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Abstract 

Background:  Developing a systematic phenotypic data analysis pipeline, creating enhanced visualizations, and inter-
preting the results is crucial to extract meaningful insights from data in making better breeding decisions. Here, we 
provide an overview of how the Rainfed Rice Breeding (RRB) program at IRRI has leveraged R computational power 
with open-source resource tools like R Markdown, plotly, LaTeX, and HTML to develop an open-source and end-to-
end data analysis workflow and pipeline, and re-designed it to a reproducible document for better interpretations, 
visualizations and easy sharing with collaborators.

Results:  We reported the state-of-the-art implementation of the phenotypic data analysis pipeline and workflow 
embedded into a well-descriptive document. The developed analytical pipeline is open-source, demonstrating how 
to analyze the phenotypic data in crop breeding programs with step-by-step instructions. The analysis pipeline shows 
how to pre-process and check the quality of phenotypic data, perform robust data analysis using modern statistical 
tools and approaches, and convert it into a reproducible document. Explanatory text with R codes, outputs either in 
text, tables, or graphics, and interpretation of results are integrated into the unified document. The analysis is highly 
reproducible and can be regenerated at any time. The analytical pipeline source codes and demo data are available at 
https://​github.​com/​whuss​ain2/​Analy​sis-​pipel​ine.

Conclusion:  The analysis workflow and document presented are not limited to IRRI’s RRB program but are applicable 
to any organization or institute with full-fledged breeding programs. We believe this is a great initiative to modernize 
the data analysis of IRRI’s RRB program. Further, this pipeline can be easily implemented by plant breeders or research-
ers, helping and guiding them in analyzing the breeding trials data in the best possible way.
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Background
The International Rice Research Institute (IRRI), estab-
lished in the 1960s, is the world’s premier research organ-
ization dedicated to rice science. Rainfed rice breeding 
(RRB) at IRRI started since the establishment of the 
institute and is continuously committed to innovate and 

develop improved rice germplasm for improving the live-
lihood of farmers encountering challenging climates [1]. 
Currently, the ongoing rice breeding project, “Acceler-
ated Genetic Gains in Rice Alliance” at IRRI, funded by 
the Bill and Melinda Gates Foundation (BMGF), is man-
dated to modernize breeding strategies and framework to 
increase the current rates of genetic gains in close collab-
oration with NARES network-partner’s across South Asia 
(India, Bangladesh, and Nepal), East and Southern Africa 
(Kenya, Mozambique, Tanzania, and Burundi).
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Every year RRB at IRRI shares the breeding germplasm 
tolerant to drought, salt, heat, and submergence with 
the regional partner’s for phenotypic evaluation and, in 
return, receives raw phenotypic data from several trials at 
different locations. For instance, the RRB during the year 
2019 received data from approximately 20 trials from the 
NARES partners. It is crucial to demystify data analysis 
for regional partner’s to make better breeding decisions 
and present the results in an easy and understandable 
format. Detailed documentation will contribute to a clear 
interpretation and understanding of results along with 
promoting collaborations. Furthermore, simultaneously 
analyzing and documenting the results has not been 
possible with readily available computational tools that 
require a ‘copy and paste’ system to document or report 
the highly error-prone results. Thus, we believe an imme-
diate up-gradation of data analysis workflow is crucial to 
be more effective and enhance reproducibility [2]. The 
high-end improvement is necessary for conveniently doc-
umenting and sharing the result reports.

Technology advances have made data management, 
analysis, interpretation, visualization, and sharing more 
convenient. For example, R software [3] packages viz., 
ggplot2 [4], plotly (https://​plotly.​com/), DT (https://​rstud​
io.​github.​io/​DT/) has made the data mining manageable 
and visualizations interactive and dynamic. Similarly, 
with R Markdown [5], data analysis can be turned into 
high-quality, reproducible reports in which codes, text, 
tables, graphics, and more are embedded in one unified 
document. Furthermore, the reports can be generated 
in various formats, including MS Word, PDF, HTML 

(Hyper-Text Markup Language), and more for seamless 
sharing (https://​rmark​down.​rstud​io.​com/).

Here, we provide an overview of how the RRB pro-
gram at IRRI has leveraged in R computational power 
with open-source resource tools of R Markdown, plotly, 
LaTeX [6] (https://​www.​latex-​proje​ct.​org/​get/) and 
HTML to develop an analysis workflow of phenotypic 
data analysis, and re-designing it to a reproducible docu-
ment for better interpretations, visualization and easy 
sharing with collaborators. The developed analysis work-
flow demonstrates how to pre-process and check data 
quality and perform robust data analysis using modern 
statistical tools and approaches. Besides developing this 
analytical pipeline and workflow, we showed how this 
workflow could be embedded into a well-descriptive doc-
ument or report. In practice, we provide an open-source 
analytical pipeline with comprehensive details, proce-
dures, and end-to-end steps. It integrates the analysis 
workflow, explanatory text with R codes, outputs either 
in text, tables, or graphics, and interpretation of results 
into a single document or, in simpler words, ‘everything 
is at one place. The complete and detailed description 
of results will act as a guide for phenotypic data analy-
sis. It can be easily put into practice by the plant breeders 
and or plant researchers having a full-fledged breeding 
program.

