
Table 3 shows the analyses of variance for the agronomic 
traits, wavelengths, and vegetation indices evaluated 
in ten soybean cultivars. There were significant differ-
ences (p-value ≤ 0.05) between the genotypes (G) for all 
analyzed variables. The crop season (S) was not signifi-
cant for the FPH, GNDVI, and SCCCI. It is important to 
emphasize that all evaluated variables showed a coeffi-
cient of variation (CV) below 20%. The wavelengths and 
VIs showed the lowest CVs, varying from 1.15 (NDVI) 
to 7.88% (EVI). The CVs of the agronomic traits varied 
from 9.33 (DM) to 18.89 (SD). These results reveal a high 
precision of the measurements, especially for the spectral 
variables, and the possibility of an accurate association 
between the spectral variables and cycle and yield-related 
variables.

Regarding the grouping of the agronomic trait means 
(Table  4), the genotype 7739 had the highest FPH, NB, 
and diameter of the main stem (DS). The genotype 8372 

(2)r =
COV(xy)
√

σ̂ 2
x × σ̂ 2

y

,

(3)YIE = β̂1550+ β̂2660+ · · · + β̂11MSAVI + pε ,

(4)DM = β̂1550+ β̂2660+ · · · + β̂11MSAVI + pε ,

Table 2  Vegetation index (VIs) equations generated from high-
throughput phenotyping and its respective reference

VIs Equation References

NDVI Nir−Red
Nir+Red

[43]

SAVI (1+ 0.5) nir−red
nir+red+0.5

[44]

GNVDI Nir−Green
Nir+Green

[45]

NDRE nir−rededge
nir+rededge

[37]

SCCCI NDRE
NDVI

[46]

EVI nir−red
(nir+6red−7.5green)+1

[47]

MSAVI 2Nir+1−
√

(2Nir+1)2−(8Nir−Red)
2

[48]
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had the highest FPH, NB, and DM, while the genotype 
Bonus showed the highest PH and SD. The genotype Pop 
had higher PH, NB, and SD means along with a lower 
DM. The genotypes Maracai and Foco showed the high-
est grain yields throughout the crop seasons.

The genotype 7739 presented the highest means for all 
assessed wavelengths, as shown in Table 5. Other geno-
types obtained high means for two of the wavelengths, 
including 8372 (660 and 735  nm), Bonus (550 and 
790  nm), Foco, and Maracai (735 and 790  nm). Table  6 
shows the mean groupings of the VIs between the geno-
types. It is important to note that the genotypes Maracai 
and Foco belonged to the groups with the highest means 
for all VIs. The genotypes 7067, 71,110, Bonus, Desafio, 
Maracai, Foco, and Soyouro obtained the highest means 
for the GNDVI. For the NDVI, the genotypes 7739, 8372, 
Bonus, Maracai, and Foco presented the better results.

The Pearson’s correlation network between the evalu-
ated variables is shown in Fig. 3. The YIE was positively 
correlated with the NDVI and certain wavelengths (735 
and 790 nm). The path analysis considering the DM as 
the principal dependent variable is shown in Table  7. 
The GNDVI and NDRE vegetation indices had the high-
est direct effects (module), which were also in the same 
direction as their correlations with the DM. Table  8 
shows the direct and indirect effects of the wavelengths 
and VIs on the YIE. The NDVI had a higher direct 
effect (module), which was in the same direction as its 
correlations with the YIE and MSAVI. The coefficients 
of determination (R) for the path analysis considering 

Fig. 2  Diagram of ground data collection

Table 3  P-values for first pod height (FPH), plant height (PH), 
number of branches (NB), main stem diameter (SD), days to 
maturity (DM), grain yield (YIE), wavelengths (550, 660, 735 and 
790 nm) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, 
EVI and MSAVI), evaluated in 10 soybean genotypes cultivated in 
the 2018/2019 and 2019/2020 crop seasons

ns  and *not significant and significant at 5% probability by the t-test, 
respectively

Variable Block Genotypes 
(G)

Crop season 
(S)

GxS Coefficient of 
variation (%)