Overview of analysis workflow and pipeline
Figure  1 illustrates the improved analysis workflow 
adopted in this study to analyze multi-environment 
trial data. The workflow is divided into four main 

Fig. 1  Schematic representation of data analysis workflow adapted in the current report. The four main steps involved in the analysis workflow 
process are a data importing, b data pre-processing, c data modeling, and d results generation. The main steps are divided into individual 
components required to develop a comprehensive and robust analysis pipeline
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components: data import, pre-processing and qual-
ity check, data analysis, and result extractions. In the 
pre-processing and quality check, we demonstrated 
a detailed procedure and instruction on checking the 
quality of data and ensuring only high-quality pheno-
typic data points are advanced for downstream analy-
sis to get reliable estimates or predictions of genotypes. 
The sample document for this available is on GitHub 
(https://​github.​com/​whuss​ain2/​Analy​sis-​pipel​ine). For 
the data analysis step, we provide a detailed overview 
of how to analyze the data separately or jointly using 
linear mixed-model (LMM) approaches. The analytical 
pipeline is demonstrated both in the ASReml-R pack-
age and in the lme4 R package available on GitHub 
(https://​github.​com/​whuss​ain2/​Analy​sis-​pipel​ine). We 
applied mixed models ranging from basic to higher 
advanced models in separate-trial analysis account-
ing for experimental design factors and spatial trends. 
Similarly, in multi-environment trial (MET) data, we 
showed single-stage or two-stage analysis approaches 
ranging from basic models to higher advanced factor 
analytical models. In the results step, we demonstrated 
selecting the best model and using it to extract differ-
ent results. Results including BLUPs, heritability, cor-
relation and covariance matrix of environments, G x 
E BLUPs, principal component analysis (PCA) biplot-
showing stability and relationship of environments, 
and latent regression plots to accesses the stability 
of genotypes (Fig.  2) were presented. All the instruc-
tions, R source codes, examples, and the data sets are 
freely available in the GitHub repository at https://​
github.​com/​whuss​ain2/​Analy​sis-​pipel​ine. Additional 

resources on analyzing the MET data and checking 
the stability of genotypes are given in section 1.4 of the 
ASReml analysis workflow.

Data importing
In this step, raw phenotypic data is imported into the 
R workspace, and metadata information is generated 
(Fig. 1). Information about the field trial, data collection, 
experimental design, and more are given in section  1 
of the sample pre-processing HTML file available on 
GitHub (https://​github.​com/​whuss​ain2/​Analy​sis-​pipel​
ine). The raw phenotypic data imported can also be visu-
alized in the table format in the report. Interestingly, the 
table generated for raw phenotypic data is highly inter-
active and can be easily managed, searched, and sorted 
like a mini excel sheet (section 2 in the sample pre-pro-
cessing HTML file). Further, the table generated can be 
easily exported in various formats or printed directly 
within the document. The raw phenotypic data used for 
the demo purpose in this study comes from one of the 
rainfed breeding program trials, which were evaluated in 
alpha lattice design with two replications and six blocks 
across multiple environments in Africa with a total of 200 
unique genotypes per environment. Besides replications 
and blocks, row and column information is noted down 
to account for the spatial trends.

Data pre‑processing and quality check
Data pre-processing involving the quality control of 
data is the most critical and complex step in data analy-
sis. The workflow to pre-process and check the quality 
of data is given on a pre-processing HTML file available 

Fig. 2  Results extracted from the MET analysis. a Latent regression plot for the top 10 genotypes using first factor estimated loadings. The 
solid blue line and the gray shade correspond to the latent regression line and the confidence interval of 95%, respectively. b Biplot of selected 
genotypes (in blue color) and un-selected genotypes (in yellow triangles) based on predicted breeding values adjusted across all environments 
based on factor analytic covariance structure. The blue lines with arrows show the environments and their correlations
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on GitHub page (https://​github.​com/​whuss​ain2/​Analy​
sis-​pipel​ine). We provide a series of quality control 
steps (Fig. 1) to ensure better data quality and advance 
quality phenotypes for downstream analysis to get 
more reliable and accurate estimates or predictors. In 
general, data pre-processing steps include checking for 
noise, i.e., removing outliers, errors, or missing data, 
removing corrupt or inaccurate records, checking for 
normality assumptions for more reliable estimates, and 
looking for linearity or co-linearity for best model fit. 
Briefly, the steps mentioned in the document are:

a)	 Missing data: Here, the raw phenotypic data is visual-
ized, and the proportion of missing data is visualized 
(section 3.1 in the sample pre-processing HTML file). 
Data can be filtered based on a certain proportion of 
missing data. For example, we dropped the trials hav-
ing more than 20% of the data in this demonstration.

b)	 Descriptive statistics: In this step, phenotypic data 
points are summarized as mean, mode, coefficient of 
variation, the standard deviation for a given variable. 
Descriptive statistics helps to understand data much 
better and is the initial step to draw conclusions from 
the data and plan the model fitting. In addition, the 
descriptive statistics components may give a clue 
about the possible errors in the data. For example, 
the coefficient of variation (CV) calculated in this 
section can be used to measure variability for a given 
trait, determine the best plot size in uniformity trials, 
measure the stability of phenotypes, or measure vari-
ation in other individuals or populations attributes 
[7].

c)	 Generate heatmaps of field: In this step, interactive 
heatmaps of experimental field design are plotted to 
check for the field’s spatial trends and the trend in the 
missing data. The presence of spatial effects in the 
data means that advanced models accounting for the 
spatial effects is required to get better estimates or 
predictions (section 3.3 in the sample pre-processing 
HTML file)

d)	 Data visualization: In this step, data is visualized 
using box plots, histograms, and QQ plots. Histo-
grams show the data distribution and ideas about 
normality assumptions, and QQ plots depict quan-
tiles of the datasets and assess correlated errors 
among data points for a given variable (section 3.4 in 
the sample pre-processing HTML file). Similarly, box 
plots shown in the data are an excellent technique 
to visualize the data distribution, dispersion, outlier 
detection, and trait variation. We also interactively 
presented the boxplots so that more information is 
obtained that is hidden in static boxplots.

e)	 Filter for outliers: In this step, outliers are identified 
and filtered using the Bonferroni-Holm test [8, 9]. 
Bonferroni-Holm test is more powerful and reliable 
when dealing with either small or large data sets. It can 
identify outliers based on the significance of residuals 
(section 3.5 in a sample pre-processing HTML file).

f )	 Reliability of trial: Based on yield data, we also look 
at the reliability of each trial or environment as a 
quality criterion. Any experimental trials having reli-
ability lower than 0.2 are dropped from the analysis 
(section 3.6 in the sample pre-processing HTML file). 
More details on reliability and how to calculate it are 
given in the sample pre-processing HTML file.

Data analysis
The data analysis demonstrated here is divided into sin-
gle or separate-trial analysis and multi-environment trial 
analysis. We demonstrated data analysis of MET both 
in the ASReml-R package [10] and lme4 R package [11]. 
We also demonstrated the analysis using marker data 
and extracting the genomic estimated breeding values 
(GEBVs) using the gBLUP model.

Data analysis in ASReml‑R package

a)	 Single-trial analysis

In single-trial analysis, each trial or environment is ana-
lyzed separately. Data for a given variable is analyzed using 
a mixed model approach in the ASReml-R package. Data 
analysis includes basic mixed models accounting only for 
experimental design factors (blocks and replications here) 
and advanced mixed models accounting for experimental 
design factors and spatial effects or trends [12–14]. In total, 
five mixed models were implemented to analyze the data 
and correct for the experimental design factors and spatial 
trends (correlated residuals across the field dimensions). 
More advanced models can be used in phenotypic data 
analysis to account for the spatial trends [13, 15]. However, 
in this demo, we just showed examples of five mixed mod-
els. The best model selected based on AIC values (lower 
the AIC value better the model) and residual plot infor-
mation [16] was used to extract the Best Linear Unbiased 
Predictors (BLUPs). In the analysis, we used genotypes 
as a random effect to extract the BLUPs, which are good 
for the phenotypic selection and ranking of the lines in 
the breeding programs [17, 18]. However, suppose we are 
going to use genomic selection or predictions in the breed-
ing program. In that case, it is better to use the genotypes 
as a fixed effect and extract the BLUEs, which can be used 
as a response variable in the genomic prediction model to 

https://github.com/whussain2/Analysis-pipeline
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extract the BLUPs or breeding values. The reason to use 
lines as fixed effects is to avoid double shrinkage if we use 
genotypes as random effects in both cases [17]. We also 
demonstrated how to use marker data and genomic rela-
tionship matrix to model the phenotypic data and extract 
the genomic estimated breeding values for each line using 
single-step genomic selection approach [19, 20].