FPH 0.12ns 0.05* 0.99ns 0.05* 13.69

PH 0.09ns 0.00* 0.00* 0.00* 12.32

NB 0.24ns 0.01* 0.01* 0.01* 18.47

SD 0.31ns 0.05* 0.00* 0.18ns 18.89

DM 0.41ns 0.01* 0.00* 0.00* 9.33

YIE 0.08ns 0.00* 0.00* 0.00* 11.64

550 0.44ns 0.00* 0.00* 0.00* 2.14

660 0.26ns 0.00* 0.01* 0.99ns 2.60

735 0.67ns 0.00* 0.01* 0.99ns 6.07

790 0.18ns 0.00* 0.01* 0.99ns 6.88

NDVI 0.17ns 0.00* 0.00* 0.00* 1.15

SAVI 0.25ns 0.00* 0.01* 0.99ns 5.82

GNDVI 0.31ns 0.00* 0.27ns 0.99ns 1.43

NDRE 0.42ns 0.00* 0.03* 0.99ns 2.86

SCCCI 0.17ns 0.00* 0.99ns 0.99ns 3.64

EVI 0.27ns 0.00* 0.01* 0.99ns 7.88

MSAVI 0.34ns 0.00* 0.01* 0.99ns 7.30
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Table 4  Grouping of means ± standard deviation for first pod height (FPH), plant height (PH), number of branches (NB), main stem 
diameter (SD), days to maturity (DM), and grain yield (YIE), evaluated in 10 soybean genotypes cultivated in the 2018/2019 and 
2019/2020 crop seasons

1 Means followed by different letters in the same column differ from each other by the Scott–Knott test at 5% probability

Genotypes FPH (cm) PH (cm) NB SD (mm) DM YIE (kg ha−1)

7067 13.80b ± 2.611 78.06 ± 7.12b 3.10 ± 0.39b 7.54 ± 0.62b 105.00 ± 2.19f 2905.94 ± 565.64c

7110 12.15 ± 4.79b 67.27 ± 6.76b 3.12 ± 0.52b 6.92 ± 0.81b 100.75 ± 3.04g 2899.01 ± 726.88c

7739 17.18 ± 2.92a 74.20 ± 8.03b 4.56 ± 0.56a 7.75 ± 0.81a 113.63 ± 1.73d 3216.23 ± 317.49b

8372 13.88 ± 4.06b 93.11 ± 7.21a 4.50 ± 0.98a 6.96 ± 0.82b 130.38 ± 1.67a 3313.12 ± 262.27b

Bonus 12.75 ± 2.79b 98.06 ± 5.83a 3.32 ± 0.88b 7.93 ± 0.80a 122.38 ± 1.20b 3266.46 ± 528.76b

Desafio 14.44 ± 3.76a 69.58 ± 5.43b 2.50 ± 0.21b 7.52 ± 0.92b 104.75 ± 1.51f 2806.36 ± 750.63c

Maracai 15.87 ± 6.04a 70.53 ± 6.40b 2.41 ± 0.64b 6.73 ± 0.53b 119.63 ± 0.76c 3834.75 ± 571.64a

Foco 12.05 ± 4.53b 76.58 ± 5.67b 3.05 ± 0.25b 8.07 ± 0.83a 106.38 ± 1.07e 3630.99 ± 592.94a

Pop 13.91 ± 4.97b 91.01 ± 2.89a 4.97 ± 0.61a 7.83 ± 0.68a 101.25 ± 1.46g 3092.82 ± 317.28c

Soyouro 14.59 ± 3.46b 76.32 ± 7.73b 3.35 ± 0.22b 7.00 ± 0.84b 100.63 ± 1.60g 3356.69 ± 426.93b

Table 5  Grouping of means ± standard deviation for wavelengths green (550 nm), red (660 nm), near-infrared (735 nm), and infrared 
(790 nm), evaluated in 10 soybean genotypes cultivated in the 2018/2019 and 2019/2020 crop seasons

1 Means followed by different letters in the same column differ from each other by the Scott-Knott test at 5% probability