The details of the five models used in the demonstration 
are given below and in the sample document of ASReml-R 
workflow HTML file (section 1.1) available on GitHub.
Model 1: In this model, we account for just experimen-
tal design factors, blocks and replications and no spatial 
trends, i.e., correlated residuals across the trial’s dimensions 
(rows and columns). Here in this model, blocks and geno-
types are used as random effects. The description of model 
1 is as:

where, yijk is the effect of i-th genotype in j-th replica-
tion and k-th block nested within j-th replication; µ is the 
overall mean; gi is the random effect of the i-th genotype; 
rj is the fixed effect of j-th replication; bjk is the random 
effect of k-th block nested within j-th replication; ǫijk is 
the residual error.

Here we assume residuals are independent and identi-
cally distributed as ǫ ∼ iidN (0, σ 2

ǫ ).
Model 2: In this model, we account for experimental 
design factor blocks, replications, rows and columns, and 
no spatial trends. Blocks, rows, and columns, and geno-
types were used as random effects. The description of 
model 2 is as:

where, yijklm is the effect of i-th genotype in the j-th rep-
lication, k-th block nested within j-th replication, l-th 
column and m-th row; µ is the overall mean; gi is the ran-
dom effect of the i-th genotype; rj is the fixed effect of j-th 
replication; bjk is the random effect of k-th block nested 
within j-th replication; cl is the random effect of the l-th 
column; rom is the random effect of the m-th row; ǫijklm is 
the residual error.

Here we assume residuals are independent and identi-
cally distributed as ǫ ∼ iidN (0, σ 2

ǫ ).
Model 3: In this model, we account for experimental 
design factors, replications and blocks, and spatial trends, 
i.e., correlated residuals across rows and columns. Blocks 
and genotypes were used as random effects. The descrip-
tion of model 3 is as:

where, yijk is the effect of i-th genotype in j-th replica-
tion and k-th block within j-th replication; µ is the overall 

yijk = µ+ gi + rj + bjk + ǫijk

yijklm = µ+ gi + rj + bjk + cl + rom + ǫijklm

yijk = µ+ gi + rj + bjk + ǫijk

mean; gi is the random effect of the i-th genotype; rj is the 
fixed effect of j-th replication; bjk is the random effect of 
k-th block nested within j-th replication; ǫijk is the resid-
ual error.

Here, we assume ǫ is a random effect represent-
ing correlated residuals based on the distance between 
plots along the rows and columns, where ǫ ∼ N (0,R) 
and R is the covariance matrix of ǫ . The difference 
between this model and model 1 and model 2 described 
above is the structure of the covariance residuals R 
= σ 2

ǫ �c(ρc)⊗ �r(ρr). σ 2
ǫ  is the variance of spatially 

dependent residual, (ρc)and �r(ρr) represents the first-
order autoregressive correlation matrices and ρc and ρr 
are the autocorrelation parameters for the columns and 
rows; ⊗ represents the Kronecker product between sep-
arable auto-regressive processes of the first order in the 
row-column dimensions [21–24].
Model 4: In this model, we account for experimental 
design factors, replications and blocks, and spatial trends, 
i.e., correlated residuals across rows only.

where, yijk is the effect of i-th genotype in j-th replica-
tion and k-th block within j-th replication; µ is the overall 
mean; gi is the random effect of the i-th genotype; rj is the 
fixed effect of j-th replication; bjk is the random effect of 
k-th block nested within j-th replication; ǫijk is the resid-
ual error.

Here, we assume ǫ is a random effect representing 
correlated residual based on the distance between plots 
along the rows only, where ǫ ∼ N (0,R) and R is the 
covariance matrix of ǫ . Here, R = Ic . σ 2

ǫ ⊗�ro(ρro) . σ 2
ǫ  is 

the variance of spatially dependent residual; �ro(ρr) rep-
resents the first-order auto-regressive correlation matri-
ces and ρro is the auto-correlation parameters for the 
rows; ⊗ represents the Kronecker product between sep-
arable auto-regressive processes of the first order in the 
row dimensions. Ic represents independently and identi-
cally distributed variance structure for columns.
Model 5: In this model, we account for experimental 
design factors replications and blocks, and spatial trends 
i.e., correlated residuals across columns only.

where, yijk is the effect of i-th genotype in j-th replica-
tion and k-th block within j-th replication; µ is the overall 
mean; gi is the random effect of the i-th genotype; rj is the 
fixed effect of j-th replication; bjk is the fixed effect of k-th 
block within j-th replication; ǫijk is the residual error.