Genotypes 550 nm 660 nm 735 nm 790 nm

7067 0.0471 ± 0.0165d1 0.0353 ± 0.0344b 0.2761 ± 0.0127b 0.4468 ± 0.0094b

7110 0.0482 ± 0.0370c 0.0350 ± 0.0895b 0.2910 ± 0.0124b 0.4648 ± 0.0073b

7739 0.0540 ± 0.0083a 0.0362 ± 0.0295a 0.3066 ± 0.0118a 0.4848 ± 0.0074a

8372 0.0512 ± 0.0111b 0.0390 ± 0.0877a 0.2855 ± 0.0277a 0.4484 ± 0.0080b

Bonus 0.0537 ± 0.0134a 0.0349 ± 0.0316b 0.3131 ± 0.0071b 0.4989 ± 0.0076a

Desafio 0.0459 ± 0.0309e 0.0334 ± 0.0456b 0.2819 ± 0.0151b 0.4618 ± 0.0111b

Maracai 0.0491 ± 0.0216c 0.0329 ± 0.0356b 0.3029 ± 0.0112a 0.4907 ± 0.0093a

Foco 0.0508 ± 0.0065b 0.0355 ± 0.0435b 0.3030 ± 0.0133a 0.4992 ± 0.0082a

Pop 0.0505 ± 0.0168b 0.0371 ± 0.0428a 0.2818 ± 0.0135b 0.4393 ± 0.0089b

Soyouro 0.0499 ± 0.0239b 0.0355 ± 0.0397b 0.2905 ± 0.0104b 0.4663 ± 0.0074b

Table 6  Grouping of means ± standard deviation for NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI, and MSAVI, evaluated in 10 soybean 
genotypes in the 2018/2019 and 2019/2020 crop seasons

1 Means followed by different letters in the same column differ from each other by the Scott–Knott test at 5% probability

Genotypes NDVI SAVI GNDVI NDRE SCCCI EVI MSAVI

7067 0.8593 ± 0.0088b1 0.6279 ± 0.0249b 0.8089 ± 0.0494a 0.2360 ± 0.0897a 0.2765 ± 0.0184a 0.3153 ± 0.0204b 0.6754 ± 0.0322b

7110 0.8550 ± 0.0238b 0.6428 ± 0.0422b 0.8109 ± 0.0257a 0.2293 ± 0.0991b 0.2670 ± 0.0710b 0.3266 ± 0.0039b 0.6948 ± 0.0788b

7739 0.8744 ± 0.0044a 0.6585 ± 0.0238a 0.7994 ± 0.0421b 0.2251 ± 0.0494b 0.2614 ± 0.0715b 0.3460 ± 0.0646a 0.7154 ± 0.0242a

8372 0.8675 ± 0.0215a 0.6179 ± 0.0591b 0.7919 ± 0.1158b 0.2210 ± 0.0798b 0.2670 ± 0.0692b 0.3160 ± 0.0779b 0.6626 ± 0.0262b

Bonus 0.8690 ± 0.0056a 0.6724 ± 0.0255a 0.8056 ± 0.0417a 0.2284 ± 0.0994b 0.2633 ± 0.0133b 0.3550 ± 0.0437a 0.7328 ± 0.0254a

Desafio 0.8591 ± 0.0066b 0.6441 ± 0.0321b 0.8181 ± 0.0654a 0.2180 ± 0.0536b 0.2586 ± 0.0043b 0.3249 ± 0.0123b 0.6985 ± 0.0384b

Maracai 0.8688 ± 0.0088a 0.6701 ± 0.0255a 0.8174 ± 0.0502a 0.2361 ± 0.0762a 0.2703 ± 0.0370a 0.3468 ± 0.0325a 0.7325 ± 0.0318a

Foco 0.8784 ± 0.0051a 0.6708 ± 0.0309a 0.8145 ± 0.0594a 0.2441 ± 0.0450a 0.2823 ± 0.0661a 0.3481 ± 0.0136a 0.7304 ± 0.0284a

Pop 0.8558 ± 0.0077b 0.6166 ± 0.0311b 0.7929 ± 0.0600b 0.2413 ± 0.0774a 0.2791 ± 0.0007a 0.3134 ± 0.0508b 0.6590 ± 0.0293b

Soyouro 0.8568 ± 0.0049b 0.6438 ± 0.0293b 0.8063 ± 0.0551a 0.2321 ± 0.0662a 0.2706 ± 0.0011a 0.3299 ± 0.0188b 0.6958 ± 0.0251b
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DM as the principal dependent variable (Table  7) was 
0.71, while the R of the analysis considering YIE as the 
principal dependent variable (Table 8) was 0.81. Both R 
values are considered adequate, revealing that the eval-
uated variables explained most of the data variation.

The relationships between the NDVI, NDRE, and 
GNDVI with the grain yield and days to maturity are 
shown in Fig. 4. The dashed lines between the VIs show 
a positive correlation and high magnitude between the 
NDRE and GNDVI. The NDVI presents a direct posi-
tive effect on the grain yield. As previously mentioned, 
there is a direct relationship between both variables, so 
it is possible to estimate the final production of a crop 
using NDVI data. The NDRE and GNDVI showed direct 
negative effects on the days to maturity, meaning that the 
higher the NDVI and GNDVI, the lower the DM of the 
crop.

Discussion
The significance of the other variables can be related to 
the distinct weather conditions between the crop sea-
sons, such as rainfall and temperature. The interaction 
(G × S) was significant for the first pod height (FPH), 
plant height (PH), number of branches (NB), days to 
maturity (DM), grain yield (YIE), 550  nm wavelength, 
and NDVI.

The variables differ between the genotypes due to their 
genetic and morphological characteristics and the envi-
ronmental conditions to which they were subjected. 
Overall, the plants showed a low reflectivity in the vis-
ible spectrum range (400 to 700 nm) due to the influence 
of chlorophyll, the most abundant pigment in leaves. 
The chlorophyll presented a high absorption of blue and 
red wavelengths, while reflecting the green wavelength, 
which is remarkable, especially in healthy plants [33].

The presence of genotypes Maracai and Foco in the 
groups with the highest means for all VIs is interesting, 

Fig. 3  Pearson correlation network between first pod height (FPH), 
plant height (PH), number of branches (NB), main stem diameter (SD), 
days to maturity (DM), grain yield (YIE), wavelengths (550, 660, 735 
and 790 nm) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, 
EVI, and MSAVI), evaluated in 10 soybean genotypes in the 2018/2019 
and 2019/2020 crop seasons

Table 7  Path analysis for the effects of wavelengths (550, 660, 735 and 790  nm) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, 
SCCCI, EVI, and MSAVI) on days to maturity (DM), evaluated in 10 soybean genotypes in the 2018/2019 and 2019/2020 crop seasons

Coefficient of determination = 0.71

Effect of the residual variable = 0.35

Effect 550 660 735 790 NDVI SAVI GNDVI NDRE SCCCI EVI MSAVI

Direct over DM 0.08 0.05 0.09 − 0.01 0.35 − 0.17 − 0.36 − 0.43 0.17 0.07 − 0.11

Indirect via 550 – 0.04 0.06 0.04 0.05 0.03 − 0.04 − 0.04 − 0.05 0.05 0.03

Indirect via 660 0.02 – − 0.01 − 0.03 0.00 − 0.03 − 0.05 − 0.03 − 0.02 − 0.02 − 0.04

Indirect via 735 0.07 − 0.02 – 0.08 0.07 0.08 0.01 0.01 − 0.01 0.09 0.08

Indirect via 790 − 0.01 0.01 − 0.01 – − 0.01 − 0.02 − 0.01 − 0.01 0.00 − 0.02 − 0.01

Indirect via NDVI 0.22 0.02 0.26 0.26 – 0.22 0.02 0.08 0.05 0.25 0.22

Indirect via SAVI − 0.06 0.11 − 0.14 − 0.17 − 0.10 – − 0.10 − 0.09 − 0.03 − 0.16 − 0.17

Indirect via GNDVI 0.16 0.27 − 0.04 − 0.14 − 0.01 − 0.18 – − 0.27 − 0.21 − 0.12 − 0.18

Indirect via NDRE 0.21 0.30 − 0.03 − 0.19 − 0.10 − 0.23 − 0.39 – − 0.40 − 0.14 − 0.23

Indirect via SCCCI − 0.10 − 0.07 − 0.04 0.03 0.03 0.04 0.13 0.16 – 0.00 0.04

Indirect via EVI 0.04 − 0.03 0.06 0.06 0.05 0.06 0.03 0.02 0.00 – 0.06

Indirect via MSAVI − 0.03 0.07 − 0.09 − 0.10 − 0.07 − 0.11 − 0.07 − 0.06 − 0.02 − 0.10 –

Total (r) 0.60 0.74 0.09 − 0.17 0.26 − 0.31 − 0.79 − 0.69 − 0.53 − 0.11 − 0.32



Page 8 of 11Santana et al. Plant Methods           (2022) 18:13 

as these genotypes were the ones with the highest grain 
yield means. This finding supports the existence of a high 
correlation between the YIE and VIs during the repro-
ductive stage of soybean, in which the plant reaches the 
maximum leaf area index and consequently has a high 
photosynthetic rate [34]. Another meaningful relation-
ship was observed for Pop and Soyouro, which were the 
earliest genotypes and showed the highest means for the 
NDRE and SCCCI indices. This finding is supported by 
the association between soybean reflectance and phe-
nological crop stage, in which cultivars with short cycles 
have faster development and higher chlorophyll concen-
tration [35].