Here, we assume ǫ is a random effect that repre-
sents correlated residual across columns only, where, 
ǫ ∼ N (0,R) and R is the covariance matrix ofǫ , and 

yijk = µ+ gi + rj + bjk + ǫijk

yijk = µ+ gi + rj + bjk + ǫijk
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R = σ 2
ǫ �c(ρc)⊗ Ir . σ 2

ǫ  is the variance of spatially 
dependent residual; �c(ρc) represents the first-order 
autoregressive correlation matrices and ρc the autocor-
relation parameters for the columns only; Ir represents 
independently and identically distributed variance 
structure for rows.

b)	 Multi-environment trial (MET) analysis

	 Depending upon the number of environments, MET 
analysis can be performed using single-stage or stage-
wise approaches for analysis [12, 22, 25, 26]. The sin-
gle-stage analysis is the golden standard to analyze 
the MET data. However, stage-wise analysis is more 
appropriate in the experiments or trials with unbal-
anced data sets, different experimental design factors 
across trials, and to avoid computational challenges 
of analyzing a huge number of trials. In a stage-wise 
or two-step approach, adjusted means are estimated 
per trial or environment, and weighted adjusted 
means (associated variance–covariance matrix) are 
fitted in the second step to get the predicted means 
for each genotype. This demonstration showed how 
to perform MET analysis using both the single-stage 
and two-stage or step analysis. The details on the 
MET analysis using the ASReml-R package is given 
on sample ASReml-R workflow HTML file (sec-
tion  1.2) available on GitHub (https://​github.​com/​
whuss​ain2/​Analy​sis-​pipel​ine).

i)	 Single-stage approach

	 In single-stage analysis, all the trials are analyzed 
jointly. Here, a joint analysis of MET is performed 
using a linear mixed model (LMM). The mixed 
model used is defined as:

	 where, yijkl is the effect of i-th genotype is j-th 
environment, k-th replication nested within j-th 
environment and l-th block nested within k-th 
replication and j-th environment; µ is overall 
mean; gi is the random effect of i-th genotype; ej 
is the random effect of j-th environment; geij is 
the interaction effect of i-th genotype with j-th 
environment; rjk is the fixed effect of k-th repli-
cation nested within j-th environment, bjkl is the 
random effect of l-th block nested within k-th 
replication and j-th environment, ǫijkl is the resid-
ual.

yijkl = µ+ gi + ej + (ge)ij + rjk+bjkl + ǫ
ijkl

	 In the matrix notation the mixed model can be 
represented as:

	 where, y is a vector of phenotypic trait values in 
all the genotypes; X is the design matrix of fixed 
effects of replications; Zg is the design matrix of 
genotypes within environments that combine 
the main effects of genotypes, environments and 
genotype by environment interactions; Zb is the 
random effect of blocks nested within the repli-
cations. β is the vector of fixed effects estimates; 
u1 , u2 , ǫ are the vector of random effects of gen-
otypes, blocks nested within replications, and 
residuals within environments, respectively.

	 Random effects are assumed to be random and 
normally distributed with zero mean vectors and 
variance–covariance matrices  B,  G,  R, respec-
tively, such that the joint distribution of these 
three terms is given as:

	 G is a variance–covariance (VCOV) matrix for 
the effect of genotypes within environments. 
For the G matrix, different VCOV structures 
were tested, such as compound symmetry (CS), 
diagonal (Diag), common genetic correlations 
(corgh), and FA of order k, in which k is the num-
ber of multiplicative components (FAk). For the 
R matrix, identity and diagonal and spatial trends 
VCOV structures were tested [27–33].

	 Here in this demo, we applied 10 models depend-
ing upon the variance–covariance structure of 
random and residual effects. The brief descrip-
tion of these models is given below:

	 Model 1 and model 2: Models 1 and 2 were 
basic models in which we assume the variance 
for residuals and random effects are independent 
and normally distributed, and implying genotypes 
have the same variance over the environments. 
Genotypic variance and covariance between pairs 
of environments are homogeneous, which corre-
sponds to compound symmetry (CS) variance–
covariance structure in the mixed model.

y = Xβ+ Zgu1 + Zbu2 + ǫ





u1
u2
ǫ



 ∼









0
0
0



,





G 0 0
0 B 0
0 0 R








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	 Model 3: In this model we assume different vari-
ances across environments, i.e., heterogeneous 
error variances across environments.

	 Model 4: In this model, we assume different 
variances across environments with spatial vari-
ance structure same for all the environments. It 
is assumed that each environment comprises of a 
rectangular array of rows(r) and columns (c) with 
R = σ 2

ǫ �c(ρc)⊗ �r(ρr) . σ 2
ǫ  is the variance of 

spatially dependent residual; �c(ρc) and �r(ρr) 
represents the first-order autoregressive correla-
tion matrices and ρc and ρr are the autocorrela-
tion parameters for the columns and rows; ⊗ rep-
resents the Kronecker product between separable 
auto-regressive processes of the first order in the 
row-column dimension.