For the VIs, high values were only obtained for the 
NDVI and GNDVI. This result can be explained by the 
greater sensitivity of these VIs to the identification of 
canopy biomass, since both the GNDVI and NDVI are 
more sensitive to detect differences in the plant canopy 
[36], especially in terms of chlorophyll content and pho-
tosynthetic activity [37]. The VIs EVI, SAVI and MSAVI 
differ from NDVI and GNDVI especially by using correc-
tion factors, such as areas with a high presence of bare 
soil [6], while NDRE is more sensitive to detecting dif-
ferences in late stages of growth, characterizing one of 
the possible reasons why the NDVI and GNVI values are 
higher.

The positive correlation between YIE x NDVI and 
wavelengths (735 and 790 nm) indicates that the higher 
the estimates of these wavelengths and the NDVI, the 
higher the grain yield achieved by the evaluated geno-
types. Such results are relevant because although the 
grain yield is the most crucial trait in a soybean breeding 
program, it has low heritability due to the high environ-
mental effect and laborious measurement [16, 38].

In this sense, including the NDVI and 735/790  nm 
wavelength measurements as auxiliary variables for 
selecting soybean genotypes is a promising strategy 
since they are easier to measure, faster to obtain, require 
less labor, and provide more accurate results com-
pared to grain yield measurements [7, 39]. The NDVI 
and 735/790  nm wavelengths can remotely measure a 
large number of candidates for selection [16], which can 
improve the efficiency of breeding programs. In addition, 
the NDVI was positively correlated with the 735, 790, and 
550  nm wavelengths, which in turn showed a positive 

Table 8  Path analysis for the effects of wavelengths (550, 660, 735, and 790 nm) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, 
SCCCI, EVI, and MSAVI) on grain yield (YIE), evaluated in 10 soybean genotypes in the 2018/2019 and 2019/2020 crop seasons

Coefficient of determination = 0.81

Effect of the residual variable = 0.33

Effect 550 660 735 790 NDVI SAVI GNDVI NDRE SCCCI EVI MSAVI

Direct over YIE − 0.27 − 0.16 0.18 0.09 0.34 0.04 − 0.15 − 0.40 0.00 0.07 0.17

Indirect via 550 – − 0.12 − 0.19 − 0.12 − 0.16 − 0.09 0.15 0.13 0.16 − 0.14 − 0.08

Indirect via 660 − 0.07 – 0.04 0.07 − 0.01 0.10 0.14 0.11 0.06 0.07 0.10

Indirect via 735 0.13 − 0.04 – 0.17 0.13 0.16 0.03 0.01 − 0.04 0.17 0.15

Indirect via 790 0.04 − 0.04 0.08 – 0.06 0.09 0.04 0.04 0.01 0.09 0.08

Indirect via NDVI 0.21 0.02 0.25 0.25 – 0.22 0.02 0.08 0.05 0.25 0.22

Indirect via SAVI 0.01 − 0.02 0.04 0.04 0.02 – 0.02 0.02 0.01 0.04 0.04

Indirect via GNDVI 0.08 0.14 − 0.02 − 0.07 − 0.01 − 0.09 – − 0.14 − 0.11 − 0.06 − 0.09

Indirect via NDRE 0.20 0.27 − 0.03 − 0.18 − 0.09 − 0.21 − 0.36 – − 0.36 − 0.14 − 0.22

Indirect via SCCCI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00 0.00

Indirect via EVI 0.04 − 0.03 0.07 0.07 0.05 0.07 0.03 0.02 0.01 – 0.07

Indirect via MSAVI 0.05 − 0.11 0.14 0.16 0.11 0.17 0.10 0.09 0.04 0.16 –

Total (r) 0.41 − 0.09 0.55 0.48 0.46 0.44 0.01 − 0.05 − 0.18 0.50 0.44

Fig. 4  Path diagram for results from Tables 6 and 7 for dependent 
variables (grain yield—YIE and days to maturity—DM) as function of 
selected vegetation indices (NDVI, NDRE and GNDVI). Dashed lines 
indicate Pearson’s correlations between variables, while continuous 
lines reveal the direct effects obtained by path analysis (previously 
performed)
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correlation with the 660 nm wavelength. There was also 
a strong negative correlation between DM, GNDVI, and 
NDRE.

Although important, Pearson’s correlation coefficients 
can produce misunderstandings regarding the relation-
ship between two variables, which may not be a true 
cause-and-effect relationship. A high or low correlation 
coefficient between two variables may result from the 
effects of a third variable or group of variables, thus not 
giving the exact relative importance of the direct and 
indirect effects of these factors [32]. Therefore, we per-
formed path analysis, which investigates cause-and-effect 
relationships. This analysis promotes a detailed under-
standing of the effects of the variables involved and justi-
fies the existence of positive and negative correlations (of 
a high or low magnitude) between the studied variables 
[40].

However, to obtain the direct and indirect effects by 
path analysis, the matrix X′X must be well-conditioned. 
Under the presence of multicollinearity, the variances 
associated with the path coefficient estimators can reach 
the highest values, becoming unreliable. Furthermore, 
the parameter estimates can assume values beyond the 
parametric space [32]. According to the criteria estab-
lished in Montgomery and Peck [41], the obtained 
phenotypic correlation matrix estimates has strong mul-
ticollinearity since the condition number (CN) was equal 
to 521 and 223 when considering the YIE and DM as 
principal dependent variables, respectively. The CN of 
the phenotypic correlation matrix is calculated by the 
ratio of its highest eigenvalue over its lowest eigenvalue. 
When the condition number is less than 100, multicollin-
earity is weak; between 100 and 1000, multicollinearity is 
moderate to strong; finally, when greater than 1000, mul-
ticollinearity is severe [41]. Thus, a constant k = 0.05 was 
added to the X′X diagonal matrix to correct the multicol-
linearity for both cases.

These results of path analysis on days to maturity reveal 
a negative cause-and-effect relationship between the VIs 
and DM. Thus, the higher the values of these indices, the 
earlier the soybean genotypes are. This is due to the rapid 
initial development and higher chlorophyll concentration 
of these genotypes [35].

For path analysis on grain yield, we found a positive 
cause-and-effect relationship between NDVI and YIE. 
Thus, the higher the NDVI values, the higher the yield of 
the soybean genotypes. Lopresti et al. [14] reported that 
wheat crop monitoring using grain yield maps (obtained 
using the NDVI) could predict the grain yield 30  days 
before harvest. The NDVI allows for the monitoring of 
the soybean biomass growth, which provides information 
throughout the sub-periods of the crop cycle, thus estab-
lishing production estimates [42].

Soybean breeding programs increasingly seek to 
develop early soybean genotypes to facilitate the culti-
vation of crops, such as maize and cotton, during the 
second harvest. Thus, the DM is a continuously evalu-
ated trait in hundreds of genotypes, but there is a lack of 
information concerning its relationships with the emitted 
wavelength and vegetation indices. The results provided 
by the correlation network demonstrate a negative asso-
ciation between the NDRE, GNDVI, and SCCCI with 
the DM, indicating that genotypes with higher values for 
these VIs can be selected for earliness. This is an impor-
tant finding for soybean breeding, as it reveals the pos-
sibility of identifying early genotypes by UAV-based HTP 
using the VIs mentioned. Whereas traditional phenotyp-
ing of the soybean cycle is a time and labor-consuming 
task, requiring daily field visits to count the number of 
days to maturity, the use of VIs as a tool for selecting 
early genotypes can contribute to a significant decrease 
in the time and effort spent on this step of the program.

The acquisition of large-scale phenotypic data has 
become one of the major bottlenecks hindering crop 
breeding [22]. Our study provides relevant information 
to support management and decision-making in soy-
bean breeding since we demonstrate that it is possible to 
select genotypes for earliness and yield through an easy 
and economical high-throughput phenotyping approach. 
Using the approach employed here, which involves the 
employment of statistical techniques to study the rela-
tionship between agronomic traits and VIs as well as the 
selection of genotypes based on VIs obtained by UAV 
imagery can increase the efficiency of current breeding 
programs by enabling large-scale evaluations with time 
and labor savings. In this sense, further studies address-
ing yield and maturity prediction of soybean genotypes 
based on the vegetation indices studied here are very 
promising and could be used to improve the efficiency of 
phenotypic evaluations in breeding programs.

Conclusions
Soybean genotypes with a high grain yield (Maracai and 
Foco) have higher vegetation index values, especially for 
the 735 and 790  nm wavelengths and NDVI. This veg-
etation index has a cause-and-effect relationship with 
the grain yield of soybean. Our findings suggest that 
NDVI can be used for high-throughput phenotyping to 
select genotypes for high grain yield in soybean breeding 
programs.

The earliest soybean genotypes have a higher NDRE 
and GNDVI. Due to the requirement for earlier geno-
types, the number of days to maturity has been increas-
ingly evaluated in soybean breeding programs. For a 
cause-and-effect relationship with the DM, we recom-
mend that the NDRE and GNDVI vegetation indices be 
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used for high-throughput phenotyping in soybean breed-
ing programs seeking to select earlier genotypes.
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