	 Model 5: This model assumes different vari-
ances across environments with spatial varia-
tion structure specific to each environment. The 
best spatial model defined for each environment 
structure was obtained from the separate analy-
sis done for each environment, as shown in the 
above section.

	 Model 6: In this model, we assume a uniform 
correlation and heterogeneous genetic variance. 
Each environment has a unique genetic variance, 
but there were no correlations between environ-
ments.

	 Model 7: In this model, we assume unique 
genetic variance in each environment with uni-
form correlations between environments.

	 Models 8, 9, and 10: Here, we applied factor 
analytical models FA of order k, in which k is the 
number of multiplicative components (FAk) . In 
factor analytical model 10, we also assume the 
spatial variance structures are the same across 
each environment. More details on factor analyti-
cal models can be found in these papers [30–32, 
34–38].

	 ii)  Two-stage approach

	 Here in this section, the joint analysis of MET 
data was performed in two-stages. In the first-
stage adjusted means as BLUEs and residuals in 
each environment were obtained by consider-
ing the genotypes as fixed effect. At this step, the 
adjusted means of genotypes were corrected for 

the experimental design factors, including blocks 
and replications and spatial trends in each envi-
ronment. The model used follows as:

	 where, yijk represents adjusted means for i-th 
observation in j-th replication and k-th block 
nested within j-th replication; μ is the overall 
mean; gi is the effect of i-th genotype; rj is the 
effect of j-th replications; bjk is the effect of k-th 
block nested within j-th replication; ǫijk is the 
residual error.

	 Here, we assume ǫ ∼ N (0,R) and R is the covari-
ance matrix of ǫ and R = σ 2

ǫ �c(ρc)⊗ �r(ρr) . σ 2
ǫ  

is the variance of spatially dependent residual; 
�c(ρc) and �r(ρr)  represents the first-order 
autoregressive correlation matrices and ρc and 
ρr are the autocorrelation parameters for the 
columns and rows; ⊗ represents the Kronecker 
product between separable auto-regressive 
processes of the first order in the row-column 
dimensions.

	 In the second-stage, a mixed model was fit-
ted across each environment using the BLUEs 
obtained from the first-stage as response variable. 
The model used follows as:

	 where, yij is the BLUE value for i-th observation 
in j-th environment; μ is the overall mean; gi is 
the random effect of i-th genotype; ej is the ran-
dom effect of j-th environment; geij is the inter-
action effect of i-th genotype with j-th environ-
ment; ǫij is the residual error.

	 Here, we assume the error is known from the 
first stage. To account for the errors in the sec-
ond stage, reciprocal of squared standard errors 
(equal to diagonal of variance–covariance matrix) 
as absolute weights were used, thus constrain-
ing the residual variance to one. This procedure 
of obtaining weights is thoroughly described in 
Method 2 given in [39].

Data analysis in lme4 R package
Phenotypic data modeling is also demonstrated in the 
lme4 R package, an open-source R package for users who 
don’t have access to the commercial ASReml-R package. 

yijk = µ+ gi + rj + bjk + ǫ
ijk

yij = µ+ gi + ej + (ge)ij + ǫij
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In the lme4 R package, data analysis is again divided into 
two methods of separate analysis and MET analysis. The 
details on the analysis in lme4 are available in the lme4 R 
workflow HTML file available on GitHub (https://​github.​
com/​whuss​ain2/​Analy​sis-​pipel​ine). Unfortunately, we 
cannot reproduce all the analysis depicted in ASReml 
analysis due to the limitation lme4 has in performing 
mixed-model analysis.

The description of models used in lme4 for separate 
and MET analysis is given below:

Model 1. lme4: For the separate analysis following 
mixed model was used. This is equivalent to the basic 
model 1 used in ASReml analysis. The model followed as:

where, yijk is the effect of i-th genotype in j-th replica-
tion and k-th block within j-th replication; µ is the overall 
mean; gi is the random effect of the i-th genotype; rj is the 
fixed effect of j-th replication; bjk is the random effect of 
k-th block within j-th replication; ǫijk is the residual error.

Here, we assume residuals are independent and identi-
cally distributed as ǫ ∼ iidN (0, σ 2

ǫ )

Model 2. lme4: For the combined analysis following 
mixed model was used in lme4:

where, yijk is the effect of i-th genotype in j-th environ-
ment, k-th replication within j-th environment and l-th 
block within k-th replication within j-th environment; 
µ is the overall mean; gi is the random effect of the i-th 
genotype; ej is the fixed effect of j-th environment; geij is 
an interaction effect of i-th genotype in j-th environment; 
rjk is fixed effect of k-th replication within genotype j-th 
environment; bjkl is the random effect of l-th block nested 
within k-th replication and j-th environment; ǫijkl is the 
residual error.

The models described above are equivalent to the MET 
model used in ASReml-R, except we are not modeling 
any spatial variation here in lme4 as was done in the 
ASReml-R package.

Analysis by incorporating marker data
In the crop breeding programs, it is now a routine to inte-
grate the marker data with phenotypic data to predict the 
genetic merit of individuals in the framework of mixed-
model equations by incorporating a genomic relation-
ship matrix (GRM) constructed by using marker data. 
This section demonstrated how to extend the phenotypic 
data analysis to marker-based analysis using a relation-
ship matrix. Here, we show an example of how to fit the 
gBLUP model to get the genomic estimated breeding 
values (GEBV). More details on other predictive-based 

yijk = µ+ gi + rj + bjk + ǫijk

yijkl = µ+ gi + ej + (ge)ij + rjk + bjkl + ǫijkl

models using marker data can be found in these arti-
cles [17, 40, 41, 41–44]. In gBLUP genomic relationship 
matrix (GRM) based on marker, data is used, and GRM 
defines similarity or the covariance between genotypes or 
individuals at the genomic level. More details on how to 
fit the gBLUP model are given in the ASReml-R workflow 
HTML file (section  1.3). Briefly, here we are providing 
general model details and how to construct GRM.

In the matrix notation, the gBLUP model is described 
as:

where, y is a vector of individual phenotypes; X is a 
design matrix of replications; β is a vector of fixed effects 
of replications; Zg is a design matrix of marker effects; 
ug is a vector of random marker effects; Zrb is a design 
matrix of non-genetic block effects nested within rep-
lications; urb is a vector of random block effects; Ze is a 
design matrix of non-genetic random effect of environ-
ments and genotype x environment interactions; ue is a 
vector of main environment and interaction effects; ε is 
the vector of residual errors.

Further, we assume random effects are normally dis-
tributed with zero mean vectors and variance–covariance 
matrices  G,  B,  R as described in single-stage approach 
of MET analysis above. Here, the expected variance of 
markers is given as Var(ug)=σ 2

g G, where G is genomic or 
kinship covariance matrix of n x m dimensions (n is no. 
of markers and m is no. of individuals) representing the 
genomic similarity of individuals.

Genomic (G) matrix or GRM [37, 39] is constructed 
using the following equation:

Here X is a scaled and centered matrix of marker data, 
X́ transpose of X matrix, and n is the number of total 
markers or columns in marker data.

Results
This section demonstrated how to extract the results 
from the separate analysis or MET analysis using either 
the ASReml-R package or lme4 R packages. Users can 
extract the specific results depending upon the objec-
tives. In a separate analysis, we showed how to pull 
BLUPs, variance components, heritability, ANOVA, and 
variogram to check for spatial trends for the trait using 
the best model. In MET analysis, besides these results 
mentioned above, we used the ASExtras4 R package 
(https://​mmade.​org/​asext​ras4/) to extract additional 
results, including correlation and covariance matrix, G 
x E BLUPs, PCA biplot, and latent regression figures to 

y = Xβ+ Zgug + Zburb + Zeue + ε

G =
XX́

n

https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://mmade.org/asextras4/
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check the stability of genotypes (Fig. 2). For more details 
on these results, check the HTML workflows of ASReml 
and lme4 analysis available on GitHub.

Additionally, we demonstrated how to extract the her-
itability and generalized heritability [45] using different 
approaches. For example, we are dealing with spatial or 
complex models in this data, so calculating heritability 
based on the method described by [17, 45] is used to esti-
mate heritability. Briefly, for complex residual structures 
and unbalanced experimental designs, heritability esti-
mation is given by equation Hc = 1− VBLUP

2σ 2
g

 , where 

VBLUP is a mean–variance difference of two BLUPs and 
σ 2
g  is a variance of genotypes. Note that this definition of 

heritability is related to the reliability of breeding value 
predictions.

Further BLUPs extracted here are used to rank the 
genotypes for making selections in breeding decisions. In 
lme4 R package analysis, ANOVA, variance components, 
fixed effect as BLUEs, random effect as BLUPs, and her-
itability were extracted. More details on this are given 
in the sample lme4 R workflow HTML document avail-
able on GitHub (https://​github.​com/​whuss​ain2/​Analy​sis-​
pipel​ine).

Converting analysis workflow into a document
One of the biggest challenges in data analysis is report-
ing it and presenting it in a well-documented format for 
better understanding and making breeding decisions. In 
data analysis, the ‘copy and paste’ system is mostly used 
to report the results, which is time-consuming and highly 
error-prone. Thus, the situation demands a unique tech-
nique that converts the analysis workflow explicitly into a 
report or document for easy interpretations, understand-
ing, and sharing. Here, we not only reported the analysis 
workflow as described above but also demonstrated how 
this workflow could be re-designed into a reproducible 
document for better interpretation, visualization, and 
seamless sharing with partners. The generated report is 
the state-of-the-art implementation of an analysis work-
flow with a description of R scripts and results with inter-
pretations embedded as one unified document. A sample 
document is available in the GitHub repository at https://​
github.​com/​whuss​ain2/​Analy​sis-​pipel​ine. The main fea-
tures of the document are:

1)	 The analysis pipeline described and given in Fig. 1 is 
converted into a highly reproducible document, and 
the same report and analysis pipeline can be gener-
ated anytime when required. The sample source 
codes of the analytical pipeline and demo data set 
can be directly downloaded from the GitHub reposi-
tory (https://​github.​com/​whuss​ain2/​Analy​sis-​pipel​

ine). The instructions on how to run the analysis 
pipeline on a local computer are given on the GitHub 
repository page.

2)	 Any new data and editing/corrections to the exist-
ing pipeline can be done by simply re-knitting the 
R markdown ‘.Rmd’ document (https://​rmark​down.​
rstud​io.​com/​artic​les_​intro.​html). This analytical 
pipeline avoids manually updating or generating 
reports or PowerPoint slides, which are otherwise 
highly prone to errors and time-consuming.

3)	 The document includes metadata (information about 
the field trial design, data collection, experimental 
design, and more) at the beginning for quick identi-
fication, location, and association of data and analysis 
at any given time (Fig. 3a).

4)	 The document is well structured and organized. For 
example, the document is divided into sections with 
headings and subheadings to increase accessibility 
and cognition. The table of contents is always visible 
in the document making it faster and easier to navi-
gate within a document (Fig. 3a). Additionally, read-
ers have the flexibility to hide the sections for better 
readability and accessibility.

5)	 The document is currently generated in HTML, 
which upon download can be easily opened in any 
browser without requiring any access to the internet. 
Further, HTML files can be shared easily and hosted 
on websites for easy sharing and future use.

6.	 The graphics in the document are highly dynamic 
and interactive. Simply hovering a cursor on the plot 
will display the additional hidden information, which 
is impossible in static pictures. For example, the box 
plots and heatmaps of experimental field design to 
visualize spatial trends are highly dynamic and inter-
active (Fig.  3b and c). Additionally, graphics can be 
easily exported to the local drive.

7)	 The output generated in the form of tables is highly 
dynamic and interactive. The tables generated can 
be easily managed, searched, and sorted like a mini 
excel sheet (Fig.  3d). Interestingly, tables can also 
be exported in various formats or printed directly 
within the document. The tables and result outputs 
being in the same file completely avoids the option of 
saving the files on computers and digging into them 
to extract useful information in making presentations 
or in undertaking breeding decisions.

8)	 Complete description and details of scripts, proce-
dures, and methods used for analysis are elaborated 
in the same document. Results generated in the doc-
ument in the form of figures and or tables have been 
thoroughly described to aid in the interpretation and 
better understanding. Hyperlinks have been embed-
ded in the required sections to help in understand-

https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://github.com/whussain2/Analysis-pipeline
https://rmarkdown.rstudio.com/articles_intro.html
https://rmarkdown.rstudio.com/articles_intro.html
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ing the concepts and add knowledge to the users. 
For example, web sources on how to interpret the 
box plots; methods used to calculate heritability with 
complex models; spatial analysis modeling, and much 
more have been hyperlinked in the document

Conclusions
Crop breeding trial analysis and procedures are well 
established in the literature; however, putting them into 
an end-to-end analysis workflow with detailed descrip-
tions and explanations is not available. A helpful guide 
and tutorial to thoroughly understand the phenotypic 
data analysis is a crucial requirement in breeding pro-
grams. Here, we took an initiative to modernize the 
data analysis of IRRI’s RRB program, which can be 
easily put into practice and will be of great use to the 
crop breeding communities having full-fledged breed-
ing programs. We believe this will serve a helpful guide 
specifically for researchers or plant breeders who have 
little knowledge about phenotypic data analysis. We 
reported the workflow and analytical pipeline and gave 
step-by-step instructions and explanations on how to 
analyze the phenotypic data in the best possible way 
for making the right breeding decisions. Conclusively, 

we reported end-to-end implementation of phenotypic 
data analyses of plant breeding field trials and re-design 
it into a reproducible document for easy sharing, 
understanding, and interpretation. In the future, we 
look forward to incorporating predictive analytics 
based on higher advanced statistical modeling and big 
data.
